markdown_testing - itnett/FTD02H-N GitHub Wiki
Hva er logaritmer?
La oss starte med det grunnleggende:
-
Multiplikasjon og Eksponenter: - Hvis du har et tall, for eksempel $10$, og multipliserer det med seg selv flere ganger, får du eksponenter. - $10 × 10 = 100$, som kan skrives som $( 10^2 )$. - $10 × 10 × 10 = 1000$, som kan skrives som $\( 10^3 $.
-
Logaritmer: - En logaritme er det motsatte av eksponenter. Det forteller oss hvor mange ganger vi må multiplisere et tall (grunnlaget) for å få et annet tall. - For eksempel: $(\log_{10} 100 = 2)$ fordi $( 10^2 = 100 )$.
Enkle eksempler
La oss bruke noen enkle eksempler for å forklare logaritmer.
-
Grunnleggende eksempel: - Hvis du har $(\log_{10} 1000 )$, betyr det at du vil finne ut hvor mange ganger du må multiplisere 10 med seg selv for å få 1000. - Siden $( 10 \times 10 \times 10 = 1000 )$, vet vi at $(\log_{10} 1000 = 3)$.
-
Et annet eksempel: - Hvis du har $(\log_{10} 100 )$, hvor mange ganger må du multiplisere $10$ for å få $100$? - Siden $( 10 \times 10 = 100 )$, er svaret $(\log_{10} 100 = 2)$.
Visualisering
Vi kan bruke en logaritmetabell eller en enkel graf for å hjelpe med å visualisere hva logaritmer gjør.
Logaritmetabell:
- $\log_{10} 1 = 0$
- $\log_{10} 10 = 1$
- $\log_{10} 100 = 2$
- $\log_{10} 1000 = 3$
Logaritmegraf:
- Tegn en graf hvor x-aksen representerer tallene (1, 10, 100, 1000) og y-aksen representerer logaritmene (0, 1, 2, 3).
- Plott punktene og trekk en kurve som viser hvordan logaritmen øker med tallet.
Energi
$Energi$ er et grunnleggende begrep i fysikk som beskriver evnen til å utføre $arbeid$. Det finnes forskjellige $former$ for $energi$, inkludert $kinetisk$ energi $(bevegelsesenergi)$, $potensiell$ energi $(stillingsenergi)$, og $termisk$ energi $(varmeenergi)$.
Arbeid, Effekt og Virkningsgrad
Arbeid (W): Arbeid er en måte å overføre energi på. Når en kraft $(F)$ virker på et objekt og flytter det en avstand $(s)$ i kraftens retning, utføres et arbeid.
$$[ W = F \cdot s \cdot \cos(\theta) ]$$
hvor:
- $(W)$ er $arbeidet$ $(joule, J)$
- $(F)$ er $kraften$ $(newton, N)$
- $(s)$ er $forflytningen$ $(meter, m)$
- $(\theta)$ er $vinkelen$ mellom $kraften$ og $forflytningen$
Eksempel: Hvis du dytter en kasse med en $kraft$ på $10$ N over en avstand på $5$ meter i samme $retning$ som $kraften$, er $arbeidet$: $$( W = 10 , \text{N} \cdot 5 , \text{m} \cdot \cos(0) = 50 , \text{J} )$$
Effekt $(P)$: Effekt er $arbeid$ utført per $tidsenhet$. Det måler hvor $raskt$ arbeid utføres.
$$( P = \frac{W}{t} )$$
hvor:
- $(P)$ er effekten $(watt, W)$
- $(W)$ er arbeidet $(joule, J)$
- $(t)$ er tiden $(sekunder, s)$
Eksempel: Hvis det tar $10$ $sekunder$ å utføre $50$ $joule arbeid$, er $effekten$: $$( P = \frac{50 , \text{J}}{10 , \text{s}} = 5 , \text{W} )$$
Virkningsgrad (η): Virkningsgrad er forholdet mellom nyttig $energi$ (eller arbeid) ut og $energi$ (eller arbeid) inn, uttrykt i $prosent$.
$$( \eta = \left( \frac{\text{nyttig energi}}{\text{tilført energi}} \right) \cdot 100 % )$$
Eksempel: Hvis en maskin bruker $100$ $J$ $energi$ for å utføre $70$ $J$ nyttig $arbeid$, er $virkningsgraden$: $$( \eta = \left( \frac{70 , \text{J}}{100 , \text{J}} \right) \cdot 100 % = 70 % )$$
Kinetisk og Potensiell Energi
Kinetisk energi (KE): Kinetisk energi er $energien$ et objekt har på grunn av sin $bevegelse$.
$$( KE = \frac{1}{2} m v^2 )$$
hvor:
- $( KE )$ er den kinetiske energien $(joule, J)$
- $( m )$ er massen $(kilogram, kg)$
- $( v )$ er farten $(meter per sekund, m/s)$
Hva er logaritmer?
La oss starte med det grunnleggende:
-
Multiplikasjon og Eksponenter: - Hvis du har et tall, for eksempel $10$, og multipliserer det med seg selv flere ganger, får du eksponenter. - $10 × 10 = 100$, som kan skrives som $(10^2)$. - $10 × 10 × 10 = 1000$, som kan skrives som $(10^3)$.
-
Logaritmer: - En logaritme er det motsatte av eksponenter. Det forteller oss hvor mange ganger vi må multiplisere et tall (grunnlaget) for å få et annet tall. - For eksempel: $(\log_{10} 100 = 2)$ fordi $(10^2 = 100)$.
Enkle eksempler
La oss bruke noen enkle eksempler for å forklare logaritmer.
-
Grunnleggende eksempel: - Hvis du har $(\log_{10} 1000 )$, betyr det at du vil finne ut hvor mange ganger du må multiplisere 10 med seg selv for å få 1000. - Siden $( 10 \times 10 \times 10 = 1000 )$, vet vi at $(\log_{10} 1000 = 3)$.
-
Et annet eksempel: - Hvis du har $(\log_{10} 100 )$, hvor mange ganger må du multiplisere $10$ for å få $100$? - Siden $( 10 \times 10 = 100 )$, er svaret $(\log_{10} 100 = 2)$.
Visualisering
Vi kan bruke en logaritmetabell eller en enkel graf for å hjelpe med å visualisere hva logaritmer gjør.
Logaritmetabell:
- $\log_{10} 1 = 0$
- $\log_{10} 10 = 1$
- $\log_{10} 100 = 2$
- $\log_{10} 1000 = 3$
Logaritmegraf:
- Tegn en graf hvor x-aksen representerer tallene (1, 10, 100, 1000) og y-aksen representerer logaritmene (0, 1, 2, 3).
- Plott punktene og trekk en kurve som viser hvordan logaritmen øker med tallet.
Energi
$Energi$ er et grunnleggende begrep i fysikk som beskriver evnen til å utføre $arbeid$. Det finnes forskjellige $former$ for $energi$, inkludert $kinetisk$ energi $(bevegelsesenergi)$, $potensiell$ energi $(stillingsenergi)$, og $termisk$ energi $(varmeenergi)$.
Arbeid, Effekt og Virkningsgrad
Arbeid (W): Arbeid er en måte å overføre energi på. Når en kraft $(F)$ virker på et objekt og flytter det en avstand $(s)$ i kraftens retning, utføres et arbeid.
$$[ W = F \cdot s \cdot \cos(\theta) ]$$
hvor:
- $(W)$ er $arbeidet$ $(joule, J)$
- $(F)$ er $kraften$ $(newton, N)$
- $(s)$ er $forflytningen$ $(meter, m)$
- $(\theta)$ er $vinkelen$ mellom $kraften$ og $forflytningen$
Eksempel: Hvis du dytter en kasse med en kraft på $10$ N over en avstand på $5$ meter i samme retning som kraften, er arbeidet: $$( W = 10 , \text{N} \cdot 5 , \text{m} \cdot \cos(0) = 50 , \text{J} )$$
Effekt (P): Effekt er $arbeid$ utført per $tidsenhet$. Det måler hvor $raskt$ arbeid utføres.
$$( P = \frac{W}{t} )$$
hvor:
- $(P)$ er effekten $(watt, W)$
- $(W)$ er arbeidet $(joule, J)$
- $(t)$ er tiden $(sekunder, s)$
Eksempel: Hvis det tar $10$ $sekunder$ å utføre $50$ $joule$ $arbeid$, er $effekten$: $$( P = \frac{50 , \text{J}}{10 , \text{s}} = 5 , \text{W} )$$
Virkningsgrad (η): Virkningsgrad er forholdet mellom nyttig $energi$ (eller arbeid) ut og $energi$ (eller arbeid) inn, uttrykt i $prosent$.
$$( \eta = \left( \frac{\text{nyttig energi}}{\text{tilført energi}} \right) \cdot 100 % )$$
Eksempel: Hvis en maskin bruker $100$ J $energi$ for å utføre $70$ J nyttig $arbeid$, er $virkningsgraden$: $$( \eta = \left( \frac{70 , \text{J}}{100 , \text{J}} \right) \cdot 100 % = 70 % )$$
Kinetisk og Potensiell Energi
Kinetisk energi (KE): Kinetisk energi er $energien$ et objekt har på grunn av sin $bevegelse$.
$$( KE = \frac{1}{2} m v^2 )$$
hvor:
- $( KE )$ er den kinetiske energien $(joule, J)$
- $( m )$ er massen $(kilogram, kg)$
- $( v )$ er farten $(meter per sekund, m/s)$
For å gi deg den beste presentasjonen av forklaringer, eksempler, formler og utregninger i Markdown GitHub-format, følger jeg denne eksplisitte prosessen:
-
Identifisere matematiske uttrykk: Jeg bruker regulære uttrykk (regex) for å gjenkjenne matematiske formler og uttrykk i teksten din. Dette inkluderer:
- Formler omsluttet av doble dollartegn (
$$...$$
) for sentrerte ligninger. - Formler omsluttet av enkle dollartegn (
$...$
) for inline matematikk. - Enkeltstående tall, variabler, og enkle matematiske operasjoner i teksten.
- Formler omsluttet av doble dollartegn (
-
Fjerne overflødige mellomrom: Jeg fjerner eventuelle ekstra mellomrom rundt matematiske uttrykk for å sikre at de vises korrekt på GitHub. Dette inkluderer:
- Mellomrom mellom doble dollartegn (
$$
) og selve formelen. - Mellomrom mellom enkle dollartegn (
$
) og tall eller variabler.
- Mellomrom mellom doble dollartegn (
-
Legge til dollartegn rundt tall og variabler: Jeg legger til enkle dollartegn (
$
) rundt tall og variabler som ikke allerede er omsluttet av dollartegn. Dette sikrer at de blir formatert som matematikk i GitHub Markdown. -
Bevare mellomrom i formler: Jeg sørger for at mellomrom innenfor LaTeX matematiske avgrensninger (f.eks.
\( ... \)
,\[ ... \]
) ikke fjernes. Dette er viktig for å bevare riktig formatering av komplekse formler. -
Ivareta kodeblokker: Jeg unngår å endre innholdet i kodeblokker (indikert med trippel backticks ```) for å forhindre utilsiktede endringer i kodeeksemplene dine.
-
Sekvensiell behandling: Jeg utfører endringene i en bestemt rekkefølge:
- Først behandler jeg formler omsluttet av doble dollartegn (
$$
). - Deretter behandler jeg formler omsluttet av enkle dollartegn (
$
). - Til slutt behandler jeg enkeltstående tall og variabler.
- Først behandler jeg formler omsluttet av doble dollartegn (
Eksempel:
La oss si at du gir meg denne teksten:
Når en kraft \( F \) virker på et objekt og flytter det en avstand \( s \) i kraftens retning, utføres et arbeid W = F * s . For eksempel, hvis en kraft på 10 N flytter et objekt 5 meter, er arbeidet 50 J.
Jeg vil transformere den til følgende:
Når en kraft $\(F\)$ virker på et objekt og flytter det en avstand $\(s\)$ i kraftens retning, utføres et arbeid $W = F * s$. For eksempel, hvis en kraft på $10$ N flytter et objekt $5$ meter, er arbeidet $50$ J.
Resultat:
Ved å følge denne prosessen sikrer jeg at de matematiske uttrykkene dine er riktig formatert og presentert på en klar og tydelig måte i GitHub Markdown.
Absolutely! Here's the explicit prompt description in English, along with how I would process your example to achieve the best presentation in GitHub Markdown:
Explicit Prompt Description:
To provide you with the best presentation of explanations, examples, formulas, and calculations in GitHub Markdown format, I follow this explicit process:
-
Identify Mathematical Expressions: I use regular expressions (regex) to recognize mathematical formulas and expressions in your text. This includes:
- Formulas enclosed in double dollar signs (
$$...$$
) for centered equations. - Formulas enclosed in single dollar signs (
$...$
) for inline math. - Standalone numbers, variables, and simple mathematical operations within the text.
- Formulas enclosed in double dollar signs (
-
Remove Excess Spaces: I eliminate any extra spaces around mathematical expressions to ensure they render correctly on GitHub. This includes:
- Spaces between double dollar signs (
$$
) and the formula itself. - Spaces between single dollar signs (
$
) and numbers or variables.
- Spaces between double dollar signs (
-
Add Dollar Signs Around Numbers and Variables: I add single dollar signs (
$
) around numbers and variables that are not already enclosed in dollar signs. This ensures they are formatted as math in GitHub Markdown. -
Preserve Spaces Within Formulas: I make sure that spaces within LaTeX math delimiters (e.g.,
\( ... \)
,\[ ... \]
) are not removed. This is crucial for maintaining the correct formatting of complex formulas. -
Handle Code Blocks: I avoid modifying content within code blocks (indicated by triple backticks ```) to prevent unintended changes to your code examples.
-
Sequential Processing: I perform the modifications in a specific order:
- First, I process formulas enclosed in double dollar signs (
$$
). - Then, I process formulas enclosed in single dollar signs (
$
). - Finally, I process standalone numbers and variables.
- First, I process formulas enclosed in double dollar signs (
Example:
Let's say you provide me with this text:
When a force \( F \) acts on an object and moves it a distance \( s \) in the direction of the force, work W = F * s is done. For example, if a force of 10 N moves an object 5 meters, the work done is 50 J.
I would transform it into the following:
When a force $\(F\)$ acts on an object and moves it a distance $\(s\)$ in the direction of the force, work $W = F * s$ is done. For example, if a force of $10$ N moves an object $5$ meters, the work done is $50$ J.
Result:
By following this process, I ensure that your mathematical expressions are correctly formatted and presented clearly in GitHub Markdown.
Modified Example (Your Provided Text):
### Energy
Energy is a fundamental concept in physics that describes the ability to do work. There are different forms of energy, including kinetic energy (energy of motion), potential energy (stored energy), and thermal energy (heat energy).
#### Work, Power, and Efficiency
**Work (W):**
Work is a way to transfer energy. When a force $\(F\)$ acts on an object and moves it a distance $\(s\)$ in the direction of the force, work is done.
$$\[ W = F \cdot s \cdot \cos(\theta) \]$$
where:
- $\(W\)$ is the work (joule, J)
- $\(F\)$ is the force (newton, N)
- $\(s\)$ is the displacement (meter, m)
- $\(\theta\)$ is the angle between the force and displacement
**Example:**
If you push a box with a force of $10$ N over a distance of $5$ meters in the same direction as the force, the work done is:
$$\( W = 10 \, \text{N} \cdot 5 \, \text{m} \cdot \cos(0) = 50 \, \text{J} \)$$
**Power (P):**
Power is the rate at which work is done. It measures how quickly work is performed.
$$\( P = \frac{W}{t} \)$$
where:
- $\(P\)$ is the power (watt, W)
- $\(W\)$ is the work (joule, J)
- $\(t\)$ is the time (seconds, s)
**Example:**
If it takes $10$ seconds to do $50$ joules of work, the power is:
$$\( P = \frac{50 \, \text{J}}{10 \, \text{s}} = 5 \, \text{W} \)$$
**Efficiency (η):**
Efficiency is the ratio of useful energy (or work) output to the energy (or work) input, expressed as a percentage.
$$\( \eta = \left( \frac{\text{useful energy}}{\text{input energy}} \right) \cdot 100 \% \)$$
**Example:**
If a machine uses $100$ J of energy to perform $70$ J of useful work, the efficiency is:
$$\( \eta = \left( \frac{70 \, \text{J}}{100 \, \text{J}} \right) \cdot 100 \% = 70 \% \)$$
### Kinetic and Potential Energy
**Kinetic Energy (KE):**
Kinetic energy is the energy an object possesses due to its motion.
$$\( KE = \frac{1}{2} m v^2 \)$$
where:
- $\( KE \)$ is the kinetic energy (joule, J)
- $\( m \)$ is the mass (kilogram, kg)
- $\( v \)$ is the velocity (meter per second, m/s)
Absolutely! Here's both a PowerShell and a Python script that will accomplish this task, along with explanations for each:
PowerShell Script:
$mdFiles = Get-ChildItem -Path $PSScriptRoot -Filter "*.md" -Recurse
foreach ($file in $mdFiles) {
$content = Get-Content $file.FullName
# Regular expression to match formulas (with optional spaces)
$formulaPattern = '(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
# Function to replace matches with the desired format
$replaceFormula = {
param($match)
return $match.Groups[1].Value + $match.Groups[2].Value + $match.Groups[3].Value
}
# Apply the replacement only outside of code blocks (```)
$newContent = $content -join "`n" | ForEach-Object {
if ($_ -match '```') {
$_ # Leave code blocks unchanged
} else {
$_ -replace $formulaPattern, $replaceFormula
}
}
# Regular expression to match parts of examples (with optional spaces)
$examplePattern = '\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
# Function to replace matches with the desired format
$replaceExample = {
param($match)
return '$' + $match.Groups[1].Value + $match.Groups[2].Value + '$'
}
# Apply the replacement for parts of examples
$newContent = $newContent -replace $examplePattern, $replaceExample
# Regular expression to match single $ math expressions with optional spaces
$singleDollarMathPattern = '(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
# Function to replace matches with the desired format (remove spaces)
$replaceSingleDollarMath = {
param($match)
return $match.Groups[1].Value + $match.Groups[2].Value + $match.Groups[3].Value
}
# Apply the replacement for single $ math expressions
$newContent = $newContent -replace $singleDollarMathPattern, $replaceSingleDollarMath
# Regular expression to match numbers and formulas outside of code blocks
$mathPattern = '(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Function to replace matches with the desired format
$replaceMath = {
param($match)
return '$' + $match.Groups[2].Value + '$'
}
# Apply the replacement for numbers and formulas
$newContent = $newContent -replace $mathPattern, $replaceMath
# Save the modified content back to the file
Set-Content $file.FullName -Value $newContent
}
Python Script:
import re
import os
def format_markdown(file_path):
with open(file_path, 'r') as file:
content = file.read()
# Regular expressions (same as PowerShell)
formula_pattern = r'(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
example_pattern = r'\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
single_dollar_math_pattern = r'(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
math_pattern = r'(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Replacement functions (same logic as PowerShell)
def replace_formula(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_example(match):
return '$' + match.group(1) + match.group(2) + '$'
def replace_single_dollar_math(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_math(match):
return '$' + match.group(2) + '$'
# Apply replacements sequentially, avoiding code blocks
new_content = content
for line in content.splitlines():
if not line.startswith('```'):
new_content = re.sub(formula_pattern, replace_formula, new_content)
new_content = re.sub(example_pattern, replace_example, new_content)
new_content = re.sub(single_dollar_math_pattern, replace_single_dollar_math, new_content)
new_content = re.sub(math_pattern, replace_math, new_content)
# Save the modified content
with open(file_path, 'w') as file:
file.write(new_content)
# Get all Markdown files recursively
for root, dirs, files in os.walk(os.getcwd()):
for file in files:
if file.endswith(".md"):
file_path = os.path.join(root, file)
format_markdown(file_path)
Key Points:
- Both scripts use the same regular expressions and replacement logic. The main difference is the syntax and how they iterate through files.
- Code Block Protection: Both scripts explicitly avoid modifying text within code blocks (lines starting with ```).
- Sequential Replacements: The replacements are applied in a specific order to handle different types of math expressions correctly.
Absolutely! Here's a clear and detailed process to reformat mathematical expressions in GitHub Markdown using PowerShell and Python scripts. These scripts ensure the correct presentation of explanations, examples, formulas, and calculations.
PowerShell Script
# Get all Markdown files recursively in the current directory
$mdFiles = Get-ChildItem -Path $PSScriptRoot -Filter "*.md" -Recurse
foreach ($file in $mdFiles) {
$content = Get-Content $file.FullName
# Regex patterns to match formulas and numbers
$formulaPattern = '(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
$examplePattern = '\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
$singleDollarMathPattern = '(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
$mathPattern = '(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Functions to replace matched patterns with correct format
$replaceFormula = { param($match) return $match.Groups[1].Value + $match.Groups[2].Value + $match.Groups[3].Value }
$replaceExample = { param($match) return '$' + $match.Groups[1].Value + $match.Groups[2].Value + '$' }
$replaceSingleDollarMath = { param($match) return $match.Groups[1].Value + $match.Groups[2].Value + $match.Groups[3].Value }
$replaceMath = { param($match) return '$' + $match.Groups[2].Value + '$' }
# Apply replacements while avoiding code blocks
$newContent = $content -join "`n" | ForEach-Object {
if ($_ -match '```') {
$_ # Leave code blocks unchanged
} else {
$_ -replace $formulaPattern, $replaceFormula
$_ -replace $examplePattern, $replaceExample
$_ -replace $singleDollarMathPattern, $replaceSingleDollarMath
$_ -replace $mathPattern, $replaceMath
}
}
# Save the modified content back to the file
Set-Content $file.FullName -Value $newContent
}
Python Script
import re
import os
def format_markdown(file_path):
with open(file_path, 'r') as file:
content = file.read()
# Regex patterns to match formulas and numbers
formula_pattern = r'(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
example_pattern = r'\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
single_dollar_math_pattern = r'(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
math_pattern = r'(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Replacement functions to replace matched patterns with correct format
def replace_formula(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_example(match):
return '$' + match.group(1) + match.group(2) + '$'
def replace_single_dollar_math(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_math(match):
return '$' + match.group(2) + '$'
# Apply replacements while avoiding code blocks
new_content = ""
in_code_block = False
for line in content.splitlines():
if line.startswith('```'):
in_code_block = not in_code_block
new_content += line + "\n"
elif not in_code_block:
line = re.sub(formula_pattern, replace_formula, line)
line = re.sub(example_pattern, replace_example, line)
line = re.sub(single_dollar_math_pattern, replace_single_dollar_math, line)
line = re.sub(math_pattern, replace_math, line)
new_content += line + "\n"
else:
new_content += line + "\n"
# Save the modified content back to the file
with open(file_path, 'w') as file:
file.write(new_content)
# Get all Markdown files recursively in the current directory
for root, _, files in os.walk(os.getcwd()):
for file in files:
if file.endswith(".md"):
file_path = os.path.join(root, file)
format_markdown(file_path)
Explanation:
- Identify Mathematical Expressions: The scripts use regular expressions to identify formulas and expressions.
- Remove Excess Spaces: They remove unnecessary spaces around formulas.
- Add Dollar Signs Around Numbers and Variables: They ensure that all numbers and variables are formatted as math.
- Preserve Spaces Within Formulas: Spaces within LaTeX math delimiters are preserved.
- Handle Code Blocks: Code blocks are left unchanged.
- Sequential Processing: Replacements are performed in a specific order for correctness.
Example Markdown:
Given the following text:
### Energy
Energy is a fundamental concept in physics that describes the ability to do work. There are different forms of energy, including kinetic energy (energy of motion), potential energy (stored energy), and thermal energy (heat energy).
#### Work, Power, and Efficiency
**Work (W):**
Work is a way to transfer energy. When a force \( F \) acts on an object and moves it a distance \( s \) in the direction of the force, work is done.
$$\[ W = F \cdot s \cdot \cos(\theta) \]$$
where:
- \(W\) is the work (joule, J)
- \(F\) is the force (newton, N)
- \(s\) is the displacement (meter, m)
- \(\theta\) is the angle between the force and displacement
**Example:**
If you push a box with a force of 10 N over a distance of 5 meters in the same direction as the force, the work done is:
$$\( W = 10 \, \text{N} \cdot 5 \, \text{m} \cdot \cos(0) = 50 \, \text{J} \)$$
**Power (P):**
Power is the rate at which work is done. It measures how quickly work is performed.
$$\( P = \frac{W}{t} \)$$
where:
- \(P\) is the power (watt, W)
- \(W\) is the work (joule, J)
- \(t\) is the time (seconds, s)
**Example:**
If it takes 10 seconds to do 50 joules of work, the power is:
$$\( P = \frac{50 \, \text{J}}{10 \, \text{s}} = 5 \, \text{W} \)$$
**Efficiency (η):**
Efficiency is the ratio of useful energy (or work) output to the energy (or work) input, expressed as a percentage.
$$\( \eta = \left( \frac{\text{useful energy}}{\text{input energy}} \right) \cdot 100 \% \)$$
**Example:**
If a machine uses 100 J of energy to perform 70 J of useful work, the efficiency is:
$$\( \eta = \left( \frac{70 \, \text{J}}{100 \, \text{J}} \right) \cdot 100 \% = 70 \% \)$$
### Kinetic and Potential Energy
**Kinetic Energy (KE):**
Kinetic energy is the energy an object possesses due to its motion.
$$\( KE = \frac{1}{2} m v^2 \)$$
where:
- \( KE \) is the kinetic energy (joule, J)
- \( m \) is the mass (kilogram, kg)
- \( v \) is the velocity (meter per second, m/s)
The scripts will process and format this Markdown content to ensure all mathematical expressions are correctly formatted for GitHub.
The provided Python script is missing a check to make sure not to replace math within code blocks. Here is a more complete Python script:
import re
import os
def format_markdown(file_path):
with open(file_path, 'r') as file:
content = file.read()
# Regular expressions
formula_pattern = r'(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
example_pattern = r'\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
single_dollar_math_pattern = r'(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
math_pattern = r'(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Replacement functions
def replace_formula(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_example(match):
return '$' + match.group(1) + match.group(2) + '$'
def replace_single_dollar_math(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_math(match):
return '$' + match.group(2) + '$'
# Apply replacements sequentially, avoiding code blocks
new_content = ""
in_code_block = False
for line in content.splitlines():
if line.startswith('```'):
in_code_block = not in_code_block
if not in_code_block: # Only apply replacements outside code blocks
line = re.sub(formula_pattern, replace_formula, line)
line = re.sub(example_pattern, replace_example, line)
line = re.sub(single_dollar_math_pattern, replace_single_dollar_math, line)
line = re.sub(math_pattern, replace_math, line)
new_content += line + "\n" # Add newline after each line
# Save the modified content
with open(file_path, 'w') as file:
file.write(new_content)
# Get all Markdown files recursively in the current directory
for root, _, files in os.walk(os.getcwd()):
for file in files:
if file.endswith(".md"):
file_path = os.path.join(root, file)
format_markdown(file_path)
Key Improvements:
This script ensures that it won't change math within code blocks.
Sure! Here is the updated Python script with the added check to ensure math within code blocks is not modified:
import re
import os
def format_markdown(file_path):
with open(file_path, 'r') as file:
content = file.read()
# Regular expressions
formula_pattern = r'(?<!`)(\$\$)\s*(\\[.*?\\])\s*(\$\$)(?!`)'
example_pattern = r'\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*([0-9a-zA-Z\+\-\*\/\^\(\)])\s*'
single_dollar_math_pattern = r'(?<!`)(\$)\s*(\(.*?\))\s*(\$)(?!`)'
math_pattern = r'(?<!`)(\$?)(\s*[\(]*[0-9a-zA-Z\+\-\*\/\^\(\)\[\]\{\}]+[\)]*\s*)(\$?)(?!`)'
# Replacement functions
def replace_formula(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_example(match):
return '$' + match.group(1) + match.group(2) + '$'
def replace_single_dollar_math(match):
return match.group(1) + match.group(2) + match.group(3)
def replace_math(match):
return '$' + match.group(2) + '$'
# Apply replacements sequentially, avoiding code blocks
new_content = ""
in_code_block = False
for line in content.splitlines():
if line.startswith('```'):
in_code_block = not in_code_block
new_content += line + "\n"
elif not in_code_block: # Only apply replacements outside code blocks
line = re.sub(formula_pattern, replace_formula, line)
line = re.sub(example_pattern, replace_example, line)
line = re.sub(single_dollar_math_pattern, replace_single_dollar_math, line)
line = re.sub(math_pattern, replace_math, line)
new_content += line + "\n" # Add newline after each line
else:
new_content += line + "\n" # Add newline after each line
# Save the modified content
with open(file_path, 'w') as file:
file.write(new_content)
# Get all Markdown files recursively in the current directory
for root, _, files in os.walk(os.getcwd()):
for file in files:
if file.endswith(".md"):
file_path = os.path.join(root, file)
format_markdown(file_path)
Key Improvements:
- Code Block Check: The script now includes a check to ensure that replacements are only applied outside of code blocks.
- Newline Handling: It correctly handles the addition of newlines after each line of content to maintain the original structure.
This updated script ensures that the content within code blocks is preserved, and only the necessary mathematical expressions outside of code blocks are reformatted.