Parameter estimation under the MSC‐M (Baobab dataset) - bpp/bpp-tutorial-geneflow GitHub Wiki
This demo we will infer the parameters in the following MSC-M model:
This is based on a species tree obtained from A01 analysis of the Baobab dataset in this tutorial, allowing for gene flow between Adig
and Agre
in both directions at rate Agre
to Adig
forward in time and
We will use the following folder structure:
.
|-- baobab
| |-- A00
| | |-- baobab.A00.ctl
| | `-- baobab.A00.msci.ctl
| |-- A01
| | `-- baobab.A01.ctl
| |-- baobab.map.txt
| `-- baobab.phy
`-- bpp
`-- a00
|-- r1
| `-- baobab.A00.msci.ctl
`-- r2
`-- baobab.A00.msci.ctl
8 directories, 7 files
See this tutorial for how to create this directory structure.
In bpp/a00/
, create a control file baobab.A00.mscm.ctl
with the following content:
seed = -1
seqfile = ../../../baobab/baobab.phy
Imapfile = ../../../baobab/baobab.map.txt
jobname = baobab-mscm
speciesdelimitation = 0
speciestree = 0
species&tree = 6 Adig Agra Agre Amad Arub Smic
3 2 1 2 2 1
(((((Amad, Arub), Agra), Adig), Agre), Smic);
phase = 0 0 0 0 0 0
usedata = 1 # 0: no data (prior); 1:seq like
nloci = 100 # number of data sets in seqfile
cleandata = 0 # remove sites with ambiguity data (1:yes, 0:no)?
thetaprior = gamma 2 400 # gamma(a, b) for theta
tauprior = gamma 3 200 # gamma(a, b) for root tau & Dirichlet(a) for other tau's
wprior = 20 1
migration = 2
Adig Agre
Agre Adig
locusrate = 0
clock = 1
finetune = 1
print = 1 0 0 0 # MCMC samples, locusrate, heredityscalars, Genetrees
burnin = 50000
sampfreq = 10
nsample = 10000
Then copy this to the two run directories:
cp baobab.A00.mscm.ctl r1
cp baobab.A00.mscm.ctl r2
Notice how the keywords wprior
and migration
specify the migration model shown in the figure above.
- The keyword
migration = 2
specifies that there are two migration events. The next lineAdig Agre
means migration fromAdig
toAgre
, and the following line indicates another migration event fromAgre
toAdig
. - The line
wprior = 20 1
assigns the gamma prior$G(20,1)$ , with mean 20, to both migration rates$\varpi_{\text{Agre} \rightarrow \text{Adig}} = m_{\text{Agre} \rightarrow \text{Adig}} / \mu$ and$\varpi_{\text{Adig} \rightarrow \text{Agre}} = m_{\text{Adig} \rightarrow \text{Agre}} / \mu$ .
Since BPP v4.8, migration rates are parameterized in terms of mutation-scaled migration rates:
It is possible to specify different priors for different migration rates or to allow the migration rate to vary across loci. See Migration model in BPP and BPP manual for more details.
Check that the BPP control files in bpp/a00/r1
and bpp/a00/r2
point to the right PHYLIP (sequence alignment) and map files. They should have the following form:
seqfile = ../../../baobab/baobab.phy
Imapfile = ../../../baobab/baobab.map.txt
jobname = baobab-mscm
We're now ready to run BPP:
cd r1
bpp --cfile baobab.A00.mscm.ctl
If you run into problems with core pinning, or BPP exits with the error: "Error while pinning thread to core." then try running BPP with the --no-pin
option:
bpp --no-pin --cfile baobab.A00.mscm.ctl
We should run the program at least twice and compare the outputs from the two runs to check for convergence.
To do another run:
cd ../r2
bpp --cfile baobab.A00.mscm.ctl
See a sample output file baobab-mscm.txt
here.
The first part of the output is similar to the output of the A00 run for the MSC model.
bpp v4.8.2_<arch>, <k>GB RAM, <n> cores
https://github.com/bpp/bpp
Detected CPU features: neon
Auto-selected SIMD ISA: NEON
Starting timer..
Seed: 16560695 (randomly generated)
Parsing species tree... Done
Parsing phylip file... Done
Locus | Model | Sequences | Length | Ambiguous sites | Compressed | Base freqs
-------+-------+-----------+--------+-----------------+------------+------------
1 | JC69 | 10 | 960 | 12 | 19 | Fixed
2 | JC69 | 10 | 933 | 72 | 18 | Fixed
.
.
Parsing map file...
Adi001 Adig
Adi002 Adig
Aga001 Agra
Aga002 Agra
Age001 Agre
Ama006 Amad
Ama018 Amad
Aru001 Arub
Aru127 Arub
Smi165 Smic
Done
Per-locus sequences in data and 'species&tree' tag:
C.File | Data | Status | Population
-------+------+--------------------------------------+-----------
3 | 2 | [OK] | Adig
2 | 2 | [OK] | Agra
1 | 1 | [OK] | Agre
2 | 2 | [OK] | Amad
2 | 2 | [OK] | Arub
1 | 1 | [OK] | Smic
Map of populations and ancestors (1 in map indicates ancestor):
Species 1 2 3 4 5 6 7 8 9 10 11
1 Adig 1 0 0 0 0 0 1 1 1 0 0
2 Agra 0 1 0 0 0 0 1 1 1 1 0
3 Agre 0 0 1 0 0 0 1 1 0 0 0
4 Amad 0 0 0 1 0 0 1 1 1 1 1
5 Arub 0 0 0 0 1 0 1 1 1 1 1
6 Smic 0 0 0 0 0 1 1 0 0 0 0
7 Amad,Arub,Agra,Adig,Agre,Smic 0 0 0 0 0 0 1 0 0 0 0
8 Amad,Arub,Agra,Adig,Agre 0 0 0 0 0 0 1 1 0 0 0
9 Amad,Arub,Agra,Adig 0 0 0 0 0 0 1 1 1 0 0
10 Amad,Arub,Agra 0 0 0 0 0 0 1 1 1 1 0
11 Amad,Arub 0 0 0 0 0 0 1 1 1 1 1
Generating gene trees.... Done
Initial MSC density and log-likelihood of observing data:
log-PG0 = 4591.757640 log-L0 = -475528.209522
[EXPERIMENTAL] - New extended IM rubberband algorithm
Theta proposal: Mixed: Sliding window (0.20) + Inv-G approx Gibbs (0.80))
Linked thetas: none
0:00 taken to read and process data..
Restarting timer...
.
.
The next part provides a description of the values printed on screen during the MCMC run. BPP prints many values on screen which we can cluster into three categories:
- The first column is a progress indicator with the percentage of the the completed MCMC run. Negative progress means we are still in the burn-in.
- The next block of columns shows the acceptance proportions for each activated MCMC move. In our case we have seven active proposals.
- The remaining columns indicate information about the chain at that point in the run. Those are running means for three thetas and three taus, the phi parameter, the sum of gene tree log-densities, and the mean log-likelihood.
Since finetune was set to 1, BPP optimizes step-length values during burn-in, such that acceptance proportions (Pjump) are around 30%. To achieve this, BPP typically does four rounds of optimization during the burn-in and prints on screen the Current Pjump
(acceptance proportions for each enabled MCMC move at that step), Current finetune
(step-length/tuning parameters at that step) and New finetune
(the new optimized tuning parameter values).
-*- Terms index -*-
Prgs: progress of MCMC run (negative progress means burnin)
Gage: gene-tree age proposal
Gspr: gene-tree SPR proposal
th1: species tree theta proposal (tips) (sliding window)
th2: species tree theta proposal (inner) (sliding window)
thg: species tree theta proposal (inner) (gibbs sampler)
tau: species tree tau proposal
mix: mixing proposal
mrte: migration rates proposal
theta1: mean theta of node 1
theta2: mean theta of node 2
theta3: mean theta of node 3
tau1: mean tau of node 6
tau2: mean tau of node 7
tau3: mean tau of node 8
W1: mean migration rate Adig -> Agre
W2: mean migration rate Agre -> Adig
log-PG: log-probability of gene trees (MSC)
log-L: mean log-L of observing data
| Acceptance proportions |
Prgs | Gage Gspr th1 th2 thg tau mix mrte | theta1 theta2 theta3 tau1 tau2 tau3 W1 W2 log-PG log-L
--------------------------------------------------------------------------------------------------------------------------------------
-45% 0.32 0.20 0.56 0.39 0.95 0.08 0.01 1.00 0.0060 0.0053 0.0106 0.0137 0.0063 0.0050 25.1446 17.1438 3598.20493 -451124.00374 0:40
-40% 0.32 0.20 0.59 0.41 0.95 0.07 0.01 1.00 0.0059 0.0053 0.0103 0.0134 0.0057 0.0050 21.6740 16.9364 3596.51315 -451102.78379 1:19
-37% 0.32 0.20 0.59 0.42 0.95 0.07 0.01 1.00 0.0058 0.0053 0.0100 0.0132 0.0056 0.0050 20.8140 16.7934 3595.02573 -451096.70374
Gage Gspr th1 th2 tau mix mrte
Current Pjump: 0.32373 0.20157 0.59289 0.41542 0.07344 0.00608 1.00000
Current finetune: 5.00000 0.00100 0.00050 0.00200 0.00100 0.30000 0.10000
New finetune: 5.46989 0.00064 0.00132 0.00300 0.00023 0.00562 10.00000
=> 'finetune = 1 Gage:5.469887 Gspr:0.000643 th1:0.001319 th2:0.003000 tau:0.000227 mix:0.005623 mrte:10.000000'
-35% 0.32 0.20 0.34 0.30 0.95 0.35 0.61 1.00 0.0059 0.0053 0.0078 0.0127 0.0052 0.0050 18.7407 14.7667 3576.54572 -451083.97993 1:59
-30% 0.32 0.20 0.36 0.33 0.95 0.35 0.61 1.00 0.0058 0.0052 0.0089 0.0127 0.0051 0.0050 18.6320 15.6514 3559.91174 -451079.24713 2:33
-25% 0.32 0.20 0.37 0.34 0.95 0.34 0.61 1.00 0.0058 0.0052 0.0090 0.0128 0.0051 0.0050 18.2468 15.9587 3573.78734 -451078.80836 3:08
Gage Gspr th1 th2 tau mix mrte
Current Pjump: 0.32425 0.20045 0.36871 0.33725 0.34277 0.61056 1.00000
Current finetune: 5.46989 0.00064 0.00132 0.00300 0.00023 0.00562 10.00000
New finetune: 5.99552 0.00041 0.00169 0.00345 0.00027 0.01573 99.00000
=> 'finetune = 1 Gage:5.995522 Gspr:0.000411 th1:0.001693 th2:0.003447 tau:0.000267 mix:0.015733 mrte:99.000000'
-20% 0.32 0.20 0.20 0.22 0.95 0.31 0.30 1.00 0.0057 0.0052 0.0104 0.0133 0.0051 0.0050 18.0526 16.9608 3587.78173 -451082.88931 3:43
-15% 0.32 0.20 0.22 0.24 0.95 0.31 0.30 1.00 0.0057 0.0053 0.0095 0.0129 0.0051 0.0050 18.2294 15.9860 3519.71277 -451079.97448 4:18
-12% 0.32 0.20 0.23 0.25 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0095 0.0128 0.0051 0.0050 18.0690 16.0099 3673.94059 -451078.28236
Gage Gspr th1 th2 tau mix mrte
Current Pjump: 0.32395 0.20042 0.22710 0.24801 0.30258 0.29520 1.00000
Current finetune: 5.99552 0.00041 0.00169 0.00345 0.00027 0.01573 99.00000
New finetune: 6.56418 0.00026 0.00124 0.00278 0.00027 0.01544 99.00000
=> 'finetune = 1 Gage:6.564178 Gspr:0.000263 th1:0.001239 th2:0.002778 tau:0.000269 mix:0.015440 mrte:99.000000'
-10% 0.32 0.20 0.36 0.48 0.95 0.31 0.32 1.00 0.0057 0.0052 0.0100 0.0137 0.0052 0.0050 18.4950 16.9661 3614.10536 -451089.61901 4:53
-5% 0.32 0.20 0.38 0.47 0.95 0.30 0.31 1.00 0.0057 0.0052 0.0094 0.0133 0.0051 0.0049 18.2355 16.1612 3633.92606 -451083.28954 5:27
0% 0.32 0.20 0.39 0.47 0.95 0.30 0.31 1.00 0.0057 0.0052 0.0100 0.0132 0.0052 0.0050 18.3117 16.7202 3629.38605 -451082.20684 6:03
Gage Gspr th1 th2 tau mix mrte
Current Pjump: 0.32385 0.20118 0.38564 0.46643 0.30243 0.30896 1.00000
Current finetune: 6.56418 0.00026 0.00124 0.00278 0.00027 0.01544 99.00000
New finetune: 7.18423 0.00017 0.00168 0.00491 0.00027 0.01598 99.00000
=> 'finetune = 1 Gage:7.184227 Gspr:0.000169 th1:0.001684 th2:0.004905 tau:0.000272 mix:0.015982 mrte:99.000000'
5% 0.32 0.20 0.26 0.22 0.95 0.30 0.30 1.00 0.0057 0.0052 0.0099 0.0132 0.0052 0.0050 18.5733 16.6822 3586.96479 -451082.88606 6:37
10% 0.32 0.20 0.27 0.22 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0097 0.0132 0.0051 0.0050 18.2717 16.3810 3673.52821 -451081.88899 7:12
15% 0.32 0.20 0.28 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0100 0.0131 0.0051 0.0050 18.1356 16.6024 3623.46559 -451081.63112 7:47
20% 0.32 0.20 0.28 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0099 0.0131 0.0051 0.0050 18.0103 16.5082 3540.01349 -451081.50330 8:22
25% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0098 0.0130 0.0051 0.0050 17.9635 16.4938 3583.64457 -451080.37420 8:57
30% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0099 0.0130 0.0051 0.0050 18.0559 16.5730 3587.50046 -451079.78115 9:31
35% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0101 0.0130 0.0051 0.0050 18.1919 16.6538 3605.95245 -451080.42280 10:06
40% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0131 0.0051 0.0050 18.2125 16.7362 3642.28068 -451081.22269 10:42
45% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0132 0.0051 0.0050 18.2244 16.8610 3622.98962 -451082.14509 11:17
50% 0.32 0.20 0.29 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0104 0.0132 0.0051 0.0050 18.1697 16.9448 3612.76091 -451081.97542 11:52
55% 0.32 0.20 0.30 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0131 0.0051 0.0050 18.1375 16.8522 3582.62215 -451081.53809 12:27
60% 0.32 0.20 0.30 0.23 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0131 0.0051 0.0050 18.1137 16.9154 3665.49092 -451081.59873 13:03
65% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0132 0.0051 0.0050 18.1072 16.8596 3565.15538 -451081.75190 13:38
70% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0131 0.0051 0.0050 18.1035 16.8799 3592.51785 -451081.37965 14:15
75% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0131 0.0051 0.0050 18.1444 16.9280 3703.57830 -451081.26553 14:50
80% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0131 0.0051 0.0050 18.1612 16.8930 3610.33227 -451081.36469 15:26
85% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0131 0.0051 0.0050 18.1488 16.8215 3605.79561 -451081.55837 16:02
90% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0132 0.0051 0.0050 18.1628 16.8232 3617.92105 -451082.01390 16:38
95% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0103 0.0132 0.0051 0.0050 18.1701 16.8685 3560.89046 -451082.08798 17:13
100% 0.32 0.20 0.30 0.24 0.95 0.30 0.30 1.00 0.0057 0.0053 0.0102 0.0132 0.0051 0.0049 18.1476 16.8146 3569.55277 -451082.20859 17:48
17:48 spent in MCMC
After MCMC sampling is complete, the remaining part provides posterior summaries:
Node-Index Node-Type Node-Label
---------------------------------
1 Tip Adig
2 Tip Agra
3 Tip Agre
4 Tip Amad
5 Tip Arub
6 Tip Smic
7 Root MRCA( Amad,Arub,Agra,Adig,Agre,Smic )
8 Inner MRCA( Amad,Arub,Agra,Adig,Agre )
9 Inner MRCA( Amad,Arub,Agra,Adig )
10 Inner MRCA( Amad,Arub,Agra )
11 Inner MRCA( Amad,Arub )
param mean median S.D min max 2.5% 97.5% 2.5%HPD 97.5%HPD ESS* Eff* rho1
-------------------------------------------------------------------------------------------------------------------------------------------
theta:1 0.005706 0.005650 0.000692 0.003608 0.008585 0.004489 0.007222 0.004441 0.007142 3888.376363 0.388838 0.075820
theta:2 0.005261 0.005209 0.000645 0.003352 0.008916 0.004139 0.006690 0.004068 0.006569 9368.984328 0.936898 0.028660
theta:3 0.010190 0.009553 0.004653 0.000348 0.042140 0.002955 0.021054 0.002143 0.019577 439.960590 0.043996 0.256864
theta:4 0.004447 0.004399 0.000547 0.002911 0.007349 0.003509 0.005646 0.003461 0.005564 9293.261929 0.929326 0.022723
theta:5 0.006217 0.006154 0.000796 0.003877 0.010032 0.004837 0.007939 0.004763 0.007831 9598.062294 0.959806 -0.002899
theta:7 0.033533 0.033420 0.002705 0.025028 0.044135 0.028507 0.039016 0.028500 0.039000 427.620773 0.042762 0.222535
theta:8 0.022606 0.022534 0.001643 0.016342 0.030129 0.019545 0.026066 0.019292 0.025704 3040.588736 0.304059 0.131894
theta:9 0.006714 0.006079 0.003682 0.000105 0.025906 0.001463 0.015589 0.000540 0.013824 4998.694430 0.499869 0.149050
theta:10 0.015532 0.015338 0.003445 0.002961 0.038897 0.009404 0.022896 0.008981 0.022322 2048.715179 0.204872 0.313470
theta:11 0.007514 0.006882 0.004081 0.000175 0.028616 0.001590 0.017339 0.000656 0.015340 6514.476854 0.651448 0.149342
tau:7 0.013158 0.013184 0.000723 0.010954 0.015629 0.011711 0.014481 0.011707 0.014471 87.798045 0.008780 0.924202
tau:8 0.005127 0.005121 0.000224 0.004354 0.006489 0.004713 0.005584 0.004694 0.005560 303.985457 0.030399 0.806413
tau:9 0.004949 0.004949 0.000185 0.004219 0.005582 0.004578 0.005310 0.004593 0.005318 871.818652 0.087182 0.628823
tau:10 0.003640 0.003637 0.000193 0.002886 0.004559 0.003276 0.004030 0.003268 0.004020 2580.324968 0.258032 0.522418
tau:11 0.003353 0.003358 0.000204 0.002564 0.004003 0.002930 0.003737 0.002951 0.003750 2817.458583 0.281746 0.526582
W:1->3 18.224446 17.905753 4.096706 6.516517 38.524199 11.086492 27.159340 10.681823 26.603726 2201.131848 0.220113 0.171191
W:3->1 16.820629 16.541676 3.828763 6.526080 33.998102 10.149278 24.950489 9.446857 24.110673 618.686964 0.061869 0.225220
M:1->3 0.046596 0.041960 0.024542 0.001269 0.206297 0.012107 0.106856 0.005363 0.094606 570.315327 0.057032 0.252136
M:3->1 0.023915 0.023424 0.005876 0.008872 0.056797 0.013883 0.036779 0.013089 0.035529 1399.916185 0.139992 0.118656
lnL -451082.085812 -451081.790000 24.613414 -451170.800000 -450993.751000 -451130.517000 -451034.348000 -451128.879000 -451032.934000 770.235818 0.077024 0.235815
FigTree tree is in baobab-mscm.FigTree.tre
Once the run is finished, there will be several output files:
-
baobab-mscm.txt
: main output file containing the above information -
baobab-mscm.mcmc.txt
: MCMC sample of model parameters -
baobab-mscm.conditional_a1b1.txt
: MCMC sample of$a$ and$b$ parameters of the gamma distributions in Gibbs sampling, used for generating final posterior summaries. -
baobab-mscm.FakeTree.tre
: fitted model, which can be visualised in FigTree -
baobab-mscm.pdf
: visualization of the fitted model; see figure below -
baobab-mscm.SeedUsed
: a random seed used by BPP
Try completing two runs and check the convergence of MCMC. A helpful tool is Tracer, but BPP provides some helpful summary statistics too. Here, we provide a python script (scatter-params.py) to help plot posteriors for theta and tau parameters. If we are satisfied, we can use one MCMC analysis from BPP or combine them to report parameter estimates. The plotting script can be executed from the command line with
# download script
wget https://raw.githubusercontent.com/bpp/bpp-tutorial-geneflow/main/third-day/scripts/scatter-params.py
# add execute permissions
chmod +x scatter-params.py
Then run script on your two mcmc files:
./scatter-params.py <mcmc1.txt> <mcmc2.txt>
The script will produce one plot for thetas (thetas.pdf
) and one for taus (taus.pdf
).
The estimates of the two migration rates are W:1->3:Adig->Agre
) and W:3->1:Agre->Adig
).
Q: Are these values large or small? Do they provide strong evidence for gene flow?
Consider testing
where
We will use a custom script savage-dickey.py to parse the MCMC sample in baobab-msci.mcmc.txt.
wget https://raw.githubusercontent.com/bpp/bpp-tutorial-geneflow/main/fourth-day/scripts/savage-dickey-gamma.py
chmod +x savage-dickey-gamma.py
Q: What values of
First, try
qgamma(0.01, 20, 1, lower.tail=TRUE)
which gives 11.08213.
./savage-dickey-gamma.py 11.08213 "W:1->3:Adig->Agre" 20 1 r1/baobab-mscm.mcmc.txt
Cutoff: 11.08213
Prior: Gamma(20.0,1.0)
Parameter: W:1->3:Adig->Agre
MCMC file: r4/baobab-mscm-m5.mcmc.txt
Prior: 0.009999994418491292
Posterior: 0.9999
Bayes factor: 0.010000994517943087
If we use a smaller threshold for the null set for the prior lower tail of 0.1%, we get:
./savage-dickey-gamma.py 8.958213 "W:1->3:Adig->Agre" 20 1 r1/baobab-mscm.mcmc.txt
Cutoff: 8.958213
Prior: Gamma(20.0,1.0)
Parameter: W:1->3:Adig->Agre
MCMC file: r4/baobab-mscm-m5.mcmc.txt
Prior: 0.0009999996499439417
Posterior: 0.9995
Bayes factor: 0.0010004998998938885
Similarly, we can test for gene flow in the other direction, Agre
Adig
:
./savage-dickey-gamma.py 11.08213 "W:3->1:Agre->Adig" 20 1 r1/baobab-mscm.mcmc.txt
Cutoff: 11.08213
Prior: Gamma(20.0,1.0)
Parameter: W:3->1:Agre->Adig
MCMC file: r4/baobab-mscm-m5.mcmc.txt
Prior: 0.009999994418491292
Posterior: 1.0
Bayes factor: 0.009999994418491292
./savage-dickey-gamma.py 8.958213 "W:3->1:Agre->Adig" 20 1 r1/baobab-mscm.mcmc.txt
Cutoff: 8.958213
Prior: Gamma(20.0,1.0)
Parameter: W:3->1:Agre->Adig
MCMC file: r4/baobab-mscm-m5.mcmc.txt
Prior: 0.0009999996499439417
Posterior: 1.0
Bayes factor: 0.0009999996499439417
Q: Notice the posterior means of