0 Index - AshokBhat/ml GitHub Wiki
0
1
A
- Accuracy
- ACL
- Activation function
- AI
- AlexNet
- Amazon
- AMD
- Andrew Ng
- AndroidNN
- ANN
- Apple
- Applied ML
- [Arm]] ](/AshokBhat/ml/wiki/[[Arm-Compute-Library)
- ArmNN
- arXiv
- Attention
- AutoEncoder
- AutoML
- Autonomous driving
- Average Pooling
- [AWS]] ](/AshokBhat/ml/wiki/[AWS-EC2) | [AWS Elastic Inference]] | [AWS Inferentia]] ](/AshokBhat/ml/wiki/[AWS-IoT-Greengrass) | [AWS Lambda]] | [AWS SageMaker]] ](/AshokBhat/ml/wiki/[[AWS-SageMaker-Neo)
B
- Backpropagation
- Backward pass
- [Batch]] ](/AshokBhat/ml/wiki/[Batch-gradient-descent) | [Batch Normalization]]
- Bazel
- benchdnn
- BERT
- [bfloat16]] ](/AshokBhat/ml/wiki/[bfloat16-Arm) | [bfloat16 inference]] | bfloat16 training
- Bias
- Binary classification
- BLAS
- BLIS
- Book ML for everyone
- Bounding box
C
- Caffe
- Caffe2
- Cascade R CNN
- Chain rule
- CIFAR
- Classification
- Clustering
- CNN
- COCO
- col2im
- Computer vision
- Conda
- ConvNet
- Convolution
- [Convolutional Layer]] ](/AshokBhat/ml/wiki/[[Convolutional-Neural-Network)
- Core ML
- Cost function
- cuBLAS
- CUDA
- cuDNN
D
- [Data formats]] ](/AshokBhat/ml/wiki/[[Data-mining)
- Dataset
- Deconvolutional Neural Network
- [Deep Learning]] ](/AshokBhat/ml/wiki/[[Deep-Neural-Network)
- deeplearning.ai
- DenseNet
- Depth
- Depthwise Convolution
- Dimensionality reduction
- Discrete Probability Distribution
- DLRM
- DNN
- DNNL
- Down Sampling
- Dropout
E
F
- Face detection
- Fast R CNN
- Faster R CNN
- FBGEMM
- [Feature]] ](/AshokBhat/ml/wiki/[Feature-engineering) | [Feature extraction]] | [Feature propagation]] ](/AshokBhat/ml/wiki/[[Feature-scaling) | Feature selection
- Federated learning
- Feedforward neural network
- FFT
- Filter
- Flask
- FLOPS
- Forward pass
- FP16
- FP32
- Fully Connected Layer
G
- GAN
- GEMM
- Generative Adversarial Network
- Glow
- GLUE
- GNMT
- [Google]] ](/AshokBhat/ml/wiki/[[Google-Cloud) | Google Colab
- GPGPU
- [GPT]] ](/AshokBhat/ml/wiki/[[GPT-2) | GPT 3
- GPU
- [Gradient]] ](/AshokBhat/ml/wiki/[[Gradient-Descent) | Gradient step
- Graph
- Graphcore
- Groq
- GRU
H
I
- Ian Goodfellow
- iDeep
- ILSVRC
- im2col
- Image classification
- ImageNet
- [Inception]] ](/AshokBhat/ml/wiki/[[Inception-v1) | Inception v3
- [Inference]] ](/AshokBhat/ml/wiki/[[Inference-engine)
- INT8
- [Intel]] ](/AshokBhat/ml/wiki/[[Intel-Optimised-TensorFlow)
- Iteration
J
K
L
- L1 regularization
- L2 regularization
- [Label]] ](/AshokBhat/ml/wiki/[[Label-Encoding)
- Labeled example
- Layer
- [Learning rate]] ](/AshokBhat/ml/wiki/[[Learning-rate-decay)
- [Linear Algebra]] ](/AshokBhat/ml/wiki/[[Linear-regression)
- LLVM
- Logistic regression
- Logit
- [Loss]] ](/AshokBhat/ml/wiki/[[Loss-curve) | Loss function
- LSTM
M
- [Machine Learning]] ](/AshokBhat/ml/wiki/[[Machine-Translation)
- mAP
- Mask R CNN
- Matrix multiplication
- Max pooling
- [Microsoft]] ](/AshokBhat/ml/wiki/[[Microsoft-Azure) | Microsoft Cognitive Toolkit
- [Mini Batch]] ](/AshokBhat/ml/wiki/[[Mini-batch-gradient-descent)
- MiniGo
- [MKL]] ](/AshokBhat/ml/wiki/[[MKL-DNN)
- MLCommons
- MLIR
- [MLPerf]] ](/AshokBhat/ml/wiki/[MLPerf-Inference) | [MLPerf Inference Paper]] | [MLPerf Inference v0.7]] ](/AshokBhat/ml/wiki/[[MLPerf-Training)
- MNIST
- [MobileNet]] ](/AshokBhat/ml/wiki/[[MobileNet-v1) | MobileNet v2
- [Model]] ](/AshokBhat/ml/wiki/[[Model-Zoo)
- MPI
- MS COCO
- MXNet
N
- Named Entity Recognition
- Natural Language Processing
- Neo AI DLR
- Neural network
- NeurIPS
- Neuron
- NGC
- NLP
- NMT
- NNPACK
- Normalization
- Numerical linear algebra
- NumPy
- [Nvidia]] ](/AshokBhat/ml/wiki/[[Nvidia-Tesla)
O
- [Object Detection]] ](/AshokBhat/ml/wiki/[[Object-recognition)
- One Hot Encoding
- [oneDNN]] ](/AshokBhat/ml/wiki/[oneDNN-AArch64) | [oneDNN GEMM]] | [oneDNN performance]] ](/AshokBhat/ml/wiki/[[oneDNN-versions)
- [ONNX]] ](/AshokBhat/ml/wiki/[[ONNX-runtime)
- OPEN AI LAB
- OpenAI
- OpenBLAS
- OpenCV
- OpenMP
- OpenVINO
- [Operator]] ](/AshokBhat/ml/wiki/[[Operator-Fusion)
- Optimizer
- Overfitting
P
- Pandas
- Papers with Code
- Parameter
- Partial derivative
- PASCAL VOC
- Pedestrian detection
- Perceptron
- Pointwise Convolution
- Poisson Distribution
- [Pooling]] ](/AshokBhat/ml/wiki/[[Pooling-Layer)
- Pre trained
- Prediction
- Probability distribution
- Pruning
- [Python]] ](/AshokBhat/ml/wiki/[[Python-Packages)
- [PyTorch]] ](/AshokBhat/ml/wiki/[PyTorch-Build) | [PyTorch Images]] | PyTorch Versions
Q
R
- R CNN
- Receptive field
- Recurrent Neural Network
- Region of Interest
- Regression
- Regularization
- Reinforcement learning
- ReLU
- [ResNet]] ](/AshokBhat/ml/wiki/[[ResNet-50) | ResNet 50 Performance
- ResNeXt
- RNN
S
- SciPy
- Semantic segmentation
- Semi supervised learning
- Sentiment analysis
- Sigmoid
- Softmax
- Speech recognition
- SQuAD
- SSD
- State of the art
- Stochastic gradient descent
- StyleGAN
- Supervised learning
- SVM
T
- Tanh
- template
- Tengine
- Tensor
- TensorBoard
- [TensorFlow]] ](/AshokBhat/ml/wiki/[TensorFlow-Benchmarking) | [TensorFlow Eager]] | [TensorFlow examples]] ](/AshokBhat/ml/wiki/[TensorFlow-Hub) | [TensorFlow Lite]] | [TensorFlow Versions]] ](/AshokBhat/ml/wiki/[[TensorFlow.js)
- TensorRT
- Test set
- TF from source
- TFLOPS
- TFRT
- Tiling
- [Top 1 Accuracy]] ](/AshokBhat/ml/wiki/[[Top-5-Accuracy)
- TOPS
- TorchServe
- TPU
- [Training]] ](/AshokBhat/ml/wiki/[[Training-set)
- Transfer learning
- Transformer
- TVM
U
V
- Validation set
- [Vanishing gradient]] ](/AshokBhat/ml/wiki/[[Vanishing-gradient-problem)
- VGG