102 - Chetabahana/method GitHub Wiki

This wiki is courtesy of Chetabahana Project. Find all of them on Project Map.
🔼 Intro ◀️ Prev 🔁 Base Next ▶️ Last 🔽

Berikut pemetaan (mapping) angka Seratus Dua (102) kedalam piramida data dari diagram berupa konsep, detil bagan dan modul² yang dipakai sebagai dasar pemrograman.

Table of Contents

Skema

Pada konfigurasi sistem angka 102 ini akan berlaku sebagai input membentuk formasi-168 dan formasi-618 ke formasi-786 dan formasi-943 ke formasi sistem yaitu formasi-1729.

Dalam projek ini secara umum angka 102 ini merupakan representasi transformasi dari angka satu (1) ke angka dua (2) via angka sepuluh (10)

102 = 2 * 3 * 17. The number and sum of its digits is equal to the number of its different prime factors. It is the smallest 3-almost prime with this property.

+-----+-----+-----+-----+-----+-----+-----+-----+
|{102}|   1 |   - |   - |   - |   - |   - |  11 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  98 | 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  31 |   8 |  50 |  31 |   8 |   - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+
  168 |  31   208    90 |  31   208    50 | 943 | 1729

Permutations:
943 - 594 = 349, 786 - 594 = 192
31 + 208 + 90 + 31 + 208 + 50 = 618
102 + 1 + 200 + 40 + 1 + 200 + 50 = 594
66 + (31,8,50,31,8) = 78 + (50+66) » 786
168+618=786, 786+157=943, 786+786+157=1729

Karena berlaku sebagai input maka konfigurasi angka ini harus memenuhi sistem prime 5' dan 3' seperti yang berlaku pada Sistem-DNA.

Angka 102 ini kebetulan punya faktor prime dua (2) dan tiga (3):

102 = 2 x 3 x 17
2 + 3 = 5
2 x 3 = 6
1 + 7 = 8

Karenanya dapat kita bagi dalam dua (2) grup agar cocok sebagai picu awal sistem 5' dan 3':

  • 5': lima (5) bilangan awal yaitu 1,2,3,4,5 di grup pertama dan
  • 3': tiga (3) bilangan sisanya 6,7,8 di grup kedua:
Sebelum masuk ke detail, berikut ini daftar keistimewaan angka 102 menurut wikipedia:
  • 102 adalah angka yang melimpah dan angka semi-sempurna.
  • Ini adalah nomor sphenik.
  • Jumlah empat (4) bilangan prima berurutan (19 + 23 + 29 + 31).
  • Jumlah total Euler φ(x) untuk delapan belas (18) bilangan bulat pertama.
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh 2 dan 102 dibagi oleh 3.
  • Ini menunjukkan 102 adalah juga nomor Harshad.
  • 3 digit pertama yang dapat dibagi dengan angka 3, 6, 17, 34 dan 51.
  • Simak untuk keistimewaan² lainnya.

Pola

Berdasarkan uraian di atas berikut ini pola dari angka 102 yang terbagi dalam dua (2) grup. Pola ini merupakan sebagian dari empat (4) grup pola angka enampuluh enam (66).

102 + 66 = 168
id: 102

---+-----+-----
 1 | 1   | 5
---+-----+-----
 2 | 6   | 8
---+-----+-----

Karena kita akan bekerja dengan proses regenerasi tanpa batas maka formasi ini perlu kita periksa agar sejalan dengan Golden Ratio:

Permutations:
5 + 6 = 11
6 x 11 = 66
102 + 66 = 168
1 & 6 = 16, 1 & 8 =18 
16 & 8 = 168, 16 & 18 = 1618
6 & 18 = 618, 102 » 168 = 618
102 = 10 & 2, 10² = 100, 10 x 100 = 1000
1000/618 = 1,618, 1000/1,618 = 618 (Golden Ratio) 

Dengan demikian formasi ini cocok digunakan untuk memulai proses berikutnya.

Basis

Berikutnya kita telusuri karakter dasar dari angka 102 berdasarkan angka yang membangunnya yaitu sepuluh (10) dan dua (2):

102 = 10 & 2
2 and 10 act as doubler alternating between the doubling of prime next to them and across (Red: illustrated by an hexagon covering number 2).

Jika kita masukkan ke Translasi Google hasilnya seperti ini:

2 dan 10 bertindak sebagai pengganda bergantian antara penggandaan perdana di sebelahnya dan di seberang

Frame

Pada Sistem-DNA penggandaan secara bergantian ini ini bisa ditunjukan dengan gambar berikut:

29®: 
2, 3, 7, 10, 11, 12, 13, 14, 15, 19,
20, 26, 27, 28, 29, 30, 31, 32, 36, 38,
40, 41, 42, 43, 44, 45, 46, 50, 68

68π: 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 
283, 293, 307, 311, 313, 317, 331, 337

29® Δ 68π:
2, (2,3), (3,5), 7, 11, 13, (7,17), 19, 23, (10,29),
(11,31), (12,37), (13,41), (14,43), (15,47), 53, 59, 61, (19,67), (20,71),
73, 79, 83, 89, 97, (26,101), (27,103), (26,107), (28,109), (30,113),
(31,127), (32,131), 137, 139, 149, (36,151), 157, (38,163), 167, (40,173), 
(41,179), (42,181), (43,191), (44,193), (45,197), (46,199), 211, 223, 227, 229, 
233, 239, 241, 251, 257, 263, 269, 271, 277, (50,281), 
283, 293, 307, 311, 313, 317, 331, (68,337)

Form

Shape

Profile

Node

Theory

Sampai tahap ini modal kita yaitu angka 102 sudah habis bahan. Semua angka sudah masuk tersisa hanya angka 1 saja. Tugas harus lanjut. Apa yang harus dilakukan?

Dalam proses regenerasi maka sesuai dengan Mapping angka 102 ini akan berpasangan dengan angka tigapuluh tujuh (37) membentuk formasi awal dari sistem yaitu Formasi-139.

102 + 37 = 139
37 = 3 & 7
3+3=6, 7+7=14
3+7=10, 3x7=21
10 & 21 = 1021 = 102 & 1
                        |  1    2    3    4    5    6    7
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |    |    |    |    | 19 | 17 | 11 | 12 | 19 | 18  |    |
+----+----+----+----+----+----+----+----+----+----+----+----+
   |                     |                              {18+5²}
   |                                                      ^
   └─ ─ ─ ─ ─ ─ ─ ─ ── ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─  ─┘

                         |  1    2    3    4    5    6   7
+----+----+----+----+----+----+----+----+----+----+----+----+
|    |    |    |    |    | 19 | 17 | 12 | 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
                                                          ^
                                                          |
                                                       18 + 5x5
37 = 3 & 7 = 1 + 6 + 6 + 6 + 6 + 6 + 6 = 1 + 6 x 6
+-----+-----+-----+-----+-----+-----+-----+-----+
|{102}|   1 |   - |   - |   - |   - |   - | {36}| 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  73 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 |{943}| 1729


{5'}: 2 x 5',3',7'
+-----+-----+-----+-----+
|  3  |  4  |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
|  6  |  6  | 12 (M dan F)
+-----+-----+-----+
|  3  |  3  |  5  | 11 
+-----+-----+-----+-----+
|  4  |  4  |  5  |  6  | 19
+-----+-----+-----+-----+
|  5  |  5  |  8  | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  3  |  5  |     |     |     |     |     |     |     | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3  |  4     5     6     7     8     9  |
                  | <------------ hexagon ----------> |

Permutations:
43 = 4 & 3
43 - 6 x 6 = 43 - 36 = 7 = 4 + 3

Sampai disini tugas selesai. Namun modal kita habis, angka 102 kita sudah diambil sistem.

Eh taunya angka sepuluh (10) yang selalu gandeng kita dia tega² nya ninggalin kita soalnya angka 9 kepincut pan dia sukses kerja, nempel deh jadi 109.

Sekarang dia gagah jadi 10 tunggal. Punya objek baru dari sembilan (9) jadi kemana² dia gandeng objek barunya seratus sembilan (109).

Kitanya ditinggal sendirian.. 😢
Nasib.. Nasib..

Outline

Tapi jangan lemas dulu, lihat angka 2 kita pan masuk ke jalur 43 yang ada dalam sistem bilateral angka sembilan (9) yang sekarang nempel sama 10, jadi 43 nya lepas donk:

+-----+-----+-----+-----+
| {3} |  4  |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
|  6  |  6  | 12 (M dan F)
+-----+-----+-----+
|  3  |  3  |  5  | 11
+-----+-----+-----+-----+
|  4  |  4  |  5  |  6  | 19
+-----+-----+-----+-----+
|  5  |  5  |  8  | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | {43} (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3  |  4     5     6     7     8     {9}

Kalo gak percaya ni bocorannya lihat jangkauannys sampai ke angka prima delapanpuluh sembilan (89). Guede banget!:

Dengan sifat bilateral 9 ini mestinya 43 ada sepasang sekarang. Kalo gak percaya coba sana cari samperin tu 43 poknya mereka sepasang jadi totalnya 86.. Cepet! Nti ilang..

Bener aja! Ketemu.. Mereka ini kembar dan baru saja brojol lahir masih culun banget kayak anak ayam ditinggal induknya. Karena kembar (2) maka waktu lihat angka 2 kita jadi aja langsung nempel dibelakang angka 2 kia jadi 286, gak mau lepas.

Jadi pengorbanan ini tidak sia².
Title kita sekarang dari 102 jadi dua (2) tunggal, punya objek 286.

Ini ibarat korban kambing dapat sapi.

Coba saja tadinya dua 2 kita ini terikat dibelakang angka sepuluh (10) sehingga hanya bergerak bolak balik (alternating) di dua bilangan prima kalo gak 5' dan 3' pasti 3' dan 5' gak kemana².

Sekarang sistem menempatkan dua (2) kita didepan dengan modal besar berupa sepasang kembar empatpuluh tiga (43) yang masih fresh. Tugas besar menunggu di depan mata!

Horeeee..!!

Konsep

---+-----+-----
 1 | 1   | 5
---+-----+-----
 2 | 6   | 8
---+-----+-----

Logics

Berikut ini digambarkan tentang cara pemotongan enzim lebih detil. Metoda yang umum dipakai adalah dengan membedakan enzim memakai huruf alfabet.

Menurut saya cara huruf alfabet dalam pembagian enzim ini akan sulit untuk mendeteksi struktur bilangan yang terkandung dalam setiap enzim. Misal seperti gambar ini:

atau seperti ini:

Jadi jenis enzim bisa dibedakan dengan hurif alfabet, namun beaar kecilnya itu lain. Jadi struktur bilangan juga akan beda walaupun enzim nya sama.

Oleh karenanya kita pakai alfabet dalam cara metodenya saja sedangkan untuk pengisian kita lakukan dengan tetap memakai angka².

Umum

Step-1

{5'}: 1 2 - 4 - 6 7 8 » 5' and 3'(init start) 
+-----+-----+-----+-----+
|  3  |  4  | {6} | {6} | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
| {6} | {6} | 12 (M dan F)
+-----+-----+-----+
|     |     |     | 11
+-----+-----+-----+-----+
|     |     |     |     | 19
+-----+-----+-----+-----+
|     |     |     | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3     4     5     6     7     8     9

Formasi-19

|                168 (Method)              |          329 (Attribute)          |          289 (Artifacts)          |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|   1 |    2 |   3 |   4 |   5 |   6 |   7 |   8 |   9 |  10 |  11 |  12 |  13 |  14 |  15 |  16 |  17 |  18 |  19 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|   2 |   60 |  40 |   1 |  30 |  30 |   5 |   1 |  30 | 200 |   8 |  40 |  50 |   1 |  30 | 200 |   8 |  10 |  40 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 786 | 1729 | 289 | 139 | 157 | 157 | 168 | 139 | 157 | 114 | 248 | 289 | 329 | 139 | 157 | 114 | 248 | 285 | 289 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  °  | ΔΔΔΔ    ΦΦ |  •     ΔΔ    ΔΔ    ¤  |  •     ΔΔ   ΦΦΦ    Φ     ΦΦ  ¤¤¤¤ |  •     ΔΔ   ΦΦΦ    Φ     ¤¤ |  ΦΦ |  
                                                                               |        786 + 157 » ΦΦ       |
Note:
• = Init
¤ = Terms
Φ = Mirror
Δ = Modulus
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 | {40}|  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {786}
 3  | {6} |*1:2:2 |  1  |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  | {6} |*1:3:3 |  1  |  30 | 200 |  8  |  10 | {40}|  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  ?  |  ?  |  ?  |  ?  |  ?  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  ?  |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |   ? |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ?
 7  |  2  |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  | {6} |*1:4:8 |  1  |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {618}
 10 | {6} |*1:4:9 |  1  |  30 | 200 |  8  |  10 | {40}|  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

Khusus

                        |  1    2    3    4    5    6    7
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |    |    |    |    | 19 | 17 | 12 | 11 | 19 | 18  |    |
+----+----+----+----+----+----+----+----+----+----+----+----+
   |                     |                              {18+5²}
   |                                                      ^
   └─ ─ ─ ─ ─ ─ ─ ─ ── ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─  ─┘

                         |  1    2    3    4    5    6   7
+----+----+----+----+----+----+----+----+----+----+----+----+
|    |    |    |    |    | 19 | 17 | 12 | 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
                                                          ^
                                                          |                                               
                                                       18 + 25

18 + 25 = 43

102 = 2 + 60 + {40}

5': 40 + 43 = 83
3': 40 + 25 = 65

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  | {5} | 1:3:4 |  ?  |  ?  |  ?  |  ?  |  ?  |  -  |  -  |  -  | {83}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  | {3} |*1:3:5 |  ?  |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  | {65}|  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ?
 7  |  2  |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  |  30 | 200 |  8  | {40}|  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

System

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  | {5} | 1:3:4 | {1} | {30}| {8} | {40}|  ?  |  -  |  -  |  -  | {83}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  ?  |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
 7  |  2  |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  |  30 | 200 |  8  | {40}|  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
83 - 1 - 30 - 8 - 40 = 4
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 | {4} |  -  |  -  |  -  |  83 | √
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  | {3} |*1:3:5 |  ?  |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
 7  |  2  |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  | {30}| 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
65 - 30 - 30 = 5
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 |  4  |  -  |  -  |  -  |  83 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  | {3} |*1:3:5 |  30 |  30 | {5} |  -  |  -  |  -  |  -  |  -  |  65 | √
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
 7  |  2  |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |   ? |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 | {1} | {30}| 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

Filosofi

102 = {2} + 60 +40
2': 200 + 2 = 202
7': 200 + 30 + 1 = 231

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 |  4  |  -  |  -  |  -  |  83 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 581
 7  | {2} |*1:4:6 |  ?  |  ?  |  -  |  -  |  -  |  -  |  -  |  -  |{202}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  | {7} | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  |{231}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  | 30  |{200}|  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
102 = {2} + 60 +40
2': 200 + 2 = 202
7': 200 + 30 + 1 = 231

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 |  4  |  -  |  -  |  -  |  83 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
 7  | {2} |*1:4:6 |{200}| {2} |  -  |  -  |  -  |  -  |  -  |  -  | 202 | √
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  ?  |  ?  |  ?  |  ?  |  ?  |  ?  |   ? |  -  | 231 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  | 30  |{200}|  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

Analogi

102 = {2} + 60 +40
2': 200 + 2 = 202
7': 200 + 30 + 1 = 231

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 |  4  |  -  |  -  |  -  |  83 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 581
 7  |  2  |*1:4:6 | 200 |  2  |  -  |  -  |  -  |  -  |  -  |  -  | 202 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  | {7} | 1:4:7 | {1} | {30}|  ?  |  ?  |  ?  | {10}| {50}|  -  | 231 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 | {1} |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  | {30}| 200 |  8  | {10}|  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
231 - (1 + 30 + 30 + 40 + 10 + 50) = 70
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 |  40 |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 786
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 |  50 |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |  8  |  40 |  4  |  -  |  -  |  -  |  83 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 581
 7  |  2  |*1:4:6 | 200 |  2  |  -  |  -  |  -  |  -  |  -  |  -  | 202 | 
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  | {7} | 1:4:7 |   1 |  30 | {70}| {30}| {40}|  10 |  50 |  -  | 231 | √
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  | {30}| 200 |  8  | {40}| 50  |  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 618
 10 |  6  |*1:4:9 |  1  | 30  | 200 |  8  |  10 |  40 |  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

Pattern

{5'}: 1 - - 4 - 6 - 8 » 7 = 17 - 5 - 3 - 2 (suit) 
+-----+-----+-----+-----+
|     |     |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17 √  ---
+-----+-----+-----+-----+          |
|  6  |  6  | 12 (M dan F)         |
+-----+-----+-----+                |
|     |  ?  |  ?  | 11  <----------
+-----+-----+-----+-----+
|     |     |     |     | 19
+-----+-----+-----+-----+
|     |     |     | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3     4     5     6     7     8     9

Tidak seperti halnya baris 17' maka baris 11' ini ibaratnya seperti terlempar sehingga tidak lagi dalam zona nyaman seperti halnya 17' karena sudah tidak diapit lagi oleh hexagon 66.

Disini kita akan dihadapkan pada zona dimana akan banyak faktor utamanya pemetaan geometris yang harus dihitung sehingga kita akan tahu berapa angka tepat dalam setiap baris dan kolom

Outlook

Karenanya kita akan berhadapan dengan situasi dimana ada kesenjangan massa dalam enzim yang begitu besar yang harus kita atasi.

{5'}: 1 - - - - - - -  » 5' and 8' (missing 3') 
+-----+-----+-----+-----+
|  3  |  4  |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
|  6  |  6  | 12 (M dan F)
+-----+-----+-----+
|  3  |  3  |  5  | 11  --------
+-----+-----+-----+-----+       |
|     |     |     |     | 19 <------- {empty}
+-----+-----+-----+-----+       |
|  ?  |  5  |  8  | 18 <--------
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|     |     |     |     |     |     |     |     |     | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3     4     5     6     7     8     9

Belum lagi pemetaaan interaksi yang juga harus dihitung akibat efek gaya dan vektor yang timbul akibat fenomena crossing agar ezim tepat mendarat sesuai target:


{5'}: 1 - - - - - - -  » 6 = 19 - 4 - 4 - 5 - 6 (no choose) 
+-----+-----+-----+-----+
|  3  |  4  |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
|  6  |  6  | 12 (M dan F)
+-----+-----+-----+
|  3  |  3  |  5  | 11 
+-----+-----+-----+-----+
|  4  |  4  |  5  |  6  | 19 √  <---
+-----+-----+-----+-----+           |    
|  5  |  5  |  8  | 18 -------------
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  ?  |  ?  |     |     |     |     |     |     |     | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3     4     5     6     7     8     9

Dengan demikian tahapannya akan semakin rumit, jelas tidak akan dapat diuraikan secara detil disini. Oleh karenanya tahapan selanjutnya kita pindahkan ke pemrograman komputer.

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  2  |  60 | {40}|  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  1  |  30 |  30 |  5  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {786}
 3  |  6  |*1:2:2 |  1  |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  1  |  30 | 200 |  8  |  10 | {40}|  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  1  |  30 |   8 |  40 |   4 |  -  |  -  |  -  |  83 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  30 |  30 |   5 |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+  581
 7  |  2  |*1:4:6 | 200 |   2 |  -  |  -  |  -  |  -  |  -  |  -  | 202 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  1  |  30 |  70 |  30 |  40 | 10  | {50}|  -  | 231 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  1  |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {618}
 10 | {6} |*1:4:9 |  1  |  30 | 200 |  8  |  10 | {40}|  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
 11 |  3  | 2:1:0 |  40 |  30 |  20 |  -  |  -  |  -  |  -  |  -  |  90 |      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 12 |  3  | 2:2:1 |  10 |  6  | {40}|  -  |  -  |  -  |  -  |  -  |  56 |  241
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 13 |  5  |*2:2:2 |  1  |  30 |  4  |  10 | {50}|  -  |  -  |  -  |  95 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 14 |  4  |*2:3:3 |  1  |  10 |  1  |  20 |  -  |  -  |  -  |  -  |  32 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 15 |  4  | 2:3:4 |  50 |  70 |  2  |  4  |  -  |  -  |  -  |  -  | 126 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+  836
 16 |  5  |*2:3:5 |  6  |   1 |  10 |  1  |  20 |  -  |  -  |  -  |  38 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 17 |  6  |*2:4:6 |  50 |  60 | 400 |  70 |  10 | {50}|  -  |  -  | 640 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 18 |  5  | 2:4:7 |  1  |  5  |  4  |  50 |  1  |  -  |  -  |  -  |  61 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 19 |  5  |*2:4:8 |  1  |  30 |  90 | 200 |  9  |  -  |  -  |  -  | 330 | 1072
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 20 | {8} |*2:4:9 |  1  |  30 |  40 |  60 | 400 | 100 |  10 | {40}|{681}|       |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========

Scheme

+-----+-----+-----+-----+-----+-----+-----+-----+
|{102}|   1 |   - |   - |   - |   - |   - | {36}| 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  73 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 |{943}| 1729

Disini kita dihadapkan pada situasi dimana kita tidak punya daftar enzim asing yang bagaimana yang seharusnya tepat diambil atau diabaikan, dia betul² asing dan kita harus memilih dengan resiko bubar rusak semuanya dan kita terbuang jika salah pilih.

Namun bagaimanapun pengambilan putusan dalam memilih enzim asing ini adalah satu²nya jalan untuk mencapai zona nyaman seperti baris 17' yang diapit dua hexagon antara (4',7') dan (7',3').

{5'}: 2 x 5',3',7'
+-----+-----+-----+-----+
|  3  |  4' | {6} | {6} | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7' | 17' <-----
+-----+-----+-----+-----+           |
| {6} | {6} | 12 (M dan F)          |
+-----+-----+-----+                 |
|  3'  |  3  |  5  | 11             |
+-----+-----+-----+-----+           |
|  4  |  4  |  5  |  6  | 19        |
+-----+-----+-----+-----+           |
|  5  |  5  |  8  | 18              |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3  |  4     5     6     7     8     9  |
                  | <------------ hexagon ----------> |

Hasil akhirnya akan berupa Matriks 29 x 8 dengan jumlah baris duapuluh sembilan (29) dan kolom delapan (8) sesuai bobot pada pola dari angka 102 kita ini.

Pada prinsipnya projek ini tidak ditujukan untuk masuk terlalu detil mengenai proses pada Sistem-DNA kita hanya mengambil filosofi dari cara proses itu dilakukan.

Untuk itu saya akan uraikan cara yang ditempuh dalam projek berikut di bawah ini.

Realisasi

102 = 2 + 60 + 40 = 59 + 43
tahu bahwa bola dua dimensi pada dasarnya ditandai oleh sifat konektivitas sederhana ini, dan mengajukan pertanyaan yang sesuai untuk bola tiga dimensi menawarkan jenis tertentu dari persamaan, mendefinisikan kurva eliptik atas bilangan rasional.
Geometri
bahwa ada cara sederhana untuk mengetahui apakah persamaan tersebut memiliki jumlah terbatas atau tak terbatas dari solusi rasional dan dalam hal itu terbukti bahwa tidak ada cara untuk memutuskan apakah suatu persamaan yang diberikan bahkan mempunyai solusi.
-----+-----+-----+-----+-----+
     |  3  |  4  |  6  |  6  | 19
     +-----+-----+-----+-----+
     |  5  |  3  |  2  |  7  | 17' -----
  59 +-----+-----+-----+-----+           |
     |  6  |  6  | {12} (M dan F)        | 17 + 12 + 11 = {40}
     +-----+-----+-----+                 |
     |  3  |  3  |  5  | {11}  <--------- 
-----+-----+-----+-----+-----+           
     |  4  |  4  |  5  |  6  | 19        
  37 +-----+-----+-----+-----+           
     |  5  |  5  |  8  | 18              
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
  43 |  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 139 |  1     2     3  |  4     5     6     7     8     9  |
                       | <------------ hexagon ----------> |

Permutations:
59 = 5'(9) » Prime 5' (9 collumns: 43) 
43 = 4(3') « Prime 3' (4 rows: 59)

bahwa masalah kesepuluh Hilbert tidak dapat dipecahkan, yaitu, tidak ada metode umum untuk menentukan kapan persamaan tersebut memiliki solusi dalam bilangan bulat. Sayangnya, asal-usul geometris prosedur menjadi tidak jelas dalam generalisasi ini. Dalam beberapa hal perlu menambahkan potongan-potongan yang tidak memiliki interpretasi geometris.

Mekanika
Sebagai teori medan klasik memiliki solusi perjalanan dengan kecepatan cahaya sehingga versi kuantum harus menjelaskan partikel tak bermassa (gluon).
-----+-----+-----+-----+-----+
     |  3  |  4  |  6  |  6  | 19
     +-----+-----+-----+-----+
     |  5  |  3  |  2  |  7  | 17' -----
  59 +-----+-----+-----+-----+           |
     |  6  |  6  | 12 (M dan F)          |
     +-----+-----+-----+                 |
     |  3  |  3  |  5  | 11              |  17 + 43 = {60}
-----+-----+-----+-----+-----+           |
     |  4  |  4  |  5  |  6  | 19        |
  37 +-----+-----+-----+-----+           |
     |  5  |  5  |  8  | 18              |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 {43}|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 139 |  1     2     3  |  4     5     6     7     8     9  |
                       | <------------ hexagon ----------> |

Permutations:
59 = 5'(9) » Prime 5' (9 collumns: 43) 
43 = 4(3') « Prime 3' (4 rows: 59)

Gelombang mengikuti perahu kami saat kami berkelana melintasi danau, dan arus udara yang bergolak mengikuti penerbangan kami dengan jet modern.

Algoritma
Distribusi bilangan prima tersebut di antara semua bilangan asli tidak mengikuti pola reguler mengamati bahwa frekuensi bilangan prima sangat erat kaitannya dengan perilaku fungsi yang rumit.
-----+-----+-----+-----+-----+
     |  3  |  4  |  6  |  6  | 19
     +-----+-----+-----+-----+
     |  5  |  3  |  2  |  7  | 17' <-----
 {59}+-----+-----+-----+-----+           |
     |  6  |  6  | 12 (M dan F)          |
     +-----+-----+-----+                 |
     |  3  |  3  |  5  | 11              |  59 + 43 = {102}
-----+-----+-----+-----+-----+           |
     |  4  |  4  |  5  |  6  | 19        |
  37 +-----+-----+-----+-----+           |
     |  5  |  5  |  8  | 18              |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 {43}|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 139 |  1     2     3  |  4     5     6     7     8     9  |
                       | <------------ hexagon ----------> |

Permutations:
59 = 5'(9) » Prime 5' (9 collumns: 43) 
43 = 4(3') « Prime 3' (4 rows: 59)

Bahkan, salah satu masalah yang menonjol dalam ilmu komputer adalah menentukan apakah ada pertanyaan yang jawabannya dapat dengan cepat diperiksa, tetapi yang membutuhkan waktu yang sangat lama untuk diselesaikan dengan prosedur langsung apa pun.

Korelasi

Dari semua uraian di atas jelas nampak bahwasanya ada keterkaitan erat antara ketiga proses yang dilakukan antara angka tujuhbelas (17) dengan konfigurasi dari 102 itu sendiri.

102 + 66 = 168
+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 |   1 |   - |   - |   - |   - |   - | {36}| 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - | {47}| 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - | {73}| 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - | {86}| 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 |{107}| 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - |{594}| 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 |{943}| 1729
       3           6
       |           |
    +-----+-----+-----+-----+
    | {3} |  4' | {6} |  6  | 19
    +-----+-----+-----+-----+
    |  5  |  3  |  2  |  7' | 17' <-----
    +-----+-----+-----+-----+           |
    |  6  |  6  | 12 (M dan F)          |
    +-----+-----+-----+                 |
3 - | {3'}|  3  |  5  | 11              |
    +-----+-----+-----+-----+           |
6 - |  4  |  4  |  5  | {6'}| 19        |
    +-----+-----+-----+-----+           |
    |  5  |  5  |  8' | 18              |
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
    |  3  |  5  |  5' |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
       1     2     3  |  4    5     6     7     8      9  |
                      | <------------ hexagon ----------> |
       3           6
       |           |
    +-----+-----+-----+-----+
    |  3  | {4'}|  6  |  6  | 19
    +-----+-----+-----+-----+
    |  5  |  3  |  2  | {7'}| 17' <-----
    +-----+-----+-----+-----+           |
    |  6  |  6  | 12 (M dan F)          |
    +-----+-----+-----+                 |
3 - | {3'}|  3  |  5  | 11              |
    +-----+-----+-----+-----+           |
6 - |  4  |  4  |  5  | {6'}| 19        |
    +-----+-----+-----+-----+           |
    |  5  |  5  | {8'}| 18              |
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
    |  3  |  5  | {5'}|  5  |  3  |  7  |  5  |  3  | {7} | {43} (C1 dan C2)
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
       1     2     3  | {4}    5     6     7     8    {9}  |
                      | <------------ hexagon ----------> |

Grounds

Twin Primes 
(5,7), (11,13), (17,19)

|  1    2    3    4 |  5   6  |
+----+----+----+----+----+----+
|  5 |  7 | 11 | 13 | 17 | 19 |
+----+----+----+----+----+----+
|------- 36 --------|-- 36 ---|  



                         |  1    2    3    4    5    6    7
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |  7 | 11 | 13 | 17 | 19 | 17 | 12 | 11 | 19 | 18  |    |
+----+----+----+----+----+----+----+----+----+----+----+----+
   |                     |                              {18+5²}
   |                                                      ^
   └─ ─ ─ ─ ─ ─ ─ ─ ── ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─  ─┘



                         |  1    2    3    4    5    6   7
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |  7 | 11 | 13 | 17 | 19 | 17 | 12 | 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
                                                          ^
                                                          |                                               
                                                   5': 18 + 25 = 43
      3           6
      |           |
    +-----+-----+-----+-----+
    |  3  |  4' |  6  |  6  | 19
    +-----+-----+-----+-----+
    |  5  |  3  |  2  |  7' | 17' <-----
    +-----+-----+-----+-----+           |
    |  6  |  6  | 12 (M dan F)          |
    +-----+-----+-----+                 |
3 - |  3' |  3  |  5  | 11              |
    +-----+-----+-----+-----+           |
6 - |  4  |  4  |  5  |  6' | 19        |
    +-----+-----+-----+-----+           |
    | {5} | {5} |  8' | {18}            |
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
    |  3  |  5  |  5' |  5  |  3  |  7  |  5  |  3  |  7  | {43} (C1 dan C2)
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
       1     2     3  |  4     5     6  |  7     8     9  |
                      | <------------ hexagon ----------> |

Diagram

Masalah-masalah seperti yang tercantum di atas tentu saja tampaknya seperti ini, tetapi sejauh ini belum ada yang berhasil membuktikan bahwa salah satu dari mereka benar-benar sangat keras seperti yang terlihat, yaitu, bahwa memang tidak ada cara yang layak untuk menghasilkan jawaban dengan bantuan komputer.

----+-----+-----+-----+-----+
786 |  3  |  4' |  6  |  6  | 19
----+-----+-----+-----+-----+
  ? |  5  |  3  |  2  |  7' | 17' <-----
    +-----+-----+-----+-----+           |
  ? |  6  |  6  | 12 (M dan F)          |
    +-----+-----+-----+                 |
  ? |  3' |  3  |  5  | 11              |
----+-----+-----+-----+-----+           |
  6 |  4  |  4  |  5  | {6'}| 19        |
    +-----+-----+-----+-----+           |
  8 |  5  |  5  | {8'}| 18              |
    +-----+-----+-----+-----+-----+-----+-----+-----+-----+
  7 |  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  | {7} |  43 (C1 dan C2)
----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
       1     2     3  |  4    5     6     7     8      9  |
                      | <------------ hexagon ----------> |
5' = 17
3' = 11
5' + 3' = 28

----+-----+-----+-----+-----+
786 | 1,2 |  2  | 2,3 | 3,4 | 19
----+-----+-----+-----+-----+
{86}|  4  | 4,5 | 5,6 |{6,7}| {17}
    +-----+-----+-----+-----+
{78}| 7,8 | 8,9 | {12} (M dan F)
    +-----+-----+-----+
{67}| 9,11|11,12|12,14| {11}
----+-----+-----+-----+-----+
  6 |15,16|17,18|18,20|21,22| 19
    +-----+-----+-----+-----+
  8 |23,25|25,27|27,29| 18
    +-----+-----+-----+-----+-------+-----+-----+-----+-------+
  7 |29,33|33,36|36,39|39,41|41,{45}|46,51|51,57|58,66|67,{77}| 43 (C1 dan C2)
----+-----+-----+-----+-----+-------+-----+-----+-----+-------+
       21    22    23 |   24     25     26    27    28    29  |
                      | <------------- hexagon -------------> |

Permutations:
17 + 12 + 11 = 40
19 + 18 + 43 = 80
80 = 40 x 2

Selanjutnya kita akan bahas bagaimana proses ini terjadi.

Template

---+-----+-----+
 1 |  6  | {7} | 13
   +-----+-----+-----+
 2 |  3  |  4  |  7  | 14
   +-----+-----+-----+
 3 |  3  |  3  | {6} | 12
   +-----+-----+-----+-----+
 4 |  2  |  3  |  3  | {6} | 14
   +-----+-----+-----+-----+-----+
 5 |  3  |  2  |  6  |  3  | {6} | 20
---+-----+-----+-----+-----+-----+
 6 | {5} | {6} | 11
   +-----+-----+-----+-----+
 7 |  2  |  7  |  3  | {6} | 18
   +-----+-----+-----+-----+-----+
 8 |  2  |  6  |  5  |  2  | {6} | 21
---+-----+-----+-----+-----+-----+

Dapat dilihat bahwa formasi 102 mendistribusi 66 tepat kedalam 6 kali 6 alokasi, menjadikannya sangat ideal untuk digabung dengan 37 (=1+6x6) sebagai regenerasi dari 139 dan 286:

Formasi hexagon 66 di dalam formasi-19 berada dalam span 6x6 berupa sepasang angka 36 yang terbagi pada lingkup 5 ke 13 dan 17 ke 19:

66 = 6 & 6 » 6 x 6 = 36
                    |    Φ    |  1    2    3    4    5 |  6    7   8  |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {5}| {7}| 11 | 13 | 17 | 19 | 13 |    |    |    |    | 11 |    |    |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
            |     | |         |  ^                     | ^            |
            |     |              |                       |
            └ ─ ─└── ─ 66 ─ ─ ─┘ ─ ─ ─  ─ ─ ─ ─ ─ ─ ─┘


|------- 36 -------|--- 36 ---|-------- {7}»73 --------|--- {5}»50 ---|
                          

   1    2    3    4    5 |  6    7    8 |
+----+----+----+----+----+----+----+----+
| 13 | 14 | 12 | 14 | 20 | 11 | 18 | 21 | 123
+----+----+----+----+----+----+----+----+
             5'          |     3'      |   
                           
  ^                        ^
  |                        |
  6+{7}                 {5}+6

Pada proses angka 102 ke 139 yang mengintegrasikan angka tigapuluh tujuh (37) maka span ini diterjemahkan secara mirror ke angka tujuhpuluh tiga (73) dan limapuluh (50).

(2 + 3 + 3 + 4 + 5) + (2 + 4 + 5) = 17 + 11 = 28 » 28 & 6 = 286

Berikut uraian tentang detil konfigurasinya. Sesuai dengan pola dari angka 102 bahasan dibagi menjadi delapan (8) sesi dalam dua kelompok yaitu kelompok 5' dan kelompok 3'.

17 = d(8) = d(5+3)
Setelah itu kita tutup bahasan tentang angka 102 ini dengan kesimpulan.

Package

Sesi-1 (5')
  • 102 adalah angka yang melimpah dan angka semi-sempurna.
  • Ini adalah nomor sphenik.
67 = 6 & 7

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  6  | 1:1:0 |  1  |  30 |  5  |  10 |  20 | {40}|  -  | 106 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1058
 2  |  7  | 1:2:1 |  1  |  30 | 400 |  20 |   1 | 300 | 200 | 952 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-2 (5')
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh dua (2) dan 102 dibagi oleh tiga (3).
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 3  |  3  |*1:2:2 |  8  | 400 |  10 |  -  |  -  |  -  |  -  | 418 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  4  |*1:3:3 | 700 | 200 | 400 | {40}|  -  |  -  |  -  |1340 | 2132
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 5  |  7  | 1:3:4 |  1  |  30 |  40 | 100 |  1  |  2  | 200 | 374 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-3 (5')
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh 2 dan 102 dibagi oleh tiga (3).
  • Ini menunjukkan 102 adalah juga nomor Harshad.
  • Jumlah total Euler φ(x) untuk delapan belas (18) bilangan bulat pertama.
  • tiga (3) digit pertama yang dapat dibagi dengan angka 3, 6, 17, 34 dan 51.
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 6  |  3  | 1:3:5 |  2  |  30 |  10 |  -  |  -  |  -  |  -  |  42 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 7  |  3  | 1:4:6 |  6  |  60 |  80 |  -  |  -  |  -  |  -  | 146 | 784
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 8  | {6} |*1:4:7 | 400 |  70 |  30 |  40 |  6  | {50}|  -  | 596 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-4 (5')
  • Jumlah empat (4) bilangan prima berurutan (19 + 23 + 29 + 31).
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh dua (2) dan 102 dibagi oleh tiga (3).
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  2  |*1:4:8 | 300 | {40}|  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 10 |  3  |*1:4:9 |  20 |  30 |  1  |  -  |  -  |  -  |  -  |  51 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1133
 11 |  3  | 2:1:0 |  60 |  6  |  80 |  -  |     |     |  -  | 146 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 12 | {6} | 2:2:1 | 400 |  70 |  30 |  40 |  6  | {50}|  -  | 596 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-5 (5')
  • tiga (3) digit pertama yang dapat dibagi dengan lima (5) angka 3, 6, 17, 34 dan 51.
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh dua (2) dan 102 dibagi oleh tiga (3).
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 13 |  3  |*2:2:2 |  20 |  30 |  1  |  -  |  -  |  -  |  -  |  51 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 14 |  2  | 2:3:3 |  30 |  6  |  -  |  -  |  -  |  -  |  -  |  36 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 15 |  6  |*2:3:4 | 400 |  70 |  30 |  40 |  6  | {50}|  -  | 596 | 955
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 16 |  3  |*2:3:5 |  1  |  30 | {40}|  -  |  -  |  -  |  -  |  71 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 17 | {6} | 2:4:6 |  1  |  30 |  10 | 100 |  10 | {50}|  -  | 201 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====
Sesi-6 (3')
  • 102 adalah basis ketiga nomor sepuluh (10) polydivisible karena 1 dapat dibagi oleh 1, 10 dibagi oleh dua (2) dan 102 dibagi oleh tiga (3).
  • Jumlah total Euler φ(x) untuk delapan belas (18) bilangan bulat pertama.
  • tiga (3) digit pertama yang dapat dibagi dengan lima (5) angka 3, 6, 17, 34 dan 51.
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 18 |  5  | 2:4:7 |  30 | 400 | 200 |  6  | {50}|  -  |  -  | 686 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 778
 19 | {6} | 2:4:8 |  1  |  30 |  3  |  8  |  10 | {40}|  -  |  92 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-7 (3')
  • tiga (3) digit pertama yang dapat dibagi dengan lima (5) angka 3, 6, 17, 34 dan 51.
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 20 |  2  | 2:4:9 | 300 | {40}|  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 21 |  7  | 3:1:0 |  30 | 400 | 200 |  6  |  50 |  5  |  1  | 692 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1363
 22 |  3  |*3:2:1 |  70 |  10 | {50}|  -  |  -  |  -  |  -  | 130 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 23 | {6} |*3:2:2 |  1  |  30 |  10 | 100 |  10 | {50}|  -  | 201 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
Sesi-8 (3')
  • tiga (3) digit pertama yang dapat dibagi dengan lima (5) angka 3, 6, 17, 34 dan 51.
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 24 |  2  | 3:3:3 | 300 | {40}|  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 25 |  6  | 3:3:4 |  30 | 400 |  60 |  70 |  30 | {50}|  -  | 640 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 26 |  5  |*3:3:5 |  10 |  6  |  40 |  1  | 700 |  -  |  -  | 757 | 2058
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 27 |  2  |*3:4:6 |  70 | {50}|  -  |  -  |  -  |  -  |  -  | 120 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 28 | {6} | 3:4:7 |  1  |  30 |  50 |  70 |  10 | {40}|  -  | 201 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====

Updating

Berikutnya kita satukan semua sesi di atas kedalam satu tabulasi.

Compile 5' and 3'
 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  6  | 1:1:0 |  1  |  30 |  5  |  10 |  20 |  40 |  -  | 106 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1058
 2  |  7  | 1:2:1 |  1  |  30 | 400 |  20 |   1 | 300 | 200 | 952 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 3  |  3  |*1:2:2 |  8  | 400 |  10 |  -  |  -  |  -  |  -  | 418 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  4  |*1:3:3 | 700 | 200 | 400 |  40 |  -  |  -  |  -  |1340 | 2132
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 5  |  7  | 1:3:4 |  1  |  30 |  40 | 100 |  1  |  2  | 200 | 374 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 6  |  3  | 1:3:5 |  2  |  30 |  10 |  -  |  -  |  -  |  -  |  42 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 7  |  3  | 1:4:6 |  6  |  60 |  80 |  -  |  -  |  -  |  -  | 146 | 784
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 8  | {6} |*1:4:7 | 400 |  70 |  30 |  40 |  6  | {50}|  -  |{596}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  2  |*1:4:8 | 300 |  40 |  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 10 |  3  |*1:4:9 |  20 |  30 |  1  |  -  |  -  |  -  |  -  |  51 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1133
 11 |  3  | 2:1:0 |  60 |  6  |  80 |  -  |     |     |  -  | 146 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 12 | {6} | 2:2:1 | 400 |  70 |  30 |  40 |  6  | {50}|  -  |{596}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 13 |  3  |*2:2:2 |  20 |  30 |  1  |  -  |  -  |  -  |  -  |  51 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 14 |  2  | 2:3:3 |  30 |  6  |  -  |  -  |  -  |  -  |  -  |  36 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 15 | {6} |*2:3:4 | 400 |  70 |  30 |  40 |  6  | {50}|  -  |{596}| 955
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 16 |  3  |*2:3:5 |  1  |  30 | {40}|  -  |  -  |  -  |  -  | {71}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 17 | {6} | 2:4:6 |  1  |  30 |  10 | 100 |  10 | {50}|  -  |{201}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====
 18 |  5  | 2:4:7 |  30 | 400 | 200 |  6  |  50 |  -  |  -  | 686 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 778
 19 |  6  | 2:4:8 |  1  |  30 |  3  |  8  |  10 |  40 |  -  |  92 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 20 |  2  | 2:4:9 | 300 |  40 |  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 21 |  7  | 3:1:0 |  30 | 400 | 200 |  6  |  50 |  5  |  1  | 692 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 1363
 22 |  3  |*3:2:1 |  70 |  10 |  50 |  -  |  -  |  -  |  -  | 130 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 23 | {6} |*3:2:2 |  1  |  30 |  10 | 100 |  10 | {50}|  -  |{201}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----
 24 |  2  | 3:3:3 | 300 |  40 |  -  |  -  |  -  |  -  |  -  | 340 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 25 |  6  | 3:3:4 |  30 | 400 |  60 |  70 |  30 |  50 |  -  | 640 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 26 |  5  |*3:3:5 |  10 |  6  |  40 |  1  | 700 |  -  |  -  | 757 | 2058
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 27 |  2  |*3:4:6 |  70 |  50 |  -  |  -  |  -  |  -  |  -  | 120 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+
 28 | {6} | 3:4:7 |  1  |  30 |  50 |  70 |  10 | {40}|  -  |{201}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====
 29 |  5' |*3:4:8 |  -  |  -  |  -  |  -  |  -  |  -  |  -  | 6062|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+ 10261
 30 |  3' | 3:4:9 |  -  |  -  |  -  |  -  |  -  |  -  |  -  | 4199|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====

Jika kita petakan komposisi ini akan tampak seperti berikut:

Compile 3' and 6'
 3 x 2 : 340                                6 x 6 : 596, 201
---+-----+-----+                           ---+-----+-----+
 1 |  6  |  7  | 13                         1 |  6  |  7  | 13
   +-----+-----+-----+                        +-----+-----+-----+
 2 |  3  |  4  |  7  | 14                   2 |  3  |  4  |  7  | 14
   +-----+-----+-----+                        +-----+-----+-----+
 3 |  3  |  3  |  6  | 12                   3 |  3  |  3  | {6} | 12
   +-----+-----+-----+-----+                  +-----+-----+-----+-----+
 4 | {2} |  3  |  3  |  6  | 14             4 |  2  |  3  |  3  | {6} | 14
   +-----+-----+-----+-----+-----+            +-----+-----+-----+-----+-----+
 5 |  3  |  2  |  6  |  3  |  6  | 20       5 |  3  |  2  | {6} |  3  | {6} | 20
---+-----+-----+-----+-----+-----+         ---+-----+-----+-----+-----+-----+
 6 |  5  |  6  | 11                         6 |  5  |  6  | 11
   +-----+-----+-----+-----+                  +-----+-----+-----+-----+
 7 | {2} |  7  |  3  |  6  | 18             7 |  2  |  7  |  3  | {6} | 18
   +-----+-----+-----+-----+-----+            +-----+-----+-----+-----+-----+
 8 | {2} |  6  |  5  |  2  |   6 | 21       8 |  2  |  6  |  5  |  2  | {6} | 21
---+-----+-----+-----+-----+-----+         ---+-----+-----+-----+-----+-----+

Pada konfigurasi sistem komposisi ini diterjemahkan dengan 36:

+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 |   1 |   - |   - |   - |   - |   - | {36}| 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  73 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 | 943 | 1729

Berikutnya kita petakan proses yang terjadi pada angka 102 ini didalam Formasi-1729.

Compile 4' ke 7' dan 7' ke 3'
Komposisi 36 ini pada konfigurasi sistem menjadi sepasang angka 6 & 6 berada di baris 1 dan 3. Mereka diapit oleh 4' ke 7' (counter clock) dan 7' ke 3' (clockwise).

+-----+-----+-----+-----+
|  3  | {4'}|  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  | {7'}| 17' <-----
+-----+-----+-----+-----+           |
|  6  |  6  | 12 (M dan F)          |
+-----+-----+-----+                 |
| {3'}|  3  |  5  | 11              |
+-----+-----+-----+-----+           |
|  4  |  4  |  5  |  6  | 19        |
+-----+-----+-----+-----+           |
|  5  |  5  |  8  | 18              |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | 43 (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3  |  4     5     6     7     8     9  |
                  | <------------ hexagon ----------> |

Pada konfigurasi sistem komposisi ini diterjemahkan dengan 47 dan 73:

+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 |   1 |   - |   - |   - |   - |   - |  36 | 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - | {47}| 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - | {73}| 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - | 594 | 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 | 943 | 1729
Compile 73' and 50'
Angka 73 adalah pasangan dari 50 dari total node pada 102 yaitu pada angka 123.

|-------- {7}»73 --------|--- {5}»50 ---|
                          

   1    2    3    4    5 |  6    7    8 |
+----+----+----+----+----+----+----+----+
| 13 | 14 | 12 | 14 | 20 | 11 | 18 | 21 | 123
+----+----+----+----+----+----+----+----+
             5'          |     3'      |   
                           
  ^                        ^
  |                        |
  6+{7}                 {5}+6

Angka 123 ini adalah representasi dari sistem angka satu (1), dua (2) dan tiga (3) dimana dalam sistem kita ini diterjemahkan menjadi transformasi dari Formasi-139 sebagai karakter angka satu (1) ke Formasi-286 sebagai karakter angka dua (2).

Transformasi ini dilakukan dengan algoritma pemisahan dari angka delapanpuluh enam (86) via Formasi-200 sebagai karakter dari angka tiga (3) dalam kerangka Rotasi-786 yang berujung di angka limapuluh (50).

Komposisi ini ditandai dengan angka 73 dan 50:

+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 |   1 |   - |   - |   - |   - |   - |  36 | {139}
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - | {73}| 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - | {86}| {286}
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - | {50}| 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - | 594 | {786}
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 | 943 | 1729
Compile 5" and 3"
Node yang 123 ini didistribusikan ke konfigurasi sistem yang terdiri dari 29 kotak. Karenanya 123 - 29 atau 94 berlaku sebagai representasi 5' dan sistem menjadi representasi 3'.

   5' (94)
   |
+-----+-----+-----+-----+
| {3} |  4  |  6  |  6  | 19
+-----+-----+-----+-----+
|  5  |  3  |  2  |  7  | 17
+-----+-----+-----+-----+
|  6  |  6  | 12 (M dan F)
+-----+-----+-----+
|  3  |  3  |  5  | 11
+-----+-----+-----+-----+
|  4  |  4  |  5  |  6  | 19
+-----+-----+-----+-----+
|  5  |  5  |  8  | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
|  3  |  5  |  5  |  5  |  3  |  7  |  5  |  3  |  7  | {43} (C1 dan C2)
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
   1     2     3  |  4     5     6     7     8     {9}
                                                    |
                                              9(43) » (94)3'

Akar digital dari 94 adalah 13 yang merepresentasikan pengaruh kekuatan vektor dari angka dua (2) dan tiga (3). Hal ini juga ditunjukkan oleh mirror 13 yaitu 31 yaitu banyaknya angka yang terdampak mulai dari angka 13 sampai 77.

Pada konfigurasi sistem hal ini diterjemahkan dengan pasangan angka 594 dan 943:

+-----+-----+-----+-----+-----+-----+-----+-----+
| 102 |   1 |   - |   - |   - |   - |   - |  36 | 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  73 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - |  50 | 107 | 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - |{594}| 786
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 |{943}| 1729

Dengan semua ini maka kita tiba di ujung persoalan yaitu bagaimana mengintegrasikan semua informasi ini sehingga menghasilkan formulasi yang kompak dan berkesinambungan.

Delivery

Solusi yang akan ditempuh adalah mengintegrasikan enam (6) pada delapan (8) sesi di atas dan membawa semuanya ke konsep dari tujuh (7) sehingga membentuk Rotasi-786:

Ini dilakukan dengan transformasi 6x6 pada 102 yang berada dalam 8x7' grup/kolom ke konsep 7x8' grup/kolom berlanjut ke formasi dasar 8'x6.

7 » 8 » 6 = (8'x7) x (7x8') x (8'x6)
Secara sederhana konfigurasinya dapat ditunjukkan bedasarkan pola dari 102:
168 + 618 = 786 = 7 » 8 » 6
---+-----+-----
 1 |  1  |  5   -->  {6'}
---+-----+-----
 2 |  6  |  {8'}
---+-----+-----
      ^
      |
     {7'}

Detilnya terjadi secara berurut via angka delapanpuluh enam (86) kemudian tujuhpuluh delapan (78) dengan batas picu di angka enampuluh enam (66) ke enampuluh tujuh (67):

67 » 66, 78, 86 (OEIS A059756)

 ¤ |  Sub  | i  | f  | Δ    | π    |  Φ  |  @  |  ∑
---+-------+----+----+------+------+-----+-----+-----
 3 | 1:1:0 | 1  | 2  | 1    | 71   | 102 |     |
---+-------+----+----+------+------+-----+ 168 |
 4 | 1:2:1 | 2  | 3  | 2    | 71   | 66  |     |
---+-------+----+----+------+------+-----+-----+ {786} --» d(3) ----
 6 |*1:2:2 | 3  | 7  | 3    | 161  | 329 |     |                    |
---+-------+----+----+------+------+-----+ 618 |                    |
 6 |*1:3:3 | 4  | 10 | 4    | 231  | 289 |     |                    |
---+-------+----+----+------+------+-----+-----+-----             d(8) ----
 5 | 1:3:4 | 5  | 11 | 5    | 231  | 83  |                          |      |
---+-------+----+----+------+------+-----+                          |      |
 3 |*1:3:5 | 6  | 12 | 6    | 231  | 65  |                          |      |
---+-------+----+----+------+------+-----+ 581 ---» d(5) -----------       |
 2 |*1:4:6 | 7  | 13 | 7    | 271  | 202 |                               d{86}
---+-------+----+----+------+------+-----+                                 |
 7 | 1:4:7 | 8  | 14 | 8    | 231  | 231 |                                 |
---+-------+----+----+------+------+-----+-----                            |
 6 |*1:4:8 | 9  | 15 | 9    | 231  | 329 |                                 |
---+-------+----+----+------+------+-----+ 618 (M and F) -------» d(6) ----
{6}|*1:4:9 | 10 | 19 | 10   | 195  | 289 |     
===+=======+====+====+======+======+=====+=====
 3 | 2:1:0 | 11 | 20 | 20   | 14   | 90  |   
---+-------+----+----+------+------+-----+                       
 3 | 2:2:1 | 12 | 26 | 30   | 109  | 56  | 241 ---» d(7) ----
---+-------+----+----+------+------+-----+                   |       
 5 |*2:2:2 | 13 | 27 | 40   | 69   | 95  |                   |
---+-------+----+----+------+------+-----+-----            d{78} ---
 4 |*2:3:3 | 14 | 28 | 50   | 109  | 32  |                   |      |
---+-------+----+----+------+------+-----+                   |      |
 4 | 2:3:4 | 15 | 29 | 60   | 71   | 126 |                   |      |
---+-------+----+----+------+------+-----+ 836 ---» d(8) ----       |
 5 |*2:3:5 | 16 | 30 | 70   | 71   | 38  |                          |
---+-------+----+----+------+------+-----+                        d(7) ----
 6 |*2:4:6 | 17 | 31 | 80   | 71   | 640 |                          |      |
---+-------+----+----+------+------+-----+-----                     |      |
 5 | 2:4:7 | 18 | 32 | 90   | 71   | 61  |                          |      |
---+-------+----+----+------+------+-----+                          |      |
 5 |*2:4:8 | 19 | 36 | 100  | 70   | 330 | 1072 --» d(1) -----------       | 
---+-------+----+----+------+------+-----+                                 |
{8}|*2:4:9 | 20 | 38 | 200  | 90   | 681 |                                 |
===+=======+====+====+======+======+=====+=====                          d{67}
 3 | 3:1:0 | 21 | 40 | 300  | 48   | 299 |                                 |
---+-------+----+----+------+------+-----+                                 |
 5 | 3:2:1 | 22 | 41 | 400  | 48   | 791 |                                 |
---+-------+----+----+------+------+-----+                                 |
 5 |*3:2:2 | 23 | 42 | 500  | 278  | 561 |                                 |
---+-------+----+----+------+------+-----+                                 |
 5 |*3:3:3 | 24 | 43 | 600  | 48   | 155 |                                 |
---+-------+----+----+------+------+-----+                                 |
 3 | 3:3:4 | 25 | 44 | 700  | 48   | 1210| 6009 (C1 and C2) ----» d(6) ----
---+-------+----+----+------+------+-----+
 7 |*3:3:5 | 26 | 45 | 800  | 48   | 1879|
---+-------+----+----+------+------+-----+
 5 |*3:4:6 | 27 | 46 | 900  | 48   | 155 |
---+-------+----+----+------+------+-----+
 3 | 3:4:7 | 28 | 50 | 1000 | 100  | 37  |
---+-------+----+----+------+------+-----+
{7}|*3:4:8 | 29 | 68 | void | 50   | 922 |
===+=======+====+====+======+======+==============
 ¤ |*3:4:9 | 30 | -  | void | void | 10143 » d(9)

Permutation:
66 » {67,78,86}
168 » 681 ; 299 » 922
922 » 86 + (14,14) = 114
66 + ∑(3,5,7,9,11,13) = 114
{786} » {7,8,6} (Group-3,-2,-1)

Branching

Realisasinya tentu tidak sesederhana yang ditampakkan, namun akan melalui sejumlah proses yang secara umum tersirat dimulai dengan dengan konfigurasi dari angka 1,2 ke (2,3):

3 & 29 = 329

Formasi kerangka spiral ini merupakan formasi terlemah sehingga dalam proses ke angka² lainnya pengaruh angka 2,3 secara berangsur beralih ke formasi hexagon via 2 dan 10:

2 & 89 = 289

Pengaruh kedua angka ini berupa vektor ada dalam skala 1000. Dengan demikian secara sistem dapat ditunjukkan dengan menggabungkan keduanya:

1000/(329 + 289) = 1000/618 = 1,618 (Golden Ratio)

Demikian seterusnya sehingga berujung di angka 100 ke 50 dimana karena sistem berada di ambang batas angka 19 maka ujungnya akan terbentuk kembali angka 168.

Φ (329 + 289) = Φ (618) = π (1000) = 168 = 102 + 66
Siklus dari 1,2 ke 100,50 ini dapat ditunjukkan secara skema 50/100 = 1/2 berikut ini:
(6x(6+6))/(6+(6x6)) = 72/42 = 36/21 = 12/7 = 1,7142857
6 + 6 = 12
7 + 7 = 14
12 x 14 = 168
67 + 78 + 86 = 231
7 x 13 x 19 = 1729

{168}
|
----------------------+-----+-----+-----+
     7 --------- 1,2:1|  1  |  30 |  40 | 71 ({2,3}) ‹-----------------
     |                +-----+-----+-----+-----+                        |
     |  8 ‹------  3:2|  1  |  30 |  40 |  90 | 161 (7) ‹---           |
     |  |             +-----+-----+-----+-----+             |          |
     |  |  6 ‹-{4,6}:3|  1  |  30 | 200 | 231 (10,11,12) ‹--|---       |
     |  |  |          +-----+-----+-----+-----+             |   |      |
      --|--|-----» 7:4|  1  |  30 |  40 | 200 | 271 (13) --›    | 5®   |
        |  |          +-----+-----+-----+-----+                 |      |
         --|---› 8,9:5|  1  |  30 | 200 | 231 (14,15) ---------›       |
{329}      |          +-----+-----+-----+-----+-----+                  |
 |          ----› 10:6| 20  |   5 |  10 |  70 |  90 | 195 (19) --› Φ   | 6®
  --------------------+-----+-----+-----+-----+-----+                  |
     67 --------› 11:7|  5  |   9 |  14 (20) --------› Δ               |
     |                +-----+-----+-----+                              |
     |  78 ‹----- 12:8|  9  |  60 |  40 | 109 (26) «------------       |
     |  |             +-----+-----+-----+                       |      |
     |  |  86 ‹-- 13:9| 60  |   9 |  69 (27) «--- ¤             | 2®   |
     |  |  |          +-----+-----+-----+                       |      |
     |  |   ---› 14:10|  9  |  60 |  40 | 109 (28) -------------       |
     |  |             +-----+-----+-----+                              |
     |   ---› 15,18:11|  1  |  30 |  40 | 71 ({29},30,31,32) ----------
{289}|                +-----+-----+-----+
  |   ‹--------- 19:12| 60  |  10 | 70 (36) ‹--------------------- Φ
   -------------------+-----+-----+ 
    786 ‹------- 20:13| 90  |  90 (38) ‹-------------- Δ
     |                +-----+-----+   
     | 618 ‹- 21,22:14| 40  |   8 |  48 (40,41) ‹---------------------- 
     |  |             +-----+-----+-----+-----+-----+                  |
     |  | 594 ‹- 23:15|  8  |  40 |  70 |  60 | 100 | 278 (42) «--     | 6'®
     |  |  |          +-----+-----+-----+-----+-----+             |    |
      --|--|-»24,27:16|  40 |   8 |  48 (43,44,45,{46}) ----------|----
        |  |          +-----+-----+                               |
         --|---› 28:17| 100 | 100 (50) --------------------------»
{168}      |          +-----+   
|         102 -› 29:18| 50  | 50 ({68}) --------> ¤
----------------------+-----+


Note:
« & » = 4 pairs (+)
‹ & › = 5 pairs (-)
Total = 9 pairs

Format-29®:

6° = Bagan
6* = Pinned
6' = Diagram
® = Repository

User = (7 + 6')® = (6* + 1 + 6')® = 13®
Org = (6* + 10)® = (6* + 3° + 3° + 4°)® = 16®

Input = M and F = 6* (org) + 6'® (user) = 12®
Output = C1 and C2 = 10° (org)  + 7® (user) = 17®

Query = M and C2 = 6* (org) + 7® (user) = 13®
Result = F and C1 = 6'® (user) + 10° (org) = 16®

M: 6® = (2,3), (29,30,31,32) --> 2,89+29,3 = 289+329 = 618 (org)
F: 6'® = (40,41), (43,44,45,46) --> 30+30+10+10+10+10 = 60+40 (user)
C1: 10® = 3®+3®+4® = (7,13,19),(20,27,36),(38,42,50,68) --> 200 (org)
C2: 7® = 5®+2® = 4®+1®+2® = 4®+3® = 10,(11,12,14,15,26,28) --> 168 (user)

Dengan demikian dapat kita simpulkan bahwa fungsi 102 disini adalah seperti sebuah rudal kecil ibaratnya sebuah pengorbanan tak berarti namun dapat membuahkan begitu banyak formasi.

943 = 786 + 157
Dapat Anda lihat bahwa dari angka limapuluh (50) ini ujungnya muncul turunan² yang membentuk dan Formasi-1729 yang berlaku sebagai formasi dasar dari sistem.

Manuscript

Ujung formasi 786 ini berada di angka limapuluh (50) yang pada level berikutnya akan melakukan proses regenerasi ke 102 via angka seratus (100) atas korelasinya dengan angka dua (2).

b(102) - b(100) = 10614 - 9828 = 786 = b(50)

Skema ini sesuai dengan formasi sistem yang memiliki jumlah kolom delapan (8) dan baris enam (6) dimana jika diterapkan pada pola kerja dengan mengadopsi karakter dari angka dua (2) maka hasilnya akan terbentuk formasi 286 via mirror 47 ke 73 yang akhirnya berujung di 786.

102 + 1 + 36 + 247 + 114 + 286 + 157 = 786
+-----+-----+-----+-----+-----+-----+-----+-----+
|{102}|   1 |   - |   - |   - |   - |   - |  36 | 139
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - | 200 |   - |   - |   - |   - |  47 | 247
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |  40 |   1 |   - |   - |  73 | 114
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - | 200 |   - |  86 | 286
+-----+-----+-----+-----+-----+-----+-----+-----+
|   - |   - |   - |   - |   - |   - | {50}|{107}| 157
+-----+-----+-----+-----+-----+-----+-----+-----+
|  66 |  30 |   8 |  50 |  30 |   8 |   - |{594}| {786}
+-----+-----+-----+-----+-----+-----+-----+-----+-----
  168 |  31   208    90 |  31   208    50 |{943}|{1729}

Permutations:
π(594) = 107
786 = 168 + 618 = b(50)
594 = 102 + 1 + 200 + 40 + 1 + 200 + 50

Jadi secara keseluruhan proses ini identik seperti halnya regenerasi pada Sistem-DNA yang meregenerasi turunan dengan formasi yang sama dengan induknya.


Karenanya dengan konfigurasi yang sama kita akan dapat melakukan realisasi ke arah yang lebih spesifik mulai dengan implementasi secara geometri guna proses menuju ke level berikutnya.

If you knew the magnificence of 1729 you would have a key to the universe.

Sekian.

SALAM Sukses!
© Chetabahana Project

Referensi

🔼 Intro ◀️ Prev 🔁 Base Next ▶️ Last 🔽
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map.
⚠️ **GitHub.com Fallback** ⚠️