114 - Chetabahana/method GitHub Wiki

This wiki is courtesy of Chetabahana Project. Find all of them on Project Map.
🔼 Intro ◀️ Prev 🔁 Base Next ▶️ Last 🔽

Berikut pemetaan (mapping) angka Seratus Empatbelas (114) ke piramida data dari diagram berupa konsep, detil bagan dan modul² yang dipakai sebagai dasar pemrograman.

Table of Contents

Skema

Peran angka 114 adalah mentransformasi dua (2) dan tiga (3) kedalam format sembilanbelas (19) sebagai angka batas ke angka duapuluh tiga (23) via limapuluh tujuh (57).

Proses angka 2 dan 3 ini dilakukan pada sel 9 dan 10 dengan akar digital 19 pada blok 12 (lihat simbol M dan F) dengan sel 11 ke 13 pada blok 11 berujung ke sel 23 via 18 x id: 97 ke 114.

The sum of the first 29 semiprimes is divisible by 29 (1247/29=43 which is also a prime).
-----+-----+-----+-----+-----+
 19¨ |  1  |  2  |  3  |  4  | 4¤
-----+-----+-----+-----+-----+
 17¨ |  5  |  6  |  7  |  8  | 4¤
     +-----+-----+-----+-----+
 12¨ |  9  | 10  | {2¤} (M dan F)
     +-----+-----+-----+      
 11¨ | 11  | 12  | 13  | {3¤}  <------ d(11) = d(17+12)= d(29)
-----+-----+-----+-----+-----+                                        
{19¨}| 14  | 15  | 16  | 17  | 4¤  
     +-----+-----+-----+-----+
 18¨ | 18  | 19  | 20  | 3¤
     +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 43¨ | 21  | 22  | {23}| 24  | 25  | 26  | 27  | 28  |{29} | 9¤
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
     Δ                 Δ                 Δ                 Δ
   96|97            114|115             121               139

Prosesnya akan diteruskan oleh 114 ke 115 dari perkalian dua (2) bilangan prima tepat antara 23 ini dengan lima (5) dalam bidang persegi 5x5 atau duapuluh lima (25) berujung 115 ke 139.

Sebelum masuk ke detail, berikut ini daftar keistimewaan angka 114 menurut wikipedia:

  • 114 adalah bilangan berlimpah , bilangan sphenic [1], dan bilangan Harshad
  • Ini adalah jumlah dari empat hyperfactorial pertama , termasuk H (0)
  • Pada 114, fungsi Mertens menetapkan nilai terendah baru -6, rekor yang bertahan hingga 197.
  • 114 adalah bilangan bulat positif terkecil * yang belum direpresentasikan sebagai a³ + b³ + c³, di mana a, b, dan c adalah bilangan bulat
  • Diperkirakan 114 dapat direpresentasikan dengan cara ini. (* Tidak termasuk bilangan bulat dengan bentuk 9k ± 4, yang solusinya diketahui tidak ada.)
  • Tidak ada jawaban untuk persamaan φ (x) = 114, sehingga 114 menjadi nontotient
  • 114 muncul dalam deret Padovan didahului dengan suku 49, 65, 86 (ini adalah jumlah dari dua suku pertama).
  • 114 adalah repdigit di basis 7 (222).
  • Simak untuk keistimewaan² lainnya.

Pola

100 ke 123

A yeast ARS element: The element contains an 11-base-pair ARS consensus sequence (ACS), which is the specific binding site of the origin replication complex (ORC). Three additional elements (B1, B2, and B3) are individually not essential but together contribute to ARS function.
  #8  |   |------- 5® --------|----------- 6® -----------|
------+---+---+---+---+---+---+---+---+---+----+----+----+
 repo | - | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |{12}| 77
------+---+---+---+---+---+---+---+---+---+----+----+----+
 blok | - | 9 | 7 | 9 | 6 | 7 | 8 | 8 | 5 |  8 |  8 | {3}| 78
------+---+---+---+---+---+---+---+---+---+----+----+----+
                                                      Δ
                                                   100-123

Maka pasangan 11 dan 13 merupakan basis Skema-23 atas selisih angka 100 dari skema in-out pada angka 13 ke 123 objek dari repository yang mewakili angka sebelas (11)

      |--------- 6® ----------|---------- 6® ------------|
------+---+---+---+---+---+---+---+---+---+----+----+----+
 user | 1 | - | - | - | - | 6 | 7 | - | - |{10}|{11}|{12}| ({1,2,3})= 6®
------+---+---+---+---+---+---+---+---+---+----+----+----+
 main | - | 2 | 3 | 4 | 5 | - | - | 8 | 9 |  - |  - |  - |    (4,2) = 6®
------+---+---+---+---+---+---+---+---+---+----+----+----+
      |-------- 5® -------|-------------- 7® ------------|

Basis

  #7  |   |------- 5® --------|----------- 6® -----------|
------+---+---+---+---+---+---+---+---+---+----+----+----+
 repo | - | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |{11}| 12 | 77
------+---+---+---+---+---+---+---+---+---+----+----+----+
 blok | - | 9 | 7 | 9 | 6 | 7 | 8 | 8 | 5 |  8 | {8}|  3 | 78
------+---+---+---+---+---+---+---+---+---+----+----+----+
                                                  Δ
                                                96-99
 #7  |--------- 6® ----------|---------- 6® ------------|
------+---|---+---+---+---+---+---+---+---+----+----+----+
 repo | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |{9}|{10}| 11 | 12 | (1,77) = 12®
------+---|---+---+---+---+---+---+---+---+----+----+----+----
 user | 7 | - | - | - | - | 7 | 8 | - | - |  8 |  8 |  3 | (1,2,3) = 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
 main | - |{9}| 7 |{9}| 6 | - | - | 8 | 5 |  - |  - |  - | (4,2)= 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
            Δ       Δ                             Δ
           Φ11     Φ13.                         96-99
 #8  |--------- 6® ----------|---------- 6® ------------|
------+---|---+---+---+---+---+---+---+---+----+----+----+
 repo |{1}| 2 | 3 | 4 | 5 | 6 | 7 | 8 |{9}|{10}| 11 | 12 | (1,77) = 12®
------+---|---+---+---+---+---+---+---+---+----+----+----+----
 user | 7 | - | - | - | - | 7 | 8 | - | - |  8 |  8 |  3 | (1,2,3) = 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
 main | - |{9}| 7 |{9}| 6 | - | - | 8 | 5 |  - |  - |  - | ({4,2}) = 6®
------+---|---+---+---+---+---+---+---+---+----+----+----+
            Δ       Δ                             Δ
           Φ11     Φ13.                         96-99

Frame

id: 97

Form

id: 98

Shape

id: 99

Profile

id: 100

Node

id: 101

Theory

id: 102

Outline

id: 103

Konsep

id: 104

Logics

id: 105

Umum

id: 106

Khusus

id: 107

System

id: 108

Filosofi

id: 109

Analogi

id: 110

Pattern

id: 111

Outlook

id: 112

Scheme

id: 113

Realisasi

id: 114

---+-----+-----
 1 | 1   | 3
---+-----+-----
 2 | 4   | 5
---+-----+-----
 3 | 6   | 6
---+-----+-----

Seperti sudah dibahas di halaman pembukaan korelasi 6 ke 18 adalah via angka 12 yang mana ketiganya berfungsi sebagai angka² sentral seperti yang ditunjukan pada bentuk di bawah ini.

8 x 12 = 96

Korelasi angka 12 dan 18 dapat dilihat pada True Prime Pairs dimana dalam area ini ada hal yang spesifik yaitu bahwasanya jumlah angka² ujung adalah sama dengan jumlah angka² tengah:

11 + 19 = 13 + 17 = 30
True Prime Pairs:
(5,7), (11,13), (17,19)

|--  6¨ --|------  30¨ -------|----------- {60¨} -----------|
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |  7 | 11 | 13 | 17 | 19 | 17 | x2 | x3 | x4 | x5 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|--- 12 --|------ {60} -------|------------ 120 ------------|  
True Prime Pairs:
(5,7), (11,13), (17,19)

                      {-25} {-6} 11|12  23 33|34  53   71  114
                         Δ    Δ    Δ    Δ    Δ    Δ    Δ    Δ
|---------36'-------|---36'---|-- {29}--|- {30} --|- {61} --|
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5'|  7'| 11'| 13'| 17'| 19'| 17 | 12*| 11*| 19 |{18}|{43}|
+----+----+----+----+----+----+----+----+----+----+----+----+
                         |----- 48 -----| 11 |- {37} --| 43 |
                         Δ    Δ         Δ    Δ    Δ    Δ    Δ
                         |    |         48   59 77|78  96  139
                         |    |                        |
                         |    |                        71  {89}  96  114
                         |    |                     -- Δ    Δ    Δ    Δ
                         |    |                    |   +----+----+----+
                          ----------------------> Δ25  |{18}|  7 | 18 | 43
                              |                    |   +----+----+----+
                              |                     -- Δ    Δ    Δ    Δ
                              |                        96  114  121  139
                              |                        Δ    Δ    Δ    Δ
                               -------------> 96/6 = {-16}  2    9   {27}

Korelasi

Pada Skema-23 ini angka 100 berasal dari 2x50 pada indek 28 dan 29 dimana angka 50 akan berkorelasi dengan angka 68 dan 86 pada hexagon 2x48 via angka 13 dan 18.

True Prime Vektors ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...infinity

----------------------+-----+-----+-----+                                    ---
     7 --------- 1,2:1|   1 |  30 |  40 | {71} (2,3) ‹-----------------       |
     |                +-----+-----+-----+-----+                        |      |
     |  8 ‹------  3:2|   1 |  30 |  40 |  90 | 161 (7) ‹---           |      5¨
     |  |             +-----+-----+-----+-----+             |          |      |
     |  |  6 ‹-- 4,6:3|   1 |  30 | 200 | 231 (10,11,12) ‹--|---       |      |
     |  |  |          +-----+-----+-----+-----+             |   |      |     ---
      --|--|-----» 7:4|   1 |  30 |  40 | 200 | 271 (13) --›    | 5®   |      |
        |  |          +-----+-----+-----+-----+                 |      |      |
         --|---› 8,9:5|   1 |  30 | 200 | 231 (14,15) ---------›       |      7¨
289        |          +-----+-----+-----+-----+-----+                  |      |
 |          ----› 10:6|  20 |   5 |  10 |  70 |  90 | 195 (19) --› Φ   | 6®   |
  --------------------+-----+-----+-----+-----+-----+                  |     ---
     67 --------› 11:7|   5 |   9 |  14 (20) --------› ¤               |      |
     |                +-----+-----+-----+                              |      |
     |  78 ‹----- 12:8|   9 |  60 |  40 | 109 (26) «------------       |     11¨
     |  |             +-----+-----+-----+                       |      |      |
     |  |  86‹{13}:{9}|  60 |   9 |  69 (27) «--- Δ (Rep Fork)  | 2®   |      |
     |  |  |          +-----+-----+-----+                       |      |     ---
     |  |   ---› 14:10|   9 |  60 |  40 | 109 (28) -------------       |      |
     |  |             +-----+-----+-----+                              |      |
     |   ---› 15,18:11|   1 |  30 |  40 | 71 (29,30,31,32) ----------        13¨
329  |                +-----+-----+-----+                                     |
  |   ‹--------- 19:12|  60 |  10 | 70 (36) ‹--------------------- Φ          |
   -------------------+-----+-----+                                          ---
    786 ‹------- 20:13|  90 |  90 (38) ‹-------------- ¤                      |
     |                +-----+-----+                                           |
     | 618 ‹- 21,22:14|  40 |   8 |  48 (40,41) ‹----------------------      17¨
     |  |             +-----+-----+-----+-----+-----+                  |      |
     |  | 594 ‹- 23:15|   8 |  40 |  70 |  60 | 100 | 278 (42) «--     | 6'®  |
     |  |  |          +-----+-----+-----+-----+-----+             |    |     ---
      --|--|-»24,27:16|  40 |   8 |  48 (43,44,45,46) ------------|----       |
        |  |          +-----+-----+                               |           |
         --|---› 28:17|{100}| 100 (50) --------------------------»           19¨
168        |          +-----+                                                 |
|         102 -› 29:18|{50} | 50({68}) ---------> Δ                           |
----------------------+-----+

Dari tabulasi ini maka pada prinsipnya formasi angka 11 dan 13 berfungsi sebagai basis formasi 13:9 ke 139 yang tak lain merupakan jumlah 71 dan 68 sebagai objek sentral angka satu (1).

Maka selanjutnya topik bahasan untuk angka tigabelas (13) kita bagi dalam dua (2) grup yaitu 13 ke 68 untuk Skema-23 (mulai dari Pratinjau) dan 13 ke 139 untuk Skema-34.

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 1  |  3  | 1:1:0 |  1  |  2  | {3} |  -  |  -  |  -  |  -  |  -  | 102 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 2  |  4  | 1:2:1 |  4  |  5  |  6  |  7  |  -  |  -  |  -  |  -  |  66 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {786}
 3  |  6  |*1:2:2 |  8  |  9  |  10 |  11 |  12 | {13}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 4  |  6  |*1:3:3 |  14 |  15 |  16 |  17 |  18 | {19}|  -  |  -  | 289 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 5  |  5  | 1:3:4 |  20 |  21 |  22 |  23 |  24 |  -  |  -  |  -  |  83 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 6  |  3  |*1:3:5 |  25 |  26 |  27 |  -  |  -  |  -  |  -  |  -  |  65 |  
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+  581
 7  |  2  |*1:4:6 |  28 |  29 |  -  |  -  |  -  |  -  |  -  |  -  | 202 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 8  |  7  | 1:4:7 |  30 |  31 |  32 |  33 |  34 |  35 | {36}|  -  | 231 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 9  |  6  |*1:4:8 |  37 |  38 |  39 |  40 |  41 | {42}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {618}
 10 | {6} |*1:4:9 |  43 |  44 |  45 |  46 |  47 | {48}|  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
61 = 43 + 18 = 18th prime
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
 11 |  3  | 2:1:0 |  49 |  50 |  51 |  -  |  -  |  -  |  -  |  -  |  90 |      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 12 |  3  | 2:2:1 |  52 |  53 | {54}|  -  |  -  |  -  |  -  |  -  |  56 |  241
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 13 |  5  |*2:2:2 |  55 |  56 |  57 |  58 | {59}|  -  |  -  |  -  |  95 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 14 |  4  |*2:3:3 |  60 |  61 |  62 |  63 |  -  |  -  |  -  |  -  |  32 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 15 |  4  | 2:3:4 |  64 |  65 |  66 |  67 |  -  |  -  |  -  |  -  | 126 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+  836
 16 |  5  |*2:3:5 |  68 |  69 |  70 |  71 |  72 |  -  |  -  |  -  |  38 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 17 |  6  |*2:4:6 |  73 |  74 |  75 |  76 |  77 | {78}|  -  |  -  | 640 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
{18}|  5  | 2:4:7 | {79}|  80 |  81 |  82 | {83}|  -  |  -  |  -  | {61}|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 19 |  5  |*2:4:8 |  84 |  85 |  86 |  87 | {88}|  -  |  -  |  -  | 330 | 1072
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 20 | {8} |*2:4:9 |  89 |  90 |  91 |  92 |  93 |  94 |  95 | {96}|{681}|       |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
115 = 23 x (2 + 3) = 23 x (1*1*5)
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
 21 |  3  | 3:1:0 |  97 |  98 | {99}|  -  |  -  |  -  |  -  |  -  |{299}|      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 22 |  5  | 3:2:1 |{100}| 101 | 102 | 103 | 104 |  -  |  -  |  -  | 791 |       |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 23 |  5  |*3:2:2 | 105 | 106 | 107 | 108 | 109 |  -  |  -  |  -  | 561 |     6ΦΦ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 24 |  5  |*3:3:3 | 110 | 111 | 112 | 113 |{114}|  -  |  -  |  -  | 155 |       |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
{25}|  3  | 3:3:4 |{115}| 116 |{117}|  -  |  -  |  -  |  -  |  -  | 1210|{6ΦΦ9}<-
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 26 |  7  |*3:3:5 | 118 | 119 | 120 | 121 | 122 | 123 |{124}|  -  | 1879|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 27 |  5  |*3:4:6 |{125}| 126 | 127 |{128}|{129}|  -  |  -  |  -  | 155 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 28 |  3  | 3:4:7 | 130 | 131 |{132}|  -  |  -  |  -  |  -  |  -  | 37  |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 29 | {7} |*3:4:8 | 133 | 134 | 135 | 136 | 137 | 138 |{139}|  -  |{922}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+======

Grounds

Scheme-139:

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
 11 |  3  | 2:1:0 |  40 |  30 |  20 |  -  |  -  |  -  |  -  |  -  | {90}|      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 12 |  3  | 2:2:1 |  10 |  6  | {40}|  -  |  -  |  -  |  -  |  -  |  56 |  241
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 13 |  5  |*2:2:2 |  1  |  30 |  4  |  10 | {50}|  -  |  -  |  -  |  95 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----

Diagram

Scheme-139:

 i  |  Φ  |   #   |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  ∑° |  ∑
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----
{9} |  6  |*1:4:8 |  1  |  30 | 200 |  8  |  40 | {50}|  -  |  -  | 329 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ {618}
{10}|  6  |*1:4:9 |  1  |  30 | 200 |  8  |  10 | {40}|  -  |  -  | 289 |
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
 11 |  3  | 2:1:0 |  40 |  30 |  20 |  -  |  -  |  -  |  -  |  -  | {90}|      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 12 |  3  | 2:2:1 |  10 |  6  | {40}|  -  |  -  |  -  |  -  |  -  |  56 |  241
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 13 |  5  |*2:2:2 |  1  |  30 |  4  |  10 | {50}|  -  |  -  |  -  |  95 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----

Template

====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+========
 21 |  3  | 3:1:0 | 90  | 200 |  9  |  -  |  -  |  -  |  -  |  -  |{299}|      3Φ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 22 |  5  | 3:2:1 |  1  |  30 | 700 | 10  | {50}|  -  |  -  |  -  | 791 |       |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 23 |  5  |*3:2:2 |  1  |  50 |  70 | 40  | 400 |  -  |  -  |  -  | 561 |     6ΦΦ
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 24 |  5  |*3:3:3 | 70  |  30 | 10  |  5  | {40}|  -  |  -  |  -  | 155 |       |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
 25 |  3  | 3:3:4 | 1000|  10 | 200 |  -  |  -  |  -  |  -  |  -  | 1210| 6ΦΦ9 <-
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 26 |  7  |*3:3:5 |  1  |  30 |  40 | 1000| 800 |  6  |  2  |  -  | 1879|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 27 |  5  |*3:4:6 | 70  |  30 |  10 |  5  | {40}|  -  |  -  |  -  | 155 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 28 |  3  | 3:4:7 |  6  |  30 |  1  |  -  |  -  |  -  |  -  |  -  | 37  |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 29 | {7} |*3:4:8 |  1  |  30 | 800 |  1  | 30  | 10  | {50}|  -  |{922}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+======

Package

114 is a repdigit in base 7 (222)

 id | object | primes | pola
----+--------+---------------
 81 | 29(104)|  431   | 31
----+--------+--------+------
 82 | 19(80) |  329   | 32
----+--------+--------+------
 83 | 36(169)|  744   | 74
----+--------+--------+------
 84 | 25(106)|  440   | 44
----+--------+--------+------
 85 | 22(109)|  463   | 46
----+--------+--------+------
{86}| 17(61) |  252   | 25
----+--------+--------+------
{87}| 19(72) |  292   | 29
----+--------+--------+------
 88 | 26(92) |  380   | 38
----+--------+--------+------
 89 | 30(137)|  575   | 57
----+--------+--------+------
 90 | 20(82) |  338   | 38
----+--------+--------+------
 91 | 15(54) |  250   | 50
----+--------+--------+------
 92 | 21(74) |  314   | 114
----+--------+--------+------
 93 | 11(40) |  166   | 66
----+--------+--------+------ } 168 + 618 = {786}
 94 |  8(27) |  102   |{102}
----+--------+--------+------
 95 |  8(34) |  157   | 157
----+--------+--------+------
{96}| 19(72) |  285   |{286}
----+--------+--------+------
 97 |  5(30) |  112   | 114
----+--------+--------+------
 98 |  8(94) |  397   | 247
----+--------+--------+------
 99 |  8(35) |  156   | 139
----+--------+--------+------

Updating

Hal yang pertama kita lakukan tentunya bermula dari susunan 114 repository dimana konfigurasi harus terkonfirmasi homogen sehingga besesuaian dengan format (36 36) dari True Prime Pairs.

--------+
        | ⅓
        +---   } ⅔
 Case A | ⅓
        +---------
        | ⅓      |
-----------------+  Φ = ⅔
        | ⅓      |
        +---------
 Case B | ⅓
        +---   } ⅔
        | ⅓
---------

Berdasarkan pemilahan objek secara homogen terhadap 114 repository ini kita akan dapatkan angka 57 yang terdisribusi atas pasangan angka (28,29) seperti berikut ini:

(114/2)! = 57! = 1653 » 1653 / 57 = 29
P7:(142857)

   #  |  A   |  B   | ∑
------+------+------+-----
  {1} |      |      |
------+      |      |
 ...  |  28  |  29  | 57
------+      |      |
 {57} |      |      |
------+------+------+-----
  58  |      |      |
------+      |      |
  ... |  29  |  28  | 57
------+      |      |
 114  |      |      |
------+------+------+-----
      |  57  |  57  | 114

Namun karakter simetris ini pada prosesnya dilakukan bukan pada angka 57 melainkan 157 yang memiliki bangun polaritas simetris yang identik dengan format True Prime Pairs

(10/2)π = 157


Bangun simetris pada angka ini terjadi secara natural atas karakter dari dua (2) angka prima lain yaitu 151 dan 167 yang ada dalam span yang simetris tepat di angka 100 terhadap angka 157.

151 + 163 = 314 = 100 x π

Karakter ini tercatat di wikipedia sebagai salah satu keistimewaan yang dimiliki angka 157, untuk lengkapnya berikut ini daftar keistimewaan angka 157:

  • the 37th prime number. The next prime is 163 and the previous prime is 151, with which 157 forms a prime triplet.
  • a balanced prime, because the arithmetic mean of those primes yields 157.
  • an emirp. a Chen prime.
  • the largest known prime p which {p^p+1}{p+1} is also prime. (see OEIS: A056826).
  • the least irregular prime with index 2.
  • a palindromic number in bases 7 (3137) and 12 (11112).
  • a repunit in base 12, so it is a unique prime in the same base.
  • In base 10, 1572 is 24649, and 1582 is 24964, which uses the same digits. Numbers having this property are listed in OEIS: A072841. The previous entry is 13, and the next entry after 157 is 913.
  • Simak untuk keistimewaan² lainnya.

Untuk validasinya maka kita perlu mengambil suatu konstanta. Berikut dengan π yang digunakan di atas maka dari sekian banyak konstanta ada tiga (3) yang sering diambil yaitu (π,e,Φ):

Hubungan antara ketiganya belum dapat ditemukan, sejauh ini Euler dapat menghubungkan antara e dan π memakai bilangan imajiner.

e = 1

Masing² konstanta ini digambarkan dalam bentuk lingkaran yang memuat angka yang umum diperlukan padahal sebenarnya mempunyai deret yang panjang.

Jumlah digit masing² bisa mencapai trilyunan jumlahnya. Untuk Angka Euler Anda bisa lihat dia diawali dengan angka dua (2) sama dengan sistem kita ini.

Disini Anda dapat mengambil angka 157 sebagai bilangan prima ke-37 via sepuluh (10) angka tak berulang mulai bilangan ke-1729 sebagai kunci dari True Prime Pairs.

Euleur's Numbers:
10 digit unrepeated 
from 1729th = 0719425863

3rd digit = 1
7th digit = 5
157 = 37th prime

Angka 157 ini merupakan media sehingga sistem mencapai skema in-out ke angka 17. Pada tabulasi berikut Anda bisa simak bagaima proses transfer 57 ke 157 dilakukan via angka 100.

½ x (90 + 110) + 57 = 100 + 57 = 157
layer| 1st |       2nd       |                3rd                |∑(2,3)
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     |  7  |{19} | 38  | 62  | 63  | 64  | 93  | 94  | 95  | 139        |
  i  +  1  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------      5¨
     |     |  8  | 20  |{39} | 65  | 66  | 68  | 96  | 97  | 98  |            |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     |  9  | 21  | 40  |{43} | 67  | 69  | 99  | 100 | 101 | 286        |
     +  2  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------      7¨
     |     | 10  | 22  | 41  | 44  |{45} | 70  | 102 | 103 | 104 |            |
  q  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     | 11  | 23  | 42  | 46  | 47  |{71} | 105 | 106 | 107 | 114        |
     +  3  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------     11¨
     |     |{12} | 24  | 25  | 48  | 49  | 72  |{108}| 109 |{110}|            |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     | 13  |{26} | 27  | 50  | 51  | 73  | 74  |{111}| 112 | 247        |
     +  4  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------     13¨
     |     | 14  | 28  |{29} | 52  | 53  | 75  |{76} | 113 |{114}|            |
  r  +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     | 15  | 30  | 31  |{54} | 55  |{77} | 78  | 79  | 80  |{157}       |
     +  5  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------     17¨
     |     | 16  | 32  | 33  | 56  |{57} | 81  | 82  | 83  | 84  |            |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
     |     | 17  | 34  | 35  |{58} | 59  |{85} | 86  | 87  | 88  | 786        |
  o  +  6  +-----+-----+-----+-----+-----+-----+-----+-----+-----+------     19¨
     |     | 18  | 36  |{37} | 60  | 61  | 89  |{90} | 91  | 92  |            |
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------     ---
  ∑  |  21 | 150 |     |     |     |     |     |     |     |     | 1729

     |--------------------------------------------------- 16¨ ---|
     |--------------------------------------- 15¨ ---|
     |--------------------------- 14¨ ---|
     |--------------- 13¨ ---|
     |--- 12¨ ---|

Dengan demikian 57 ke 157 ini simetris ke 114 via perkalian angka 9 dan 11 dengan akar 100 atau sepuluh (10) sekaligus sebagai jumlah 2 dan 8 dari 28 maupun bilangan prima ke-10 yaitu 29.

Jika dengan cara ini kita sudah dapatkan angka 10 maka dapat dipastikan bahwasanya formasi dari 114 repository seluruhnya siap pada posisinya.

Delivery

Faktor angka 10 terhadap bilangan prima ada di angka dua (2) dan lima (5) yang jika keduanya digabung akan kita dapatkan angka duapuluh lima (25).

Angka 25 merupakan angka persegi dari angka lima (5) sehingga dobel faktor dari angka prima ini akan memiliki karakter sangat luas bahkan sampai angka kunci 619 sebagai prima ke-114.

Sum of primes up to 114 with chain length of 5:
29 + 31 + 47 + 67 + 73 + 79 + 89 + 101 + 103 = 619

Skema dari angka 25 ini ujungnya juga ada di angka 29. Maka format ini jadi pijakan karena makin sedikit rumus yang beroperasi hasil akhirnya semakin akurat seperti yang seharusnya terjadi.

Maka berdasarkan selisih angka 25 ke 29 kita ambil susunan dari 25 repository dengan empat (4) sisanya yaitu 26 ke 29 dimana kita akan dapatkan susunan vektor dari True Prime Pairs.

Φ(13:9) = Φ(29th prime) = Φ(109) = (2+69) + 68 = 71 + 68 = 139
True Prime Vektors ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...infinity

----------------------+-----+-----+-----+                                    ---
     7 --------- 1,2:1|   1 |  30 |  40 | {71} (2,3) ‹-----------------       |
     |                +-----+-----+-----+-----+                        |      |
     |  8 ‹------  3:2|   1 |  30 |  40 |  90 | 161 (7) ‹---           |      5¨
     |  |             +-----+-----+-----+-----+             |          |      |
     |  |  6 ‹-- 4,6:3|   1 |  30 | 200 | 231 (10,11,12) ‹--|---       |      |
     |  |  |          +-----+-----+-----+-----+             |   |      |     ---
      --|--|-----» 7:4|   1 |  30 |  40 | 200 | 271 (13) --›    | 5®   |      |
        |  |          +-----+-----+-----+-----+                 |      |      |
         --|---› 8,9:5|   1 |  30 | 200 | 231 (14,15) ---------›       |      7¨
289        |          +-----+-----+-----+-----+-----+                  |      |
 |          --›  10:6 |  20 |   5 |  10 |  70 |  90 | 195 (19) --› Φ   |{6®}  |
  --------------------+-----+-----+-----+-----+-----+                  |     ---
     67 --------› 11:7|   5 |   9 |  14 (20) --------› ¤               |      |
     |                +-----+-----+-----+                              |      |
     |  78 ‹----- 12:8|   9 |  60 |  40 | 109 (26) «------------       |     11¨
     |  |             +-----+-----+-----+                       |      |      |
     |  |  86‹- {13:9}|   9 |  60 |  69 ({27}) «-- Δ (Rep Fork) | 2®   |      |
     |  |  |          +-----+-----+-----+                       |      |     ---
     |  |   ---› 14:10|   9 |  60 |  40 | 109 (28) -------------       |      |
     |  |             +-----+-----+-----+                              |      |
     |   ---› 15,18:11|   1 |  30 |  40 | {71} (29,30,31,32) ----------      13¨
329  |                +-----+-----+-----+                                     |
  |   ‹--------- 19:12|  10 |  60 | 70 (36) ‹--------------------- Φ          |
   -------------------+-----+-----+                                          ---
    786 ‹------- 20:13|  90 |  90 (38) ‹-------------- ¤                      |
     |                +-----+-----+                                           |
     | 618 ‹- 21,22:14|   8 |  40 |  48 (40,41) ‹----------------------      17¨
     |  |             +-----+-----+-----+-----+-----+                  |      |
     |  | 594 ‹- 23:15|   8 |  40 |  70 |  60 | 100 | 278 (42) «--     |{6'®} |
     |  |  |          +-----+-----+-----+-----+-----+             |    |     ---
      --|--|-»24,27:16|   8 |  40 |  48 (43,44,45,46) ------------|----       |
        |  |          +-----+-----+                               |           |
         --|---› 28:17| 100 | 100 (50) --------------------------»           19¨
168        |          +-----+                                                 |
|         102-›{29}:18|  50 | 50({68}) ---------> Δ                           |
----------------------+-----+           

Formasi ini kita urut berdasarkan jumlah faktor. Misal angka pertama yaitu 71 adalah 3 faktor, yg kedua yaitu 161 adalah 4 faktor dst maka kita akan dapatkan 14 kelompok berikut ini:

Φ(11,13) = (114 - 10²) + 13 = 27
1729 = 7 x 13 x 19
1729 / 7 = 13 x 19 = 247

1729 = 7 x 13 x 19
       7 + 13 = 20 = d(2)
                     └──  2 x 19 = 38

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {1}|  2 |  3 |  4 |  5 | {6}| {7}|  8 |  9 | 10 | 11 | 12 | 13 | 14 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {3}| {4}|  3 |  4 |  5 |  2 |  3 |  2 |  2 |  1 |  2 |  5 |  1 |  1 |{38}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---- } 285
|  3 |  8 |  9 | 16 | 25 |{12}|{21}| 16 | 18 | 10 | 22 | 60 |{13}|{14}|{247}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 38 ---|              |-- 33 ---|                        |-- {27}--|

Dari susunan ini kita dapatkan jumlah seluruh vektor dengan urutannya di angka 247 dimana via angka satu (1) menjadikan 10 terkoneksi dengan 13 dan 14 ke angka duapuluh tujuh (27).

14=2*7->2147=19*113->192147113=857*224209. Note that each new semiprime begins and ends with the ordered factors of the previous one. Can you find a larger chain? See for 139.

Dari angka 27 ini maka kita dapat mulai lakukan proses dengan mengambil vektor awal yaitu di angka 69 sebagai jumlah objek dari angka duapuluh sembilan (29).

Branching

Manuscript

619 = 114th prime
 x 19 = 114
True Prime Pairs:
(5,7), (11,13), (17,19)

layer|  i  |   f
-----+-----+---------
     |  1  | {5}
 {1}  +-----+
     |  2  | {7}
-----+-----+---  } 36
     |  3  | 11
  2  +-----+
     |  4  | 13
-----+-----+---------
     |  5  | 17
  3  +-----+     } 36
     |  6  | 19
-----+-----+---------
Φ(1,2,3) = Φ(6,12,18) = Φ(13,37,61)

114 is the biggest difference of two consecutive six-digit primes (492113 and 492227).
114 = 2 x 3 x 19
114 x {1} - {15} = 114 - 15 = 99
114 x {2} - 27 = 228 - {27} = 201
114 x {3} - 311 = 342 - 311 = {31}
114 x {4} - 413 = 456 - 413 = {43}
114 x {5} - 517 = 570 - 517 = {53}
114 x {6} - 619 = 684 - 619 = {65}

Singkatnya proses ini dilakukan via skema 2x48 berawal dari 29 sebagai prima ke-10 ke sistem sepuluh (10) angka yaitu 1 sd 10 secara berurut dari 11 sd 19 berujung di 18 x id: 78 ke 96.

The smallest integer n for which π(n) = n/4.
True Prime Pairs:
(5,7), (11,13), (17,19)

|------------------------- Skema-12 ------------------------|
|------------ 6¤ -------------|------------- 6¤ ------------|
|--------------------------- 192 ---------------------------|
|---- {23} ----|---- {49} ----|-- {29} -|--{30} --|-- 61 ---|
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5 |  7 | 11 |{13}| 17 | 19 | 17 |{12}| 11 | 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
|---------  5¤  ---------|---- {48} ----|----- {48} ---|{43}|
|---------  5¤  ---------|------------ {96} -----------|{43}|
|--------- {53} ---------|-------------- {139} -------------|
|------- Skema-23 -------|------------- Skema-34 -----------|
27 = 3 x 3 x 3 = 3³
-----+-----+-----+-----+-----+
 19¨ |  1  |  2  |  3  |  4  | 4¤
-----+-----+-----+-----+-----+
 17¨ |  5  |  6  |  7  |  8  | 4¤
     +-----+-----+-----+-----+
 12¨ |  9  | 10  | {2¤} (M dan F)
     +-----+-----+-----+      
 11¨ | 11  | 12  | 13  | {3¤}  <------ d(11) = d(17+12)= d(29)
-----+-----+-----+-----+-----+                                        
{19¨}| 14  | 15  | 16  | 17  | 4¤  
     +-----+-----+-----+-----+
 18¨ | 18  | 19  | 20  | 3¤
     +-----+-----+-----+-----+-----+-----+-----+-----+-----+
 43¨ | 21  | 22  | {23}| 24  | 25  | 26  |{27}  | 28  |{29}| 9¤
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
     Δ                 Δ                 Δ                 Δ
   96|97            114|115             121               139
                     Δ | Δ
                 2x3x19|23x5
True Prime Pairs:
(5,7), (11,13), (17,19)

                      {-25} {-6} 11|12  23 33|34  53   71  114
                         Δ    Δ    Δ    Δ    Δ    Δ    Δ    Δ
|---------36'-------|---36'---|-- {29}--|-  30  --|-- 61  --|
+----+----+----+----+----+----+----+----+----+----+----+----+
|  5'|  7'| 11'| 13'| 17'| 19'| 17 | 12*| 11*| 19 | 18 | 43 |
+----+----+----+----+----+----+----+----+----+----+----+----+
                         |---- {48} ----| 11 |-- 37  --| 43 |
                         Δ    Δ         Δ    Δ    Δ    Δ    Δ
                         |    |        {48}  59 77|78 {96} 139
                         |    |                        |
                         |    |                        71   89 {96}  114
                         |    |                     -- Δ    Δ    Δ    Δ
                         |    |                    |   +----+----+----+
                          ----------------------> Δ25  | 18 |  7 | 18 | 43
                              |                    |   +----+----+----+
                              |                     -- Δ    Δ    Δ    Δ
                              |                        96  114  121  139
                              |                        Δ    Δ    Δ    Δ
                               -----------> {96/6} = {-16} {2}  {9}  {27}

Dengan demikian di 114 ke 115 ini terjadi proses perpindahan antara angka 2 dan 3. Karena 114 berlaku sebagai dari dua (2) maka 115 akan berawal dari angka tiga (3).

3³ + 4³ + 5³ = 27 + 64 + 125 = 216 = 6³
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+       |
{25}|  3  | 3:3:4 |  {3}|  {4}|  {5}|  -  |  -  |  -  |  -  |  -  | 1210|{6ΦΦ9}<-
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 26 |  7  |*3:3:5 |   6 |   7 |   8 |   9 |  10 |  11 |  12 |  -  | 1879|
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 27 |  5  |*3:4:6 |  13 |  14 |  15 |  16 |  17 |  -  |  -  |  -  | 155 |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 28 |  3  | 3:4:7 |  18 |  19 | {20}|  -  |  -  |  -  |  -  |  -  | 37  |
----+-----+-------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 29 | {7} |*3:4:8 |  21 |  22 |  23 |  24 |  25 |  26 | {27}|  -  |{922}|
====+=====+=======+=====+=====+=====+=====+=====+=====+=====+=====+=====+======
1 x 3 x 9 = 27
True Prime Vektors ζ(s):
(2,3), (29,89), (36,68), (72,42), (100,50), (2,3), (29,89), ...infinity

----------------------+-----+-----+-----+                                    ---
     7 --------- 1,2:1|   1 |  30 |  40 | 71 (2,3) ‹-----------------         |
     |                +-----+-----+-----+-----+                        |      |
     |  8 ‹------  3:2|   1 |  30 |  40 |  90 | 161 (7) ‹---           |      5¨
     |  |             +-----+-----+-----+-----+             |          |      |
     |  |  6 ‹-- 4,6:3|   1 |  30 | 200 | 231 (10,11,12)‹---|---       |      |
     |  |  |          +-----+-----+-----+-----+             |   |      |     ---
      --|--|-----» 7:4|   1 |  30 |  40 | 200 | 271 (13) --›    | 5®   |      |
        |  |          +-----+-----+-----+-----+                 |      |      |
         --|---› 8,9:5|   1 |  30 | 200 | 231 (14,15) ---------›       |      7¨
289        |          +-----+-----+-----+-----+-----+                  |      |
 |          ----› 10:6|  20 |   5 |  10 |  70 |  90 | 195 (19) --› Φ   | 6®   |
  --------------------+-----+-----+-----+-----+-----+                  |     ---
     67 --------› 11:7|   5 |   9 | 14 ({20}) ------› ¤                |      |
     |                +-----+-----+-----+                              |      |
     |  78 ‹----- 12:8|   9 |  60 |  40 | 109 (26) «------------       |     11¨
     |  |             +-----+-----+-----+                       |      |      |
     |  |  86‹{13}:{9}|  60 |   9 |  69 ({27}) «-- Δ (Rep Fork) | 2®   |      |
     |  |  |          +-----+-----+-----+                       |      |     ---
     |  |   ----›14:10|   9 |  60 |  40 | 109 (28) -------------       |      |
     |  |             +-----+-----+-----+                              |      |
     |   ---› 15,18:11|   1 |  30 |  40 | 71 (29,30,31,32) ----------        13¨
329  |                +-----+-----+-----+                                     |
  |   ‹--------- 19:12|  60 |  10 | 70 (36) ‹--------------------- Φ          |
   -------------------+-----+-----+                                          ---
    786 ‹----- {20}:13| {90}|  90 (38) ‹-------------- ¤                      |
     |                +-----+-----+                                           |
     | 618 ‹- 21,22:14|  40 |   8 |  48 (40,41) ‹----------------------      17¨
     |  |             +-----+-----+-----+-----+-----+                  |      |
     |  | 594 ‹- 23:15|   8 |  40 |  70 |  60 | 100 | 278 (42) «--     | 6'®  |
     |  |  |          +-----+-----+-----+-----+-----+             |    |     ---
      --|--|-»24,27:16|  40 |   8 |  48 (43,44,45,46) ------------|----       |
        |  |          +-----+-----+                               |           |
         --|---› 28:17| 100 | 100 (50) --------------------------»           19¨
168        |          +-----+                                                 |
|         102 -› 29:18| 50  | 50(68) ---------> Δ                             |
----------------------+-----+                                                ---

Formasi ini kita urut berdasarkan jumlah faktor. Misal angka pertama yaitu 71 adalah 3 faktor, yg kedua yaitu 161 adalah 4 faktor dst maka kita akan dapatkan 14 kelompok berikut ini:

Φ(11,13) = (114 - 10²) + 13 = 27
1729 = 7 x 13 x 19
1729 / 7 = 13 x 19 = 247

1729 = 7 x 13 x 19
       7 + 13 = 20 = d(2)
                     └──  2 x 19 = 38

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {1}|  2 |  3 |  4 |  5 | {6}| {7}|  8 |  9 | 10 | 11 | 12 | 13 | 14 |
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
| {3}| {4}|  3 |  4 |  5 |  2 |  3 |  2 |  2 |  1 |  2 |  5 |  1 |  1 |{38}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+---- } 285
|  3 |  8 |  9 | 16 | 25 |{12}|{21}| 16 | 18 | 10 | 22 | 60 |{13}|{14}|{247}
+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
|-- 38 ---|              |-- 33 ---|                        |-- {27}--|

Dari susunan ini kita dapatkan jumlah seluruh vektor dengan urutannya di angka 247 dimana via angka satu (1) menjadikan 10 terkoneksi dengan 13 dan 14 ke angka duapuluh tujuh (27).

Dengan demikian kita akan kembali ke awal di id: 3 bedanya sekarang kita alokasikan ke layar-2. Detilnya kita akan bahas dalam dua (2) bagian yaitu 115 ke 124 dan 125 ke 139.

Referensi

🔼 Intro ◀️ Prev 🔁 Base Next ▶️ Last 🔽
This wiki is courtesy of Chetabahana Project. Find all of them on Project Map.
⚠️ **GitHub.com Fallback** ⚠️