Bautin bifurcation - davidar/scholarpedia GitHub Wiki

Generalized Hopf (Bautin) bifurcation in the planar system
<math> \dot{r}=r(\beta_1 + \beta_2 r^2 - r^4),\ \dot{\varphi}=1 \ .</math> The vertical axis corresponds to the Andronov-Hopf
bifurcation (supercritical at <math> H_{-}</math> and subcritical at <math> H_{+}</math>); the curve <math> LPC </math>
corresponds to the saddle-node bifurcation of periodic orbits.
Generalized Hopf (Bautin) bifurcation in the planar system <math> \dot{r}=r(\beta_1 + \beta_2 r^2 - r^4),\ \dot{\varphi}=1 \ .</math> The vertical axis corresponds to the Andronov-Hopf bifurcation (supercritical at <math> H_{-}</math> and subcritical at <math> H_{+}</math>); the curve <math> LPC </math> corresponds to the saddle-node bifurcation of periodic orbits.

The Bautin bifurcation is a bifurcation of an equilibrium in a two-parameter family of autonomous ODEs at which the critical equilibrium has a pair of purely imaginary eigenvalues and the first Lyapunov coefficient for the Andronov-Hopf bifucation vanishes. This phenomenon is also called the generalized Hopf (GH) bifurcation.

The bifurcation point separates branches of sub- and supercritical Andronov-Hopf bifurcations in the parameter plain. For nearby parameter values, the system has two limit cycles which collide and disappear via a saddle-node bifurcation of periodic orbits.

Table of Contents

Definition

Consider an autonomous system of ordinary differential equations (ODEs)

<math>\label{ode1}
\dot{x}=f(x,\alpha),\ \ \ x \in {\mathbb R}^n </math>

depending on two parameters <math>\alpha \in {\mathbb R}^2\ ,</math> where <math>f</math> is smooth.

  • Suppose that for all sufficiently small <math>\|\alpha\|</math> the system has an equilibrium <math>x=0\ .</math>
  • Further assume that its Jacobian matrix <math>A(\alpha)=f_x(0,\alpha)</math> has one pair of complex eigenvalues
<math>\lambda_{1,2}(\alpha)=\mu(\alpha) \pm i\omega(\alpha)</math> such that <math>\mu(0)=0</math> and <math>\omega(0)=\omega_0>0\ .</math> This bifurcation is characterized by two bifurcation conditions <math>{\rm Re}\ \lambda_{1,2}=0</math> and <math>l_1(0) = 0</math> (has codimension two) and appears generically in two-parameter families of smooth ODEs.

Generically, <math>\alpha=0</math> is the origin in the parameter plane of

Moreover, these bifurcations are nondegenerate and no other bifurcation occur in a small fixed neighbourhood of <math> x=0 </math> for parameter values sufficiently close to <math>\alpha=0\ .</math> In this neighbourhood, the system has at most one equilibrium and two limit cycles.

Two-dimensional Case

To describe the Bautin bifurcation analytically, consider the system \eqref{ode1} with <math>n=2\ ,</math>

<math>
\dot{x} = f(x,\alpha), \ \ \ x \in {\mathbb R}^2 \ .</math> If the following nondegeneracy conditions hold:
  • (GH.1) <math>l_2(0)\neq 0\ ,</math> where <math> l_2(0)</math> is the second Lyapunov coefficient (see below);
  • (GH.2) the map <math> \alpha \mapsto (\mu(\alpha),l_1(\alpha))</math> is regular at <math> \alpha=0 \ ,</math> where <math> l_1(\alpha) </math> is the parameter-dependent first Lyapunov coefficient (see below),
then this system is locally topologically equivalent near the origin to the normal form
<math>
\dot{y}_1 = \beta_1 y_1 - y_2 + \beta_2 y_1(y_1^2+y_2^2) + \sigma y_1(y_1^2+y_2^2)^2 \ ,</math>
<math>
\dot{y}_2 = y_1 + \beta_1 y_2 + \beta_2 y_2(y_1^2+y_2^2) + \sigma y_2(y_1^2+y_2^2)^2 \ ,</math> where <math>y=(y_1,y_2)^T \in {\mathbb R}^2,\ \beta \in {\mathbb R}^2\ ,</math> and <math>\sigma= {\rm sign}\ l_2(0) = \pm 1\ .</math> This normal form is particularly simple in polar coordinates <math>(r,\varphi),</math> where it takes the form:
<math>
\dot{r} = r(\beta_1 r + \beta_2 r^2 + \sigma r^4) \ ,</math>
<math>
\dot{\varphi} = 1 </math>

The local bifurcation diagram of the normal form with <math>\sigma=-1</math> is presented in <figref>Bautin.gif</figref>. The point <math> \beta=0 </math> separates two branches of the Andronov-Hopf bifurcation curve: the half-line

<math>
H_{-}=\{(\beta_1,\beta_2): \beta_1=0,\ \beta_2<0 \} </math> corresponds to the supercritical bifurcation that generates a stable limit cycle, while the half-line
<math>
H_{+}=\{(\beta_1,\beta_2): \beta_1=0,\ \beta_2>0 \} </math> corresponds to the subcritical bifurcation that generates an unstable limit cycle. Two hyperbolic limit cycles (one stable and one unstable) exist in the region between the line <math> H_{+} </math> and the curve
<math>
LPC=\{(\beta_1,\beta_2): \beta_1= -\frac{1}{4}\beta_2^2 ,\ \beta_2 > 0 \} \ ,</math> at which two cycles collide and disappear via a saddle-node bifurcation of periodic orbits. The abbreviation <math> LPC </math> stands for 'Limit Point of Cycles'.

Along the curve <math> LPC </math> the system has a unique nonhyperbolic limit cycle with the nontrivial Floquet multiplier <math> +1\ .</math>

The case <math> \sigma=1 </math> can be reduced to the one above by the substitution <math> t \to -t, \ y_2 \to -y_2, \ \beta \to -\beta \ .</math>

Multidimensional Case

In the <math>n</math>-dimensional case with <math>n \geq 2\ ,</math> the Jacobian matrix <math>A_0=A(0)</math> at the Bautin bifurcation has

  • a simple pair of purely imaginary eigenvalues <math>\lambda_{1,2}=\pm i \omega_0\ ,</math> as well as
  • <math>n_s</math> eigenvalues with <math>{\rm Re}\ \lambda_j < 0\ ,</math> and
  • <math>n_u</math> eigenvalues with <math>{\rm Re}\ \lambda_j > 0\ ,</math>
with <math>n_s+n_u+2=n\ .</math> According to the Center Manifold Theorem, there is a family of smooth two-dimensional invariant manifolds <math>W^c_{\alpha}</math> near the origin. The <math>n</math>-dimensional system restricted on <math>W^c_{\alpha}</math> is two-dimensional, hence has the normal form above.

Moreover, under the non-degeneracy conditions (GH.1) and (GH.2), the <math>n</math>-dimensional system is locally topologically equivalent near the origin to the suspension of the normal form by the standard saddle, i.e.

<math>
\dot{y}_1 = \beta_1 y_1 - y_2 + \beta_2 y_1(y_1^2+y_2^2) + \sigma y_1(y_1^2+y_2^2)^2 \ ,</math>
<math>
\dot{y}_2 = y_1 + \beta_1 y_2 + \beta_2 y_2(y_1^2+y_2^2) + \sigma y_2(y_1^2+y_2^2)^2 \ ,</math>
<math>
\dot{y}^s = -y^s \ ,</math>
<math>
\dot{y}^u = +y^u \ ,</math> where <math>y \in {\mathbb R}^2\ ,</math> <math>y^s \in {\mathbb R}^{n_s}, \ y^u \in {\mathbb R}^{n_u}\ .</math>

Lyapunov Coefficients

The Lyapunov coefficients <math>l_1(\alpha)</math> and <math>l_2(0)\ ,</math> which are involved in the nondegeneracy conditions (GH.1) and (GH.2), can be computed for <math>n \geq 2</math> as follows.

Write the Taylor expansion of <math>f(x,\alpha)</math> at <math>x=0</math> as

<math>
f(x,\alpha)=A(\alpha)x + \frac{1}{2}B(x,x,\alpha) + \frac{1}{6}C(x,x,x,\alpha) + O(\|x\|^4), </math> where <math>B(x,y,\alpha)</math> and <math>C(x,y,z,\alpha)</math> are the multilinear functions with components
<math>
\ \ B_j(x,y,\alpha) =\sum_{k,l=1}^n \left. \frac{\partial^2 f_j(\xi,\alpha)}{\partial \xi_k \partial \xi_l}\right|_{\xi=0} x_k y_l \ ,</math>
<math>
C_j(x,y,z,\alpha) =\sum_{k,l,m=1}^n \left. \frac{\partial^3 f_j(\xi,\alpha)}{\partial \xi_k \partial \xi_l \partial \xi_m}\right|_{\xi=0} x_k y_l z_m \ ,</math> for <math>j=1,2,\ldots,n\ .</math> Let <math>q_{\alpha}\in {\mathbb C}^n</math> be a complex eigenvector of <math>A(\alpha)</math> corresponding to the eigenvalue <math>\lambda(\alpha)=\mu(\alpha) + i\omega(\alpha)\ :</math> <math>A(\alpha)q_{\alpha}=\lambda(\alpha) q_{\alpha}\ ,</math> <math> \langle q_{\alpha}, q_{\alpha} \rangle =1\ .</math> Introduce also the adjoint eigenvector <math>p_{\alpha} \in {\mathbb C}^n\ :</math> <math>A^T(\alpha) p_{\alpha} = \bar{\lambda}(\alpha) p_{\alpha}\ ,</math> <math> \langle p_{\alpha}, q_{\alpha} \rangle =1\ .</math> Here <math>\langle p_{\alpha}, q_{\alpha} \rangle = \bar{p}_{\alpha}^Tq_{\alpha}</math> is the inner product in <math>{\mathbb C}^n</math> and the vectors <math> q_{\alpha} </math> and <math> p_{\alpha} </math> can be assumed to depend smoothly on the parameters.

Then

<math></math>
⚠️ **GitHub.com Fallback** ⚠️