29 - Chetabahana/method GitHub Wiki
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. | ||||||||
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|
Berikut ini pemetaan (mapping) angka Duapuluh Sembilan (29) ke piramida data dari diagram berupa konsep, detil bagan dan modul² yang dipakai sebagai dasar pemrograman.
Skema dari duapuluh sembilan (29) dibangun dari akar digitalnya yaitu angka dua (2) dengan acuan angka duapuluh delapan (28) ke limapuluh tujuh (57) dari formasi 7:Primes(142857):
Formasi dari angka limapuluh tujuh (57) ini akan menjadi basis sentral yang membangun formasi 114 sampai formasi-1729.
7P:(142857)
14 x 2 = 28 = 21 + 7
28 x 2 + 1 = 28 + 29 = 57
└── 57 x 2 = 114
└── 786
└── 1729
Dengan demikian transformasi angka tujuh (7) ke empatbelas (14) dan duapuluh satu (21) merupakan formasi yang menjadi basis terhadap proses dari keseluruhan sistem.
Sebelum masuk ke detail, berikut ini daftar keistimewaan angka 29 menurut wikipedia:
- Adalah bilangan prima kesepuluh dan juga bilangan primorial keempat .
- Membentuk pasangan prime kembar dengan tiga puluh satu, yang juga merupakan prime primorial.
- Juga merupakan perdana Sophie Germain keenam.
- Juga merupakan jumlah dari tiga kuadrat berurutan, 2² + 3² + 4².
- Adalah perdana Lucas, sebuah perdana Pell dan nomor tetranacci.
- Adalah prima Eisenstein tanpa bagian imajiner dan bagian nyata dari bentuk 3n - 1.
- Juga merupakan prima supersingular ke-10.
- Tak satu pun dari 29 bilangan alami pertama memiliki lebih dari dua faktor utama yang berbeda. Ini adalah urutan berurutan terpanjang seperti itu.
- Adalah angka Markov, muncul dalam solusi untuk x² + y² + z² = 3 xyz : {2, 5, 29}, {2, 29, 169}, {5, 29, 433}, {29, 169, 14701}, dll.
- Adalah nomor Perrin, didahului secara berurutan dengan 12, 17, 22.
- Adalah bilangan bulat positif terkecil yang tidak dapat dibuat dari bilangan {1, 2, 3, 4}, menggunakan masing-masing tepat sekali dan hanya menggunakan penambahan, pengurangan, perkalian, dan pembagian.
- Adalah jumlah pentacube jika refleksi dianggap berbeda.
- Simak untuk keistimewaan² lainnya.
Pola angka 29 berawal dari 26 atas rangkap 13 dari prima kembar 11 dan 13 dimana prosesnya akan berujung di 13 ke 17 via angka 1 dan 7 dan mirror 43 dan 71 ke angka tujuh belas (17).
Gabungan angka 17 dengan 29 membentuk angka 1729. Angka ini merupakan skema in-out yang menjadi prinsip dasar dari projek ini. Berikutnya akan saya uraikan jalan ceritanya.
Secara urutan in-out nya kita mulai dari peran angka duapuluh enam (26) dimana pasangan angka 11 ke 13 berfungsi rangkap sebagai faktor pengali dan pangkat secara kubus ke 3³ atau 27.
When a 3 × 3 × 3 cube is made of twenty-seven unit cubes, twenty-six of them are viewable as the exterior layer. Note that 3³ = 27
Itu sebabnya objek dari angka 26 akan berujung di gabungan karakter angka 11 ke 22 dan 27 ke angka 227 yang bersinggungan dengan 286 objek dari angka dua (2).
- 286 / 11 = 26
id: 26
---+-----+-----
1 | {1}| 6
---+-----+-----
2 | 7 | {9}
---+-----+----- } sel (9,10)
3 | {10}| 68
---+-----+-----
4 | 69 | 104
---+-----+-----
5 | 105 | 122
---+-----+-----
6 | 123 | 140
---+-----+-----
7 | 141 | 159
---+-----+-----
8 | 160 | 175
---+-----+-----
9 | 175 |{191}
---+-----+-----
10 |{192}| 227 = (7²)th prime
---+-----+-----
Peran angka duapuluh tujuh (27) adalah
π(27) = 2 + 7. Note that 2 x 7 = 14 and 2 x 14 = 28
- 69 + 70 = 139
id: 27
---+-----+-----
1 | {1} | 6
---+-----+-----
2 | 7 |{14}
---+-----+----- } sel (14,15)
3 |{15} | 44
---+-----+-----
4 | 45 | 53
---+-----+-----
5 | 54 | 58
---+-----+-----
6 | 59 | 59
---+-----+-----
7 | 60 | 69
---+-----+-----
8 | 70 |{93}
---+-----+-----
Peran angka duapuluh delapan (28) adalah
2n² + 29 is prime for n = 0 to 28
Pembagian polaritas dari angka² tentunya tidak selalu berjalam mulus namum karenanya angka 28 akan bekerja bersama dengan 157 sehingga akurasi dapat dilakukan secara konsisten.
- 43 & 96 / (100 + 29 + 28) = 4396 / 157 = 28 = 2 & 8
id: 28
---+-----+-----
1 | {1} | 6
---+-----+----- } sel (16,17)
2 | {7} | 13
---+-----+-----
3 |{14} | 21
---+-----+-----
4 | 22 |{28} = 4 x 7 | 247
---+-----+-----
5 |{29} | 42
---+-----+-----
6 |{43} | 60
---+-----+-----
7 |{61} | 75
---+-----+-----
8 | 76 | 82
---+-----+-----
9 | 83 | 88
---+-----+-----
Peran angka duapuluh sembilan (29) adalah sebagai interkoneksi dari enam (6) baris dengan blok 43 yang terdiri dari sembilan (9) kotak sehingga objeknya menjadi 69.
68 adalah angka terbesar yang diketahui sebagai jumlah dari dua bilangan prima dalam dua cara yang berbeda: 68 = 7 + 61 = 31 + 37.
- 6x10 + 9 = 69
id: 29
---+-----+-----
1 | 1 | {7}
---+-----+----- } sel (17,18)
2 | 8 |{13}
---+-----+-----
3 | 14 | 40
---+-----+-----
4 | 41 |{43}
---+-----+-----
5 | 44 | 55
---+-----+-----
6 | 56 | 60
---+-----+-----
7 |{61} | 68 } 18th prime
---+-----+-----
8 | 69 | 69
---+-----+-----
Perpindahan angka ke basis 10 ke 30 ditengarai oleh angka delapan belas (18) dengan total objek 10x11 atau 110 sehingga pada gilirannya memunculkan angka 139.
- 109 + 30 = 110 + 29 = 139 = 71 + 68
Angka 139 inilah yang membagi polaritas sehingga berujung di angka 68 yang merupakan mirror dari 86 yaitu rangkap angka 18 ke 43 yang merupakan pasangan angka 71 ke 114.
- 12/2=6 12/4=3 12/4=3 12/3=4 12/4=3
True Prime Pairs:
(5,7), (11,13), (17,19)
12/6 = 2
Δ
|------------ 6 --------------| ┌─ 12/4 = 3
+----+----+----+----+----+----+----+----+----+----+----+----+
| 5 | 7 | 11 | 13 | 17 | 19 | 17 | 12 |{11}| 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
3' |----- 3 ------|----- 3 ------| 4|3|
Δ Δ Δ Δ Δ
12/3 = 4 12/3 = 4 └── 12/3 = 4
- 89 + 25 = 114
| 29¨ 30¨ 31¨ |
-----+-----+-----+-----+-----+ ---
19¨ | 3¨ | 4¨ | 6¨ | 6¨ | 4¤ |
-----+-----+-----+-----+-----+ |
17¨ | {5¨}| {3¨}| 2¨ | 7¨ | 4¤ |
+-----+-----+-----+-----+ |
12¨ | 6¨ | 6¨ | {2¤} (M dan F) |
+-----+-----+-----+ 17¤
11¨ | 3¨ | {3¨}| {5¨}| 3¤ |
-----+-----+-----+-----+-----+ |
19¨ | 4¨ | 4¨ | 5¨ | 6¨ | 4¤ |
+-----+-----+-----+-----+ ---
18¨ | 5¨ | 5¨ | 8¨ | 3¤ |
+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 12¤
43¨ | {3¨}| {5¨}| 5¨ | 5¨ | 3¨ | 7¨ | 5¨ | 3¨ | 7¨ | {9¤} (C1 dan C2) |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ ---
139¨ |----- 13¨ -----|------ 15¨ ------|------ 15¨ ------|
| 1 2 3 | 4 5 6 | 7 {8} {9} |
Δ Δ Δ Δ
96|97 109 124 139
Formasi dari tabulasi ini tidak lain adalah distribusi angka tujuh (7) pada formasi distribusi bilangan prima 7:P(142857).
7P:(142857)
1421 = 14 & 21
14 x 2 = 21 + 7 = 28
28 x 2 + 1 = 28 + 29 = 57
Dengan demikian peran dari angka ini terkait dengan 29 Faktor Replikasi adalah merupakan hirarki dari skema replikasi yang membentuk struktur dari keseluruhan sistem:
Sub i f
-------+----+----
1:1:0 | 1 | 2
-------+----+----
1:2:1 | 2 | 3
-------+----+----
*1:2:2 | 3 | 7 √
-------+----+----
*1:3:3 | 4 |
-------+----+----
1:3:4 | 5 |
-------+----+----
*1:3:5 | 6 |
-------+----+----
*1:4:6 | 7 |
-------+----+----
1:4:7 | 8 |
-------+----+----
*1:4:8 | 9 |
-------+----+----
*1:4:9 | 10 | 19
=======+====+====
2:1:0 | 11 |
-------+----+----
2:2:1 | 12 |
-------+----+----
*2:2:2 | 13 |
-------+----+----
*2:3:3 | 14 |
-------+----+----
2:3:4 | 15 |
-------+----+----
*2:3:5 | 16 |
-------+----+----
*2:4:6 | 17 |
-------+----+----
2:4:7 | 18 |
-------+----+----
*2:4:8 | 19 |
=======+====+====
*2:4:9 | 20 |
-------+----+----
3:1:0 | 21 |
-------+----+----
3:2:1 | 22 |
-------+----+----
*3:2:2 | 23 |
-------+----+----
*3:3:3 | 24 |
-------+----+----
3:3:4 | 25 |
-------+----+----
*3:3:5 | 26 |
-------+----+----
*3:4:6 | 27 |
-------+----+----
3:4:7 | 28 |
-------+----+----
*3:4:8 | 29 |
-------+----+----
*3:4:9 | 30 | -
Jumlah tujuhpuluh satu (71) dan duapuluh sembilan (29) genap seratus (100) disini terdapat korelasi angka dua (2) dan limapuluh (50) terhadap sistem bilangan basis basis 30:
Sub i f Δ
-------+----+----+----
1:1:0 | 1 | 2 | 1
-------+----+----+----
1:2:1 | 2 | 3 | 2
-------+----+----+----
*1:2:2 | 3 | 7 | 3
-------+----+----+----
*1:3:3 | 4 | 10 | 4 √
-------+----+----+----
1:3:4 | 5 | | 5
-------+----+----+----
*1:3:5 | 6 | | 6
-------+----+----+----
*1:4:6 | 7 | | 7
-------+----+----+----
1:4:7 | 8 | | 8
-------+----+----+----
*1:4:8 | 9 | | 9
-------+----+----+----
*1:4:9 | 10 | 19 | 10 √
=======+====+====+=====
2:1:0 | 11 | | 20
-------+----+----+----
2:2:1 | 12 | | 30
-------+----+----+----
*2:2:2 | 13 | | 40
-------+----+----+----
*2:3:3 | 14 | | 50
-------+----+----+----
2:3:4 | 15 | | 60
-------+----+----+----
*2:3:5 | 16 | | 70
-------+----+----+----
*2:4:6 | 17 | | 80
-------+----+----+----
2:4:7 | 18 | | 90
-------+----+----+----
*2:4:8 | 19 | | 100 √
=======+====+====+======
*2:4:9 | 20 | | 200
-------+----+----+-----
3:1:0 | 21 | | 300
-------+----+----+-----
3:2:1 | 22 | | 400
-------+----+----+-----
*3:2:2 | 23 | | 500
-------+----+----+-----
*3:3:3 | 24 | | 600
-------+----+----+-----
3:3:4 | 25 | | 700
-------+----+----+-----
*3:3:5 | 26 | | 800
-------+----+----+-----
*3:4:6 | 27 | | 900
-------+----+----+-----
3:4:7 | 28 | | 1000 √
=======+====+====+=======
*3:4:8 | 29 | | void
-------+----+----+------
*3:4:9 | 30 | - | void
Dengan demikian pola dasar yang akan kita telusuri adalah sifat khusus dari angka delapan (8) yaitu berupa distribusi oktaf dari sistem 5’ ke 3’ yang merupakan basis dari formasi 1-5-7.
Sub i f Δ
-------+----+----+----
1:1:0 | 1 | 2 | 1
-------+----+----+----
1:2:1 | 2 | 3 | 2
-------+----+----+----
*1:2:2 | 3 | 7 | 3
-------+----+----+----
*1:3:3 | 4 | 10 | 4
-------+----+----+----
1:3:4 | 5 | | 5
-------+----+----+----
*1:3:5 | 6 | | 6
-------+----+----+----
*1:4:6 | 7 | | 7
-------+----+----+----
1:4:7 | 8 | | 8
-------+----+----+----
*1:4:8 | 9 | | 9
-------+----+----+----
*1:4:9 | 10 | 19 | 10
=======+====+====+=====
2:1:0 | 11 | 20 | 20 √
-------+----+----+----
2:2:1 | 12 | | 30
-------+----+----+----
*2:2:2 | 13 | | 40
-------+----+----+----
*2:3:3 | 14 | | 50
-------+----+----+----
2:3:4 | 15 | | 60
-------+----+----+----
*2:3:5 | 16 | | 70
-------+----+----+----
*2:4:6 | 17 | | 80
-------+----+----+----
2:4:7 | 18 | | 90
-------+----+----+----
*2:4:8 | 19 | | 100
=======+====+====+======
*2:4:9 | 20 | 38 | 200 √
-------+----+----+-----
3:1:0 | 21 | | 300
-------+----+----+-----
3:2:1 | 22 | | 400
-------+----+----+-----
*3:2:2 | 23 | | 500
-------+----+----+-----
*3:3:3 | 24 | | 600
-------+----+----+-----
3:3:4 | 25 | | 700
-------+----+----+-----
*3:3:5 | 26 | | 800
-------+----+----+-----
*3:4:6 | 27 | | 900
-------+----+----+-----
3:4:7 | 28 | | 1000
=======+====+====+=======
*3:4:8 | 29 | | void
-------+----+----+------
*3:4:9 | 30 | - | void
Hal ini dapat diilustrasikan dengan distribusi 29 faktor replikasi:
Sub i f Δ
-------+----+----+----
1:1:0 | 1 | 2 | 1
-------+----+----+----
1:2:1 | 2 | 3 | 2
-------+----+----+----
*1:2:2 | 3 | 7 | 3
-------+----+----+----
*1:3:3 | 4 | | 4
-------+----+----+----
1:3:4 | 5 | | 5
-------+----+----+----
*1:3:5 | 6 | | 6
-------+----+----+----
*1:4:6 | 7 | | 7
-------+----+----+----
1:4:7 | 8 | | 8
-------+----+----+----
*1:4:8 | 9 | | 9
-------+----+----+----
*1:4:9 | 10 | 19 | 10
=======+====+====+=====
2:1:0 | 11 | | 20
-------+----+----+----
2:2:1 | 12 | | 30
-------+----+----+----
*2:2:2 | 13 | | 40
-------+----+----+----
*2:3:3 | 14 | | 50
-------+----+----+----
2:3:4 | 15 | | 60
-------+----+----+----
*2:3:5 | 16 | | 70
-------+----+----+----
*2:4:6 | 17 | | 80
-------+----+----+----
2:4:7 | 18 | | 90
-------+----+----+----
*2:4:8 | 19 | | 100
=======+====+====+======
*2:4:9 | 20 | 38 | 200
-------+----+----+-----
3:1:0 | 21 | | 300
-------+----+----+-----
3:2:1 | 22 | | 400
-------+----+----+-----
*3:2:2 | 23 | | 500
-------+----+----+-----
*3:3:3 | 24 | | 600
-------+----+----+-----
3:3:4 | 25 | | 700
-------+----+----+-----
*3:3:5 | 26 | | 800
-------+----+----+-----
*3:4:6 | 27 | | 900
-------+----+----+-----
3:4:7 | 28 | | 1000
=======+====+====+=======
*3:4:8 | 29 | 68 | void √
-------+----+----+------
*3:4:9 | 30 | - | void
- f19 = 18 x 2 = 36
9 127 31 9 10
10 109 29 1 10
11 123 92 2 6
12 111 81 3 3
13 43 14 4 7
Sum 55 513 247 19 36
Sub i f Δ
-------+----+----+----
1:1:0 | 1 | 2 | 1
-------+----+----+----
1:2:1 | 2 | 3 | 2
-------+----+----+----
*1:2:2 | 3 | 7 | 3
-------+----+----+----
*1:3:3 | 4 | | 4
-------+----+----+----
1:3:4 | 5 | | 5
-------+----+----+----
*1:3:5 | 6 | | 6
-------+----+----+----
*1:4:6 | 7 | | 7
-------+----+----+----
1:4:7 | 8 | | 8
-------+----+----+----
*1:4:8 | 9 | | 9
-------+----+----+----
*1:4:9 | 10 | 19 | 10
=======+====+====+=====
2:1:0 | 11 | 20 | 20
-------+----+----+----
2:2:1 | 12 | | 30
-------+----+----+----
*2:2:2 | 13 | | 40
-------+----+----+----
*2:3:3 | 14 | | 50
-------+----+----+----
2:3:4 | 15 | | 60
-------+----+----+----
*2:3:5 | 16 | | 70
-------+----+----+----
*2:4:6 | 17 | | 80
-------+----+----+----
2:4:7 | 18 | | 90
-------+----+----+----
*2:4:8 | 19 | 36 | 100 √
=======+====+====+======
*2:4:9 | 20 | 38 | 200
-------+----+----+-----
3:1:0 | 21 | | 300
-------+----+----+-----
3:2:1 | 22 | | 400
-------+----+----+-----
*3:2:2 | 23 | | 500
-------+----+----+-----
*3:3:3 | 24 | | 600
-------+----+----+-----
3:3:4 | 25 | | 700
-------+----+----+-----
*3:3:5 | 26 | | 800
-------+----+----+-----
*3:4:6 | 27 | | 900
-------+----+----+-----
3:4:7 | 28 | 50 | 1000 √
=======+====+====+=======
*3:4:8 | 29 | 68 | void
-------+----+----+------
*3:4:9 | 30 | - | void
Struktur angka² ini diuraikan dengan acuan tujuh (7) pasangan atau angka empatbelas (14) dalam bentuk formasi 1-4-2-1 (lihat symbol 1*) pada formasi-19 berikut: Konfigurasi 1421
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
| 2 | 60 | 40 | 1 | 30 | 30 | 5 | 1 | 30 | 200 | 8 | 40 | 50 | 1 | 30 | 200 | 8 | 10 | 40 |
+---+----+----+---+----+----+---+---+----+-----+----+----+----+----+----+-----+----+----+----+
|<---- 3 ---->|<------ 4 ------>|
|<---- 3 ---->|<------ 1* ----->|
|<----------- 4 --------------->|
|<----------- 1* -------------->|<------------ 6 ------------>|
|<----------------------------- 7 --------------------------->| 1* |
|<----------------------------- 8 -------------------------------->|
|<----------------------------- 8 -------------------------------->|<---------- 5 ---------->|
|<------------------------------------------- 13 ------------------------------------------->|
| 1 |---------------------------------------- 18 ------------------------------------------->|
Digital Root:
d{2,60,40} = d{2,6,4} = 12
d{1,30,30,5} = d{1,3,3,5} = 12
d{1,30,200,8,40,50}= d{1,3,2,8,4,5} = 23
d{1,30,200,8,10,40}= d{1,3,2,8,1,4} = 19
12 + 12 + 23 + 19 = 66
102 + 66 + 329 + 289 = 786
248 = 200 + 40 + 8
└── 2 + 4 + 8 = 14
d (102, 66, 329, 289) = 3, 12, 14, 19
19 - 14 = 5 » 14 - 12 = 2 » 5 - 2 = 3
12 x 14 = 168 » 1 + 6 + 8 = 15 » 1+5 = 6
1* & 2-4-8 = 1 & 14 = 114 » 1 + 1 + 4 = 6
14 x 66 / 12 = 77 » 7 + 7 = 7 pairs = 14
14 = 7 pairs: 1771, 1463, 1309, 1001, 2093, 1729, 1547
Konfigurasi 1421 » 1813
2
+-----+
1| - | 2
+-----+
2| 1 | 3
+-----+
3| 4 | 7
+-----+
4| 3 | 10
+-----+
5| 1* | 11, 12, 13, 14, 15
+-----+
6| 4 | 19, 20
+-----+
7| 6 | 26
+-----+
8| 1* | 27, 28, 29, 30, 31, 32
+-----+
9| 4 | 36
+-----+
10| 2 | 38
+-----+
11| 2 | 40
+-----+
12| 1* | 41, 42, 43, 44, 45, 46
+-----+
13| 4 | 50
+-----+
14| 18 | 68
+-----+
Perhatikan bahwa dari semua kotak sebagai angka faktor pada Konfigurasi 2009 » 1519 yang merujuk bilangan prima pada formasi di atas yaitu: {7,11,13,17,19,23,29} maka karakter tunggal hanya terjadi pada angka tujuh (7), tigabelas (13) dan sembilan belas (19).
Konfigurasi 1421 » 2009
7:Primes(142857)
14:28 & 28:50»57
∑ 9, 12, 14, 19 = 54
∑ 9!, 12!, 14!, 19! = 418
∑ 9², 12², 14², 19² = 782
∑ 54, 418, 782 = 1254 = 6 x 209
168 = 14 x 12
2 + 0 + 9 = 11
1254 / 19 = 66 = 11!
1 + 2 + 5 + 4 = 6 + 6 = 12
-----+-----+-------------
1,2| 1 | {2,3} ------------
+-----+ |
3| 4 | 7 |
+-----+ |
4-6| 3 | 10,11,12 -- |
+-----+ | |
7| 1 | 13 | 5x |
+-----+ | |
8,9| 1* | 14,15 ----- |
+-----+ |
10| 4 | 19 | 6x » 618
-----+-----+------------- |
11| 1 | 20 |
+-----+ |
12| 6 | 26 -------- |
+-----+ | |
13| 1 | 27 | 2x |
+-----+ | |
14| 1 | 28 -------- |
+-----+ |
15-18| 1* | 29,30,31,{32} ----
+-----+
19| 4 | 36 = 6 x 6
-----+-----+-------------
20| 2 | 38
+-----+
21,22| 1* | 40,41 ------------
+-----+ |
23| 1 | 42 | 6x » 168
+-----+ |
24-27| 1* | 43,44,45,46 ------
+-----+
28| 4 | 50
+-----+
29| 18 | 68
-----+-----+-------------
Permutation:
2,3 = 14 » 29
29 | 68 = 29,68
14 Π 29 = 50 - 18 = 32
29,68 x 32 = 949,76 ~ 950
950 = 1000 - 50 = 50 x 19
Dan tiga (3) angka ini semuanya hanya ada di grup pertama. Sedangkan pada fungsi sebagai index maka hanya angka tujuhbelas (17) yang tidak berlaku tunggal dimana itu terjadi pada grup kedua dengan angka duapuluhsembilan (29) berlaku sebagai faktor utama.
Hal ini dapat dilihat pada transformasi {2,3} ke angka tigapuluh dua (32) dimana siklus berada pada selisih dari bobot index seribu (1000) dengan bobot faktor limapuluh (50) yang jika dibagi maka akan muncul kembali angka sembilanbelas (19). Detilnya akan dibahas kemudian.
Konfigurasi 1813 » 2009
1 » 29
2 » 1 to 2
4 » 3 to 6
8 » 7 to 14
14 » 15 to 28
+-----------------+----
1 » 29 | 1
+-----+-----+-----+
| 1 | 2
1-2 +-----------+
| 1 | 3
+-----+-----------+---- } 329
| 1 | 4
+-----+-----+
3-6 | | 1 | 5
| 3 +-----+
| | 2 | 6
+-----+-----+-----+--------------- } 618
| 5 | 7
+-----------+
| | 1 | 8
7-14 | +-----+ } 289
| 3 | 1 | 9
| +-----+
| | 1 | 10
+-----+-----------+----------------------------- } 786
| 6 | 11
+-----------+ } 66
| | 6 | 12
15-28 | +-----+-------------- } 168
| 8 | 1 | 13
| +-----+ } 102
| | 1 | 14
+-----+-----+-----+----
29
+-----+
1| 1 | 2,3
+-----+
2| 4 | 7
+-----+
3| 3 | 10,11,12
+-----+
4| 1 | 13
+-----+
5| 1* | 14, 15
+-----+
6| 4 | 19
+-----+
7| 1 | 20
+-----+
8| 6 | 26
+-----+
9| 1 | 27
+-----+
10| 1 | 28
+-----+
11| 1* | 29, 30, 31, 32
+-----+
12| 4 | 36
+-----+
13| 2 | 38
+-----+
14| 2 | 40, 41
+-----+
15| 1 | 42
+-----+
16| 1* | 43, 44, 45, 46
+-----+
17| 4 | 50
+-----+
18| 18 | 68
+-----+
Maka akan didapatkan jumlah bagian struktur kedalam formasi-29:
Sum Events:
2, 3,
7,
10, 11, 12, 13, 14, 15,
19, 20,
26, 27, 28, 29, 30, 31, 32,
36,
38,
40, 41, 42, 43, 44, 45, 46,
50,
68
All Events:
= 2 + 1 + 6 + 2 + 7 + 1 + 1 + 7 + 1 + 1
= 2 + 7 + 2 + 7 + 2 + 7 + 2
= 2 + 9 + 9 + 9
= 29 numbers
Hasilnya akan berupa bilangan berurut seperti ini:
Sub i f Δ
-------+----+----+----
1:1:0 | 1 | 2 | 1
-------+----+----+----
1:2:1 | 2 | 3 | 2
-------+----+----+----
*1:2:2 | 3 | 7 | 3
-------+----+----+----
*1:3:3 | 4 | 10 | 4 √
-------+----+----+----
1:3:4 | 5 | 11 | 5 √
-------+----+----+----
*1:3:5 | 6 | 12 | 6 √
-------+----+----+----
*1:4:6 | 7 | 13 | 7 √
-------+----+----+----
1:4:7 | 8 | 14 | 8 √
-------+----+----+----
*1:4:8 | 9 | 15 | 9 √
-------+----+----+----
*1:4:9 | 10 | 19 | 10
=======+====+====+=====
2:1:0 | 11 | 20 | 20
-------+----+----+----
2:2:1 | 12 | 26 | 30 √
-------+----+----+----
*2:2:2 | 13 | 27 | 40 √
-------+----+----+----
*2:3:3 | 14 | 28 | 50 √
-------+----+----+----
2:3:4 | 15 | 29 | 60 √
-------+----+----+----
*2:3:5 | 16 | 30 | 70 √
-------+----+----+----
*2:4:6 | 17 | 31 | 80 √
-------+----+----+----
2:4:7 | 18 | 32 | 90 √
-------+----+----+----
*2:4:8 | 19 | 36 | 100
=======+====+====+======
*2:4:9 | 20 | 38 | 200
-------+----+----+-----
3:1:0 | 21 | 40 | 300 √
-------+----+----+-----
3:2:1 | 22 | 41 | 400 √
-------+----+----+-----
*3:2:2 | 23 | 42 | 500 √
-------+----+----+-----
*3:3:3 | 24 | 43 | 600 √
-------+----+----+-----
3:3:4 | 25 | 44 | 700 √
-------+----+----+-----
*3:3:5 | 26 | 45 | 800 √
-------+----+----+-----
*3:4:6 | 27 | 46 | 900 √
-------+----+----+-----
3:4:7 | 28 | 50 | 1000
=======+====+====+=======
*3:4:8 | 29 | 68 | void
-------+----+----+-----
*3:4:9 | 30 | - | void
Sampai tahap ini semua faktor dari formasi ini sudah lengkap terisi.
Angka tujuhbelas (17), tujuhpuluhsatu (71) maupun duapuluh sembilan (29) masing² adalah bilangan prima kembar, menandakan distribusi yang dibangun oleh ketiganya adalah suatu pilar dari sistem bilangan.
Baik angka tujuhbelas (17) maupun tujuhpuluh satu (71) akar digital adalah delapan (8) dimana jumlahnyapun delapanpuluhdelapan (88) sedangkan angka empatbelas (14) dan duapuluh satu (21) adalah lima (5) dan tiga (3).
- π1 = 1 x 30 + 40 = 71
- π2 = π1 = 71
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71 √
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71 √
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 |
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 |
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 |
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 |
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 |
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 |
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 |
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 |
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 |
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 |
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 |
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 |
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Sedangkan di grup kedua terjadi bilateral sehingga berlaku ganda untuk empat (4) indek mulai dari indek limabelas (15) yaitu pada faktor {29,30,31,32} yang secara implisit merefleksikan transformasi dari basis modulus-60 ke modulus-90.
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 |
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 |
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 |
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 |
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 |
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71 √
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71 √
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71 √
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71 √
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 |
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 |
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 |
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Formasi ini akan dapat Anda temukan pada angka tujuhpuluh satu (71) sebagai salah satu faktor matriks pola replikasi dengan basis modulus (90) berikut ini:
- total perunit = 2 x 3 + 2 x 3² = 6 + 18 » 618
Sekarang Anda tentu bertanya bagaimana dengan Angka Φ?
Angka Φ atau Bilangan Fibonacci atau Golden Ratio dari deret itu adalah :
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
Sedangkan hasil pembagiannya, bernilai sama setelah angka ke-13 :
233/144 = 1,618
377/233 = 1,618
610/377 = 1,618
987/610 = 1,618..dst
Angka tigabelas (13) diapit oleh angka duabelas (12) dan empatbelas (14) dimana pemjumlahan dari keduanya adalah duapuluh enam (26).
12 + 14 = 26
12 x 14 = 168 » π11 = 14
Sekarang kita bahas korelasinya dengan peta composite & prime.
- 1 or 19 is the top right prime position it mirrors 11, cascading out to the right and back around the system.
π19 = π11 x Xsystem = 14 x 5 = 70
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 |
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14 √
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 |
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 |
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 |
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70 √
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 |
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 |
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
13² = 169
1 + 5 + 7 = 6 + 7 = 13
2 + 4 + 8 = 8 + 6 = 14 » 13 + 14 = 27
1 2
2 3
3 7
4 10
5 11
6 12
7 13
8 14
9 15
10 19
11 20
12 26
13 27
Detilnya bisa disimak pada uraian dengan judul:
Twin Prime Distribution Algorithms and Symmetries
It's remarkable that objects consisting of star polygons, spiraling irregular pentagons, and possessing nonagon perimeters and centers, can be constructed from only 27 coordinates pointing to 9 triangles in 3 variations. Each period-24 cycle produces two palindromagons, as illustrated below:
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 |
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 |
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69 √
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 |
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90 √
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100 √
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Hasil dari transformasi ini akan memberikan dalam tiga (3) versi formasi dengan angka dasar enam (6) berikut angka dasar untuk turunannya yaitu sembilan (9) dan sepuluh 10,
Pada angka enam (6) hal ini direfleksikan dengan angka enampuluh sembilan (69) yang merupakan transformasi kepindahan dari basis modulus-60 ke modulus-90 di grup kedua.
Sedangkan pada turunannya basis angka doubler yaitu sepuluh (10) pada kedua turunannya itu ke angka sembilan puluh (90) dan seratus (100) dan berlaku sebagai pilar di grup ketiga.
Berikut ini korelasinya dengan peta composite & prime.
2 and 10 act as doubler alternating between the doubling of prime next to them and across (Red: illustrated by an hexagon covering number 2).
Dengan demikian semuanya ini benar² akan merupakan suatu sistem yang terintegrasi secara keseluruhan.Untuk lebih detilnya saya bahas terpisah.
Tabulasi ini identik dengan korelasi dari formasi 2-8-5 dan formasi 1-1-4 terhadap transformasi angka empat (4) dan tujuh (7) sebagai faktor dari angka duapuluhdelapan (28):
Berikutnya kita lihat peta composite & prime.
Entah kebetulan atau tidak, ada korelasi dengan angka tiga (3). Coba simak kalimat berikut:
The number 3 multiplies itself trough the system as a perfect square.. It bounces from position 3 to 6, to 9, to 12. All multiplies of 3 are found in these positions (Red: illustrated by a perfect square covering number 3).
Formasi (3, 6, 9, 12) yang membentuk tiga (3) segiempat sama sisi ini tak lain merupakan interpolasi dari empat (4) dan tujuh (7) dimana secara keseluruhan adalah formasi 2-8-5.
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 |
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109 √
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109 √
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Angka duapuluh sembilan (29) muncul secara istimewa sebagai faktor pada index sentral limabelas (15) dan juga sebagai index terakhir dengan faktor enampuluh delapan (68).
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 |
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 |
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231 √
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
{78}
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 |
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231 √
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231 √
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 |
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
{86}
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 |
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 |
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271 √
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
{67}
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231 √
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231 √
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 |
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
{13}
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195 √
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 |
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 |
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 | 48 √
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 | 48 √
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 |
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 |
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 |
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 |
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Angka empatpuluh satu (41) adalah mirror dari empatbelas (14) dan merupakan bilangan prima kembar yang berpasangan dengan angka empatpuluh tiga (43).
- 43 - 41 = 2
Pada cincin konsentris basis duapuluh empat (24) angka empatpuluh satu (41) dan empatpuluh tiga (43) sejalur dengan angka tujuhbelas (17), sembilan belas (19), enampuluh tujuh (67) dan delapanpuluh sembilan (89).
- 289 - 89 = 200
Pada cincin konsentris basis empatpuluh (40) angka sembilan (9), empatpuluh sembilan (49) dan delapanpuluh sembilan (89) berada dalam satu jalur dengan 169, 289, 329 dan 369.
- 329 - 289 = 40
- 89 - 41 = 40 + 8 = 48
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 | 48
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 | 48
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 | 48 √
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 | 48 √
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 | 48 √
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 | 48 √
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void |
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Jadi ini identik dengan transformasi formasi 1-5-7 yaitu 1729 ke formasi 2-8-5 yaitu 2755 dari formasi angka (7). Bedanya yang terjadi bukan algoritma semut melainkan skema jaring laba²
Laba² dalam membuat sarang setelah pondasinya selesai dia mengikat jaring sarang tidak berputar secara acak melainkan bergerak spiral seperti enam (6) atau angka (9) yang pada akhirnya akan menuju bentuk yang mendekati bentuk sebuah lingkaran.
Dengan kata lain Angka Φ sampai kapanpun tidak akan dapat mencapai formasi penuh dari sebuah lingkaran. Sama seperti halnya laba² yang membuat rumah. Sebesar dan sekuat apapun ikat jaring toh akhirnya terhenti dan mendapatkannya terputus pada ujungnya (void).
Ini berhubungan dengan karakter angka sembilan (9) pada angka batas sembilanbelas (19) yang berujung pada angka duapuluh tujuh (27) tehadap terminasi Angka Fibonaci.
- 9 = 4 + 5 » 4² + 5² = 16 + 25 = 41
Pada tabel dari 24 Matriks Faktorisasi basis modulus-90, salah satu dari angka empatpuluh satu (41) dan empatpuluh sembilan (49) berada di pusat secara berdampingan
41 = 13th prime
X13 = 50
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 | 48
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 | 48
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 |
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 | 48
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 | 48
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 | 48
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 | 48
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void | 50 √
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 |
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 | 48
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 | 48
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 | 278 √
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 | 48
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 | 48
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 | 48
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 | 48
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void | 50
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Dari formasi ini kita urutkan lagi secara parsial kedalam formasi duapuluh empat (24) maka akan didapatkan titik sentral dari hubungan bilateral penjumlahan di angka sembilan (9):
Pasangan dengan total bilateral sembilan (9) ini diapit oleh segiempat {5x5} dan {4x4} adalah transformasi dari formasi-139 ke bentuk formasi Sri-Yantra yaitu empat (4) segitiga menghadap ke atas (bersifat positif) dan lima (5) kebawah (bersifat negatif):
X369 = {3,6,9} = 147 + 258 + 369 = 744
X943 = X169 + X369 = 744 + 169 = 943
Detilnya saya bahas terpisah dimana dari angka ini didapatkan angka 1771 yang mencakup pemutusan dan penggabungan kembali sel kromosom.
Twin Primes:
(5,7), (11,13), (17,19)
+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+-----+-----+-----+-----+-----+-----+
| 1771 |
+-----+-----+-----+-----+-----+-----+-----+
+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+-----+-----+-----+-----+-----+-----+
17 | 71 - 17
Setiap grup juga terbagi lagi menjadi tiga (3) sub grup sehingga total akan ada sembilan (9) sub grup, membentuk sub² yang lebih kecil dalam bentuk segitiga dengan total jumlah empatpuluh tiga (43).
43 = 14 th prime
+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+-----+-----+-----+-----+-----+-----+
17 | 11 | 71 - 17 - 11 = 71 - 28 = 43
X139 = 1 & 3Δ & 9Δ = 139
X168 = 1 & 15 & 8 = 168 = 139 + 29
+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+-----+-----+-----+-----+-----+-----+
| 19 | 17 | 12 | 11 | 19 | 18 | 43 | 139
+-----+-----+-----+-----+-----+-----+-----+ |
| 1 | 3 | 9 | └── 1»3»9
+-----+-----+-----+-----+-----+-----+-----+
43 » 4 + 3 = 7
12² - 12! = 66
7 x 23 = 161 » 1618
943 + 7 = 950 = 1000 - 50
Sub i f Δ π
-------+----+----+------+-----
1:1:0 | 1 | 2 | 1 | 71
-------+----+----+------+-----
1:2:1 | 2 | 3 | 2 | 71
-------+----+----+------+-----
*1:2:2 | 3 | 7 | 3 | 161 √
-------+----+----+------+-----
*1:3:3 | 4 | 10 | 4 | 231
-------+----+----+------+-----
1:3:4 | 5 | 11 | 5 | 231
-------+----+----+------+-----
*1:3:5 | 6 | 12 | 6 | 271
-------+----+----+------+-----
*1:4:6 | 7 | 13 | 7 | 231
-------+----+----+------+-----
1:4:7 | 8 | 14 | 8 | 231
-------+----+----+------+-----
*1:4:8 | 9 | 15 | 9 | 231
-------+----+----+------+-----
*1:4:9 | 10 | 19 | 10 | 195
=======+====+====+======+=====
2:1:0 | 11 | 20 | 20 | 14
-------+----+----+------+-----
2:2:1 | 12 | 26 | 30 | 109
-------+----+----+------+-----
*2:2:2 | 13 | 27 | 40 | 69
-------+----+----+------+-----
*2:3:3 | 14 | 28 | 50 | 109
-------+----+----+------+-----
2:3:4 | 15 | 29 | 60 | 71
-------+----+----+------+-----
*2:3:5 | 16 | 30 | 70 | 71
-------+----+----+------+-----
*2:4:6 | 17 | 31 | 80 | 71
-------+----+----+------+-----
2:4:7 | 18 | 32 | 90 | 71
-------+----+----+------+-----
*2:4:8 | 19 | 36 | 100 | 70
=======+====+====+======+=====
*2:4:9 | 20 | 38 | 200 | 90
-------+----+----+------+-----
3:1:0 | 21 | 40 | 300 | 48
-------+----+----+------+-----
3:2:1 | 22 | 41 | 400 | 48
-------+----+----+------+-----
*3:2:2 | 23 | 42 | 500 | 278
-------+----+----+------+-----
*3:3:3 | 24 | 43 | 600 | 48
-------+----+----+------+-----
3:3:4 | 25 | 44 | 700 | 48
-------+----+----+------+-----
*3:3:5 | 26 | 45 | 800 | 48
-------+----+----+------+-----
*3:4:6 | 27 | 46 | 900 | 48
-------+----+----+------+-----
3:4:7 | 28 | 50 | 1000 | 100
=======+====+====+======+=====
*3:4:8 | 29 | 68 | void | 50
-------+----+----+------+-----
*3:4:9 | 30 | - | void | void
Dari formasi ini jelas terkandung filosofi bahwa untuk sampai ke tahap ini maka tak ada (none) seorangpun yang akan memahaminya kecuali dengan suatu pengetahuan (a knowledge).
786 = 168 + 618
618 = 329 + 289
1729 » 7921 = 89²
168 = π(1000)
1000 = π(89²)
└── 8 x 2 = 16
└── 9 x 2 = 18
└── 16 & 18 = 1618
└── 18th prime = 61
└── 168 | 618 = 1618
└──1618 / 1000 = 1.618
Bentuk formasi dasar dari angka kunci 139 sampai ke 786 adalah urutan 2, 4, 4, 3, 4. Jika dijumlahkan akan muncul kembali angka tujuhbelas (17) kombinasi 71 dari angka 1771.
Twin Primes:
(5,7), (11,13), (17,19)
+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+-----+-----+-----+-----+-----+-----+
| 19 | 17 | 12 | 11 | 19 | 18 | 43 | 139
+-----+-----+-----+-----+-----+-----+-----+
| 4 | 4 | 2 | 3 | 4 | 3 | 9 | 29
+-----+-----+-----+-----+-----+-----+-----+ └── 29 + 139 = 168
└── 943 = 786 + 157 » ΦΦ
| 168 (Method) |
+-----+------+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+-----+------+-----+-----+-----+-----+-----+
| 2 | 60 | 40 | 1 | 30 | 30 | 5 |
+-----+------+-----+-----+-----+-----+-----+
| 786 | 1729 | 289 | 139 | 157 | 157 | 168 |
+-----+------+-----+-----+-----+-----+-----+
| ° | ΔΔΔΔ ΦΦ | • ΔΔ ΔΔ ¤ |
|
└── 943 = 786 + 157 « ΦΦ
Note:
• = Init
¤ = Terms
Φ = Mirror
Δ = Modulus
| 168 (Method) | 329 (Attribute) | 289 (Artifacts) |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 2 | 60 | 40 | 1 | 30 | 30 | 5 | 1 | 30 | 200 | 8 | 40 | 50 | 1 | 30 | 200 | 8 | 10 | 40 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 786 | 1729 | 289 | 139 | 157 | 157 | 168 | 139 | 157 | 114 | 248 | 289 | 329 | 139 | 157 | 114 | 248 | 285 | 289 |
+-----+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| ° | ΔΔΔΔ ΦΦ | • ΔΔ ΔΔ ¤ | • ΔΔ ΦΦΦ Φ ΦΦ ¤¤¤¤ | • ΔΔ ΦΦΦ Φ ¤¤ | ΦΦ |
| 786 + 157 » ΦΦ |
Note:
• = Init
¤ = Terms
Φ = Mirror
Δ = Modulus
π | 102 66 329 289
-----+-----+-----+-----+-----+
786 | 3 | 4 | 6 | 6 | 19
-----+-----+-----+-----+-----+
| 5 | 3 | 2 | 7 | 17
+-----+-----+-----+-----+
157 | 6 | 6 | 12 (M dan F)
+-----+-----+-----+
| 3 | 3 | 5 | 11
-----+-----+-----+-----+-----+
| 4 | 4 | 5 | 6 | 19
+-----+-----+-----+-----+
786 | 5 | 5 | 8 | 18
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| 3 | 5 | 5 | 5 | 3 | 7 | 5 | 3 | 7 | 43 (C1 dan C2)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
1729 | 1 2 3 4 5 6 7 8 9
- 68 = 2 + 66 = d(29) + 66
+----+-----+-----+-----+
1 | 1 | 30 | 40 | 71 (2,3,29,30,31,32)
+-----+-----+-----+-----+
2 | 1 | 30 | 40 | 90 | 161 (7)
+-----+-----+-----+-----+
3 | 1 | 30 | 200 | 231 (10,11,12,14,15)
+-----+-----+-----+-----+
4 | 1 | 30 | 40 | 200 | 271 (13)
+-----+-----+-----+-----+-----+
5 | 20 | 5 | 10 | 70 | 90 | 195 (19)
-----+-----+-----+-----+-----+-----+
6 | 5 | 9 | 14 (20)
+-----+-----+-----+
7 | 9 | 60 | 40 | 109 (26,28)
+-----+-----+-----+
8 | 60 | 9 | 69 (27)
+-----+-----+-----+
9 | 60 | 10 | 70 (36)
-----+-----+-----+
10 | 90 | 90 (38)
+-----+-----+
11 | 40 | 8 | 48 (40,41,43,44,45,46)
+-----+-----+-----+-----+-----+
12 | 8 | 40 | 70 | 60 | 100 | 278 (42)
+-----+-----+-----+-----+-----+
13 | 100 | 100 (50)
+-----+
14 | 50 | 50 (68)
-----+-----+
Pairs:
{7,6,6} » {7,13,19}
7 pairs = 2x109 + 5x231 = 218 + 1155 = 1373
12 pairs = 2 x 6 pairs = 6x71 + 6x48 = 426 + 288 = 714
Singles:
10 singles = 161 + 271 + 195 + 14 + 69 + 70 + 90 + 278 + 50 + 100 = 1298
Permutation:
1373 + 714 + 1298 = 3385
└── d{3385} = d{19} = 1
Maka secara keseluruhan formasi ini adalah merupakan permutasi dari angka dua (2) terhadap angka enampuluh enam (66):
Jika kita jumlahkan sembilanbelas (19) dengan limapuluh (50) akan muncul angka enampuluhsembilan (69) yang merupakan pembentuk konfigurasi 168:
168 = 1 & 68
69 = 50 + 19
Format formasi 3-2-9 dapat dipetakan berdasarkan transformasi dari formasi 1-3-9 ke formasi 2-4-8 seperti berikut ini:
Acuan yang diambil akan berada pada angka duapuluh delapan (28) ke titik awal satu (1) dan titik akhir duapuluh sembilan (29) masing² dengan rentang bobot indek dan faktor di angka seribu (1000) dan limapuluh (50). Rentang ini tidak lain adalah transformasi 1771 ke 1729.
- Konfigurasi 1771 » 1729
Dapat kita lihat bahwa konfigurasi ini dibangun dari sepasang angka enam (6) yang masing² mengambil sebelas (11) index secara dominan dan pada tujuh (7) index sisanya sebagai sentral. Merujuk peta composite dan prime hal ini tercermin pada kalimat² berikut:
- The number 6 multiplies itself trough the system as a straight line. It bounces back and forth between 6 and 12 (Red: illustrated by a straight line).
- 7 is the second prime position. It mirrors the path of 5 touching each postions exactly opposite criss-crossing 5's path clockwise (Red: illustrated by clockwise of bouncing star polygon).
- 11 is the top left prime position it cascades out to the left and circles back around the system (Red: illustrated by counter clockwise of golden ratio).
Dengan demikian angka kunci dari faktor replikasi ini ada pada dua (2) baris akhir yaitu pada angka tujuhbelas (17) sebagai urutan index dan angka duapuluh sembilan (29) sebagai total index. Jika digabung akan muncul angka 1729 sebagai formasi sistem yaitu formasi-1729.
If you knew the magnificence of 1729 you would have a key to the universe.
Sekian.
2.9.1441H
SALAM Sukses!
© Chetabahana Project
- Twin Prime Distribution Algorithms and Symmetries
- Accurate Estimation of the Number of Binary Partitions
⏫ | 🔼 | ⏪ Intro |
|
🔁 Base |
Next |
Last ⏩ | 🔽 | ⏬ |
---|---|---|---|---|---|---|---|---|
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map. |