Boolean Algebra - mbits-mirafra/digitalDesignCourse GitHub Wiki
What is boolean Algebra?
-
Boolean algebra is a mathematical system for manipulating variables that can have one of two values.
In formal logic, these values are βtrueβ and βfalseβ In digital systems, these values are βonβ/βoff,β βhighβ/βlow,β or β1β/β0β. Common Boolean operators include AND, OR, and NOT.
Example for common boolean operators:
- The function of Boolean operator can be completely described using a Truth Table
The truth tables of the Boolean operator AND and OR gate are shown below
x | y | xy |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
x | y | x+y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
- The AND operator is also known as the Boolean product β . β. The OR operator is the Boolean sum β + β.
- The NOT operation is most often designated by an overbar β βΎ β or " ' ".
A Boolean function has:
β’ At least one Boolean variable,
β’ At least one Boolean operator, and
β’ At least one input from the set of {0,1}
Why is it used?
Digital circuit designer always like achieve the following goals:
- Cheaper to produce
- Consume less power
- run faster
- smaller circuit
How to do it?
- Computers contain circuits that implement Boolean functions ->Boolean functions can express circuits
- If one can simplify a Boolean function, that express a circuit, then it is possible to archive the above goals
When is it used?
Boolean algebra is used whenever there is a need to express and manipulate logical expressions and binary variables.
1. Digital circuit design:
Essential for building digital devices such as computers, calculators, and other electronic devices.
2. Computer programming:
This is particularly useful in control structures such as if statements, while loops, and for loops.
3. Artificial intelligence:
Boolean algebra is used in artificial intelligence to represent and manipulate logical statements and predicates.
Rules of Boolean Algebra
Sr.no | TOPICS |
---|---|
1 | Null Rule |
2 | Identity Rule |
3 | Complement Rule |
4 | Involution Rule |
Laws of Boolean Algebra
Sr.no | TOPICS |
---|---|
1 | Commutative Law |
2 | Associative Law |
3 | Distributive Law |
4 | Idempotence Law |
5 | Redundance Law |
6 | De-Morgans Theorem |
7 | Consensus Theorem |
Precedence Rule
Like arithmetic, Boolean operations follow the rules of precedence (priority):
NOT operator > AND operator > OR operator
Canonical Form
There are 1+ ways of stating the same Boolean expression. Example:
In order to eliminate the confusion, designers express Boolean express in unified and standardized form, called canonical form. There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums.
-
In the sum-of-products form, ANDed variables are ORed together
Example: F(x, y, z)=xy + yz + xz
-
In the product-of-sums form, ORed variables are ANDed together
Example: F(x, y, z)=(x+y) * (y+z) * (x+z)