Important Publications - aeonSolutions/AeonLabs-Safety-Health GitHub Wiki

Donate Say Thanks trackgit-views Open Source Love svg1 GitHub Forks contributions welcome

Navigation | AeonLabs Main Index >> Open Hardware Electronics >> Home-Automation >> Safety & Health >> Wiki >> Important Publications

Change Language
Last update: 11-11-2024

Published in the Journal of Biomedical Engineering , Volume 6, Issue 4 , October 1984, Pages 293-296

Abstract
A new device for generation of electromagnetic fields at extra low frequencies, to be used in fracture treatment, is described. The device involves a coil and a battery powered noise-generator. An alternating magnetic field of 4 × 10−4T (4 Gauss) (RMS value) with a frequency range 1–1000 Hz is generated. Results from a controlled randomized study of fresh fractures have shown significant differences (p < 0.01) between the treated group and the control group. The results are encouraging and motivate further investigations with this method.


Published in PubMed Central - National Library of Medicine , USA

Abstract
Theta oscillations in the hippocampal local field potential (LFP) appear during translational movement and arousal, modulate the activity of principal cells, and are associated with spatial cognition and episodic memory function. All known anxiolytics slightly but consistently reduce hippocampal theta frequency. However, whether this electrophysiological effect is mechanistically related to the decreased behavioral expression of anxiety is currently unclear. Here, we propose that a reduction in theta frequency affects synaptic plasticity and mnemonic function and that this can explain the reduction in anxiety behavior. We test this hypothesis in a biophysical model of contextual fear conditioning. First, we confirm that our model reproduces previous empirical results regarding the dependence of synaptic plasticity on presynaptic firing rate. Next, we investigate how theta frequency during contextual conditioning impacts learning. These simulations demonstrate that learned associations between threat and context are attenuated when learning takes place under reduced theta frequency. Additionally, our simulations demonstrate that learned associations result in increased theta activity in the amygdala, consistent with empirical data. In summary, we propose a mechanism that can account for the behavioral effect of anxiolytics by impairing the integration of threat attributes of an environment into the cognitive map due to reduced synaptic potentiation.


Published in PubMed Central - National Library of Medicine , USA

25% maximal voluntary contraction required 10mA to 46mA of electric current

Abstract
This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 Âą 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.


Published in PubMed Central - National Library of Medicine , USA

Abstract
Objective: The objective of this article is to explain ways in which electric current is conducted to and through the human body and how this influences the nature of injuries. Methods: This multidisciplinary topic is explained by first reviewing electrical and pathophysiological principles. There are discussions of how electric current is conducted through the body via air, water, earth, and man-made conductive materials. There are also discussions of skin resistance (impedance), internal body resistance, current path through the body, the let-go phenomenon, skin breakdown, electrical stimulation of skeletal muscles and nerves, cardiac dysrhythmias and arrest, and electric shock drowning. After the review of basic principles, a number of clinically relevant examples of accident mechanisms and their medical effects are discussed. Topics related to high-voltage burns include ground faults, ground potential gradient, step and touch potentials, arcs, and lightning. Results: The practicing physician will have a better understanding of electrical mechanisms of injury and their expected clinical effects. Conclusions: There are a variety of types of electrical contact, each with important characteristics. Understanding how electric current reaches and travels through the body can help the clinician understand how and why specific accidents occur and what medical and surgical problems may be expected.

Published in the Journal Photodiagnosis and Photodynamic Therapy

Rice-sized warrior: New LED device uses light to destroy deep cancers

Abstract
The inability of visible light to penetrate far through biological tissue limits its use for phototherapy and photodiagnosis of deep-tissue sites of disease. This is unfortunate because many visible dyes are excellent photosensitizers and photocatalysts that can induce a wide range of photochemical processes, including photogeneration of reactive oxygen species. One potential solution is to bring the light source closer to the site of disease by using a miniature implantable LED. With this goal in mind, we fabricated a wireless LED-based device (volume of 23 mm3) that is powered by RF energy and emits light with a wavelength of 573 nm. It has the capacity to excite the green absorbing dye Rose Bengal, which is an efficient type II photosensitizer. The wireless transfer of RF power is effective even when the device is buried in chicken breast and located 6 cm from the transmitting antenna. The combination of a wireless device as light source and Rose Bengal as photosensitizer was found to induce cell death of cultured HT-29 human colorectal adenocarcinoma cells. Time-dependent generation of protruding bubbles was observed in the photoactivated cells suggesting cell death by light-induced pyroptosis and supporting evidence was gained by cell staining with the fluorescence probes Annexin-V FITC and Propidium Iodide. The results reveal a future path towards a wireless implanted LED-based device that can trigger photodynamic immunogenic cell death in deep-seated cancerous tissue.

Other relevant publications

[1] A 3D TLM code for the study of the ELF electromagnetic wave propagation in the Earth's atmosphere
[2] Manipulation of the electromagnetic spectrum via fields projected from human hands: A qi energy connection?

⚠ī¸ **GitHub.com Fallback** ⚠ī¸