Parameter estimation under the MSC (Baobab dataset) - bpp/bpp-tutorial-geneflow GitHub Wiki

Running BPP

If you are running BPP on your own PC please follow the Installation instructions to obtain a BPP binary for your operating system and computer architecture.

We will estimate divergence times and population size parameters using Tree 1 from the A01 analysis:

We will use the following folder structure:

|-- baobab
|   |-- A00
|   |   |-- baobab.A00.ctl
|   |   `-- baobab.A00.msci.ctl
|   |-- A01
|   |   `-- baobab.A01.ctl
|   |-- baobab.map.txt
|   `-- baobab.phy
`-- BPP
    |-- A00
    |   |-- r1
    |   |   `-- baobab.A00.ctl
    |   `-- r2
    |       `-- baobab.A00.ctl
    `-- A01
        |-- r1
        |   `-- baobab.A01.ctl
        `-- r2
            `-- baobab.A01.ctl

10 directories, 9 files

The steps below outline how to create the folder structure and copy the control files into the appropriate directories for running BPP. The section for downloading and extracting data files is commented out, as this step has already been completed.

# create folder structure
cd
mkdir -p DAY-3/BPP/A00/r{1,2}

# download and extract data files only if we haven't done this before!
cd DAY-3
wget https://github.com/bpp/bpp-tutorial-geneflow/raw/main/data/baobab.tar.gz
tar zxvf baobab.tar.gz
rm baobab.tar.gz

# copy control files to the right folders
cd ~/DAY-3/BPP/A00/
cp ../../baobab/A00/baobab.A00.ctl r1
cp ../../baobab/A00/baobab.A00.ctl r2

To verify that your folder structure matches the one described above, use the following commands:

cd ~/DAY-3
tree --charset=ascii

Ensure that the BPP control files in DAY-3/BPP/A00/r1 and DAY-3/BPP/A00/r2 reference the correct PHYLIP (sequence alignment) and map files. The seqfile and imapfile fields should follow the structure shown below:

 seqfile = ../../../baobab/baobab.phy
Imapfile = ../../../baobab/baobab.map.txt

You can confirm this by running the following commands:

cd ~/DAY-3/BPP/A00/
cat r1/baobab.A00.ctl
cat r2/baobab.A00.ctl

You can open the file using any of the available editors, such as:

# vi/vim editor
vi baobab.A00.ctl

# emacs editor
emacs baobab.A00.ctl

# nano or pico editor
nano baobab.A00.ctl
pico baobab.A00.ctl

Note: If you accidentally open the vi or vim editor and are unsure how to exit, press ESC a few times and then type :q! to quit without saving.

Finally, to run BPP, use the following commands:

cd ~/DAY-3/BPP/A00/r1
bpp --cfile baobab.A00.ctl

If you encounter issues with core pinning or see the error message: "Error while pinning thread to core." try running BPP with the --no-pin option:

bpp --no-pin --cfile baobab.A00.ctl

We need to run at least two independent analyses (with different starting seeds) in order to check for convergence. We will compare runs when they finish.

For each A00 run, BPP will create the following files:

Filename Description
JOBNAME.mcmc.txt MCMC sample file
JOBNAME.txt Output file (log of screen output)
JOBNAME.SeedUsed Seed used for this run
JOBNAME.conditional_a1b1.txt Theta estimates from using conditionals (NEW)
JOBNAME.FigTree.tre Output tree with parameters to be used with FigTree
JOBNAME.pdf Tree visualization in PDF format

where JOBNAME is the label provided in the jobname control file option.

💤 Synchronization point: Make sure everybody reached this stage 💤


Output screen

The output displayed on the screen is also saved in a file named according to the jobname option specified in the control file, with a .txt extension. For instance, if jobname = long-run, the output file will be named long-run.txt. See a sample output file for the Baobab dataset.

Important note: The output shown here will differ from the output of your run. The discrepancies can be attributed to several factors. One major reason is the variance due to different seeds used for the pseudorandom number generator. However, a more crucial distinction lies in the scale of the runs. The output presented here is from a run with the following settings:

burnin = 50000
sampfreq = 5
nsample = 100000

This configuration results in a total of burnin + sampfreq * nsample = 550,000 MCMC steps, with 100,000 samples stored in the MCMC file. In contrast, your current runs are smaller in scale, with settings:

burnin = 50000
sampfreq = 2
nsample = 50000

This corresponds to 150,000 MCMC steps, with 50,000 samples stored.

The first part of the output provides a summary of the input data. It includes a brief description of the data for each locus, followed by the alignments in compressed form. In this compressed format, sites with identical likelihoods according to the specified substitution model are collapsed into a single site, and a weight (the number of times observed) is assigned to each cluster of such sites.

Analysis started at: Fri Nov 29 17:48:52 2024
Using BPP version: 4.8.2
pver sha1: 1a053a3b61831dc4fb680235a5f6e63e8158ea54
Command: bpp --cfile baobab.A00.ctl 

Seed: 1739527591 (randomly generated)
Initial species tree: (((Adig, (Agra, (Amad, Arub))), Agre), Smic);

 Locus | Model | Sequences | Length | Ambiguous sites | Compressed | Base freqs 
-------+-------+-----------+--------+-----------------+------------+------------
     1 |  JC69 |        10 |    960 |              12 |         19 |      Fixed 
     2 |  JC69 |        10 |    933 |              72 |         18 |      Fixed 
     3 |  JC69 |        10 |   5945 |            4532 |        103 |      Fixed 
.
.
    98 |  JC69 |        10 |   1110 |             231 |         34 |      Fixed 
    99 |  JC69 |        10 |   2487 |            1310 |         65 |      Fixed 
   100 |  JC69 |        10 |   1443 |             612 |         33 |      Fixed 

COMPRESSED ALIGNMENTS

10 19 P
^Age001     TGGTCACAAT TCCTTAXXX
^Adi002     TGGTCACAAT TTTCACXXX
.
.
^Ama018     TGGTCCGTAT TCCCATXXX
^Aga002     TAXTTACTAT TCCCATXGX
905 4 3 17 1 2 1 1 2 2 1 1 3 1 6 1 3 3 3

10 18 P
^Age001     CGCGTACCTG CAACTXXX
^Adi002     CGCGTACCTG TGGGAAAC
.
.
^Ama018     CGTGTGCCTC CAGGAAAC
^Aga002     CACATACCTG CAGGAAAC
777 1 2 5 25 3 1 1 1 1 1 2 1 39 1 70 1 1

.
.
.

Per-locus sequences in data and 'species&tree' tag:
C.File | Data |                Status                | Population
-------+------+--------------------------------------+-----------
     3 |    2 | [OK]                                 | Adig      
     2 |    2 | [OK]                                 | Agra      
     1 |    1 | [OK]                                 | Agre      
     2 |    2 | [OK]                                 | Amad      
     2 |    2 | [OK]                                 | Arub      
     1 |    1 | [OK]                                 | Smic      

Initial MSC density and log-likelihood of observing data:
log-PG0 = 3912.172931   log-L0 = -477118.465373


Distributing workload to threads:
 Thread 0 : loci [ 1 -  26), Patterns/Seqs/Load : 1063 / 250 / 10630
 Thread 1 : loci [26 -  51), Patterns/Seqs/Load : 1034 / 250 / 10340
 Thread 2 : loci [51 -  76), Patterns/Seqs/Load : 1011 / 250 / 10110
 Thread 3 : loci [76 - 101), Patterns/Seqs/Load : 1007 / 250 / 10070
0:00 taken to read and process data..
Restarting timer...

The next part provides a description of the values printed on screen during the MCMC run. BPP prints several values on the screen, which we can grouped into three categories:

  1. Progress Indicator: The first column shows the percentage of the completed MCMC run. A negative value indicates that the burn-in phase is still ongoing.
  2. Acceptance Proportions: The following set of columns displays the acceptance proportions for each active MCMC move. In our case, there are six active proposals.
  3. Chain Information: The remaining columns provide details about the chain at that point in the run. This includes running means for three thetas and three taus, the sum of gene tree log-densities, and the mean log-likelihood.

If the finetune option is set to 1, BPP will optimize the step-length values during burn-in to ensure that acceptance proportions (Pjump) are around 30%.

BPP typically performs four rounds of optimization, during which it prints the following on the screen:

  • Current Pjump: The acceptance proportions for each active MCMC move at that step.
  • Current finetune: The step-length/tuning parameters at that step..
  • New finetune: The newly optimized tuning parameter values.
-*- Terms index -*-

  Prgs: progress of MCMC run (negative progress means burnin)
  Gage: gene-tree age proposal
  Gspr: gene-tree SPR proposal
   th1: species tree theta proposal (tips)   (sliding window)
   th2: species tree theta proposal (inner)  (sliding window)
   thg: species tree theta proposal (inner)  (gibbs sampler)
   tau: species tree tau proposal
   mix: mixing proposal
theta1: mean theta of node 1
theta2: mean theta of node 2
theta3: mean theta of node 4
  tau1: mean tau of node 6
  tau2: mean tau of node 7
  tau3: mean tau of node 8
log-PG: log-probability of gene trees (MSC)
 log-L: mean log-L of observing data

     |       Acceptance proportions       |
Prgs | Gage Gspr  th1  th2  thg  tau  mix | theta1 theta2 theta3    tau1   tau2   tau3       log-PG          log-L
------------------------------------------------------------------------------------------------------------------
 -15%  0.33 0.41 0.62 0.49 0.96 0.08 0.01   0.0060 0.0054 0.0045  0.0131 0.0050 0.0048   3507.06989  -451086.51198  1:06

                     Gage    Gspr     th1     th2     tau     mix  
Current Pjump:     0.32757 0.40979 0.61698 0.49120 0.07951 0.00544
Current finetune:  5.00000 0.00100 0.00050 0.00200 0.00100 0.30000
New finetune:      5.54774 0.00147 0.00143 0.00382 0.00025 0.00503

=> 'finetune = 1 Gage:5.547741 Gspr:0.001473 th1:0.001429 th2:0.003818 tau:0.000246 mix:0.005031'

 -10%  0.33 0.34 0.54 0.42 0.96 0.31 0.68   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3520.02269  -451079.33554  2:10

                     Gage    Gspr     th1     th2     tau     mix  
Current Pjump:     0.32794 0.33754 0.53744 0.42493 0.31041 0.67604
Current finetune:  5.54774 0.00147 0.00143 0.00382 0.00025 0.00503
New finetune:      6.16384 0.00169 0.00316 0.00591 0.00026 0.01770

=> 'finetune = 1 Gage:6.163841 Gspr:0.001694 th1:0.003156 th2:0.005906 tau:0.000256 mix:0.017700'

  -5%  0.33 0.31 0.09 0.32 0.96 0.30 0.27   0.0060 0.0054 0.0045  0.0133 0.0049 0.0048   3540.99036  -451080.49243  3:14

                     Gage    Gspr     th1     th2     tau     mix  
Current Pjump:     0.32784 0.31208 0.08610 0.31928 0.30288 0.26992
Current finetune:  6.16384 0.00169 0.00316 0.00591 0.00026 0.01770
New finetune:      6.84577 0.00177 0.00084 0.00636 0.00026 0.01568

=> 'finetune = 1 Gage:6.845772 Gspr:0.001774 th1:0.000843 th2:0.006355 tau:0.000259 mix:0.015680'

   0%  0.33 0.30 0.53 0.22 0.96 0.30 0.32   0.0061 0.0054 0.0045  0.0133 0.0049 0.0048   3542.83781  -451081.60695  4:19

                     Gage    Gspr     th1     th2     tau     mix  
Current Pjump:     0.32796 0.30422 0.53035 0.22348 0.29797 0.31660
Current finetune:  6.84577 0.00177 0.00084 0.00636 0.00026 0.01568
New finetune:      7.60659 0.00180 0.00182 0.00457 0.00026 0.01670

=> 'finetune = 1 Gage:7.606587 Gspr:0.001804 th1:0.001820 th2:0.004568 tau:0.000257 mix:0.016704'

   5%  0.33 0.30 0.31 0.36 0.96 0.29 0.30   0.0061 0.0054 0.0045  0.0132 0.0049 0.0048   3523.82665  -451080.24863  5:24
  10%  0.33 0.30 0.31 0.36 0.96 0.30 0.30   0.0061 0.0054 0.0045  0.0131 0.0049 0.0048   3501.50808  -451079.73981  6:28
  15%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3561.59390  -451080.04465  7:33
  20%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3553.17454  -451079.61677  8:38
  25%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3515.86993  -451079.36352  9:42
  30%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3520.03204  -451079.21892  10:47
  35%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3550.59561  -451078.98502  11:52
  40%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3559.27028  -451079.07914  12:56
  45%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3524.05250  -451079.14039  14:01
  50%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3524.47610  -451079.09824  15:06
  55%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3572.40557  -451079.20605  16:10
  60%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3549.63680  -451079.08200  17:15
  65%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3570.62197  -451079.14087  18:20
  70%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3547.45763  -451079.21316  19:25
  75%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3535.99662  -451079.14969  20:29
  80%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3527.63186  -451079.15743  21:34
  85%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3517.86305  -451079.14391  22:39
  90%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3546.90930  -451079.14553  23:44
  95%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3550.26861  -451079.17025  24:48
 100%  0.33 0.30 0.31 0.37 0.96 0.30 0.30   0.0060 0.0054 0.0045  0.0131 0.0049 0.0048   3514.38788  -451079.23992  25:53

25:53 spent in MCMC

In the last part of the output, BPP processes the MCMC sample file and outputs summary statistics for each parameter in the model:

Node-Index  Node-Type  Node-Label
---------------------------------
1           Tip        Adig
2           Tip        Agra
3           Tip        Agre
4           Tip        Amad
5           Tip        Arub
6           Tip        Smic
7           Root       MRCA( Adig,Agra,Amad,Arub,Agre,Smic )
8           Inner      MRCA( Adig,Agra,Amad,Arub,Agre )
9           Inner      MRCA( Adig,Agra,Amad,Arub )
10          Inner      MRCA( Agra,Amad,Arub )
11          Inner      MRCA( Amad,Arub )

 param      mean     median      S.D       min       max       2.5%     97.5%    2.5%HPD   97.5%HPD      ESS*        Eff*      rho1  
-------------------------------------------------------------------------------------------------------------------------------------
 theta:1  0.006040  0.005988   0.000712  0.003648  0.010132  0.004797  0.007575  0.004697  0.007445  87769.698216  0.877697  0.017950
 theta:2  0.005397  0.005346   0.000675  0.003217  0.009515  0.004218  0.006865  0.004139  0.006747  87406.657300  0.874067  0.024494
 theta:4  0.004483  0.004439   0.000554  0.002743  0.007615  0.003524  0.005692  0.003465  0.005599  89122.536186  0.891225  0.018690
 theta:5  0.006321  0.006250   0.000838  0.003805  0.012485  0.004878  0.008152  0.004770  0.007994  92785.708090  0.927857  0.015366
 theta:7  0.034487  0.034377   0.002813  0.024894  0.049607  0.029301  0.040307  0.029073  0.040039   3920.488297  0.039205  0.212978
 theta:8  0.022579  0.022524   0.001588  0.016717  0.030232  0.019635  0.025853  0.019512  0.025705  18315.786151  0.183158  0.188558
 theta:9  0.011149  0.010185   0.005659  0.000252  0.071120  0.003018  0.024742  0.001992  0.022320  46696.033322  0.466960  0.132084
theta:10  0.014410  0.014168   0.003505  0.001975  0.037859  0.008175  0.022022  0.007827  0.021560  21092.992846  0.210930  0.383358
theta:11  0.011724  0.010982   0.005414  0.000478  0.054301  0.003445  0.024282  0.002460  0.022380  46811.296021  0.468113  0.215536
   tau:7  0.013063  0.013067   0.000719  0.010220  0.015840  0.011668  0.014432  0.011656  0.014419    730.088862  0.007301  0.945131
   tau:8  0.004934  0.004934   0.000175  0.004177  0.005628  0.004592  0.005275  0.004587  0.005269   5233.307753  0.052333  0.828382
   tau:9  0.004810  0.004813   0.000167  0.004033  0.005406  0.004478  0.005133  0.004473  0.005127   7026.127833  0.070261  0.761671
  tau:10  0.003677  0.003673   0.000200  0.002910  0.004609  0.003294  0.004079  0.003293  0.004077  15827.931860  0.158279  0.629175
  tau:11  0.003259  0.003267   0.000215  0.002246  0.004089  0.002817  0.003660  0.002828  0.003668  14585.703639  0.145857  0.685058

     lnL  -451079.229628  -451078.981000  24.351237  -451191.935000  -450961.525000  -451127.817000  -451032.477000  -451127.412000  -451032.216000   8556.289635  0.085563  0.249959

List of nodes, taus and thetas:
Node (+1)       Tau      Theta    Label
0          0.000000   0.006040                             Adig [ Adig ]
1          0.000000   0.005397                             Agra [ Agra ]
2          0.000000  -1.000000                             Agre [ Agre ]
3          0.000000   0.004483                             Amad [ Amad ]
4          0.000000   0.006321                             Arub [ Arub ]
5          0.000000  -1.000000                             Smic [ Smic ]
6          0.013063   0.034487    Adig,Agra,Amad,Arub,Agre,Smic [ Adig Agra Agre Amad Arub Smic ]
7          0.004934   0.022579         Adig,Agra,Amad,Arub,Agre [ Adig Agra Agre Amad Arub ]
8          0.004810   0.011149              Adig,Agra,Amad,Arub [ Adig Agra Amad Arub ]
9          0.003677   0.014410                   Agra,Amad,Arub [ Agra Amad Arub ]
10         0.003259   0.011724                        Amad,Arub [ Amad Arub ]

BPP versions starting v4.8.0 display an additional output section, displaying posterior summaries for parameters whose conditionals are analytically available or can be approximated (thetas, migration rates, introgression probabilities). The parameters of the conditionals are stored in the file JOBNAME.conditional_a1b1.txt which is summarized by BPP. Mixing efficiency is typically much higher.

Summarizing parameter estimates using file baobab.conditional_a1b1.txt ...

 param      mean      S.D       2.5%     97.5%    2.5%HPD   97.5%HPD    Effu      Effy       c    
--------------------------------------------------------------------------------------------------
 theta:1  0.006035  0.000687  0.004833  0.007517  0.004706  0.007368  3.897399  0.872228  9.083285
 theta:2  0.005386  0.000648  0.004258  0.006789  0.004149  0.006654  3.275034  0.859708  7.034599
 theta:4  0.004474  0.000534  0.003542  0.005625  0.003469  0.005531  3.229788  0.865578  6.480029
 theta:5  0.006306  0.000802  0.004924  0.008048  0.004796  0.007888  4.254287  0.922688  6.610829
 theta:7  0.034489  0.002784  0.029355  0.040224  0.029155  0.040001  0.039164  0.038079  3.666643
 theta:8  0.022575  0.001575  0.019645  0.025806  0.019494  0.025642  0.207533  0.183332  2.747749
 theta:9  0.010914  0.005403  0.003074  0.023760  0.001870  0.021386  0.586597  0.508896  1.351882
theta:10  0.014384  0.003458  0.008173  0.021784  0.007647  0.021203  0.217778  0.207091  1.310520
theta:11  0.011514  0.005206  0.003476  0.023462  0.002345  0.021522  0.492198  0.435441  1.360213

param mean median S.D min max 2.5% 97.5% 2.5%HPD 97.5%HPD ESS
theta:1 0.006040 0.005988 0.000712 0.003648 0.010132 0.004797 0.007575 0.004697 0.007445 87769.698216
theta:2 0.005397 0.005346 0.000675 0.003217 0.009515 0.004218 0.006865 0.004139 0.006747 87406.657300
theta:4 0.004483 0.004439 0.000554 0.002743 0.007615 0.003524 0.005692 0.003465 0.005599 89122.536186
theta:5 0.006321 0.006250 0.000838 0.003805 0.012485 0.004878 0.008152 0.004770 0.007994 92785.708090
theta:7 0.034487 0.034377 0.002813 0.024894 0.049607 0.029301 0.040307 0.029073 0.040039 3920.488297
theta:8 0.022579 0.022524 0.001588 0.016717 0.030232 0.019635 0.025853 0.019512 0.025705 18315.786151
theta:9 0.011149 0.010185 0.005659 0.000252 0.071120 0.003018 0.024742 0.001992 0.022320 46696.033322
theta:10 0.014410 0.014168 0.003505 0.001975 0.037859 0.008175 0.022022 0.007827 0.021560 21092.992846
theta:11 0.011724 0.010982 0.005414 0.000478 0.054301 0.003445 0.024282 0.002460 0.022380 46811.296021
tau:7 0.013063 0.013067 0.000719 0.010220 0.015840 0.011668 0.014432 0.011656 0.014419 730.088862
tau:8 0.004934 0.004934 0.000175 0.004177 0.005628 0.004592 0.005275 0.004587 0.005269 5233.307753
tau:9 0.004810 0.004813 0.000167 0.004033 0.005406 0.004478 0.005133 0.004473 0.005127 7026.127833
tau:10 0.003677 0.003673 0.000200 0.002910 0.004609 0.003294 0.004079 0.003293 0.004077 15827.931860
tau:11 0.003259 0.003267 0.000215 0.002246 0.004089 0.002817 0.003660 0.002828 0.003668 14585.703639

Convergence

Try completing 4 runs and analyze convergence. A helpful tool is Tracer, but BPP provides some helpful summary statistics too. Here, we provide a python script (scatter-params.py) to help plot posterior means and 95% CI for theta and tau parameters. If we are satisfied, we can use one MCMC analysis from BPP or combine them to report parameter estimates. The plotting script can be executed from the command line with

# download script
wget https://raw.githubusercontent.com/bpp/bpp-tutorial-geneflow/main/third-day/scripts/scatter-params.py

# add execute permission
chmod +x scatter-params.py

# run script on your two mcmc files
./scatter-params.py mcmc1.txt mcmc2.txt

Note: If you are using {ana,mini,''}conda or similar package managers and get an error when running the above command, then please run the script using:

python3 scatter-params.py mcmc1.txt mcmc2.txt

The script will produce scatter plots that visualise the posterior means and 95% CI for parameters τ and θ

The below plot shows a longer run

Sample result files

Below are some results from our runs.

# Long run Short run
Output Tarball Output Tarball
1 out.long.A00.r1.txt A00.long.r1.tar.gz out.short.A00.r1.txt A00.short.r1.tar.gz
2 out.long.A00.r2.txt A00.long.r2.tar.gz out.short.A00.r2.txt A00.short.r2.tar.gz
3 out.long.A00.r3.txt A00.long.r3.tar.gz out.short.A00.r3.txt A00.short.r3.tar.gz
4 out.long.A00.r4.txt A00.long.r4.tar.gz out.short.A00.r4.txt A00.short.r4.tar.gz
⚠️ **GitHub.com Fallback** ⚠️