\documentclass{article}
\usepackage{gensymb}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amssymb}
\RequirePackage{geometry}
\geometry{
paper=a4paper, % Change to letterpaper for US letter
inner=2cm, % Inner margin
outer=2cm, % Outer margin
bindingoffset= 0cm, % Binding offset
top=2cm, % Top margin
bottom=2cm, % Bottom margin
%showframe, % Uncomment to show how the type block is set on the page
}
\author{courtney.savytska}
\date{September 2024}
\begin{document}
\begin{center}
{\LARGE \textbf{Notation and Standard Nomenclature}}
\end{center}
\section*{Notation}
\begin{itemize}
\item \textit{Scalars} are denoted by lowercase symbols, $a$.
\item \textit{Vectors} are denoted by a symbol with an overhead arrow, $\vec{a}$.
\item \textit{Matrices} are denoted by bold symbols, $\mathbf{a}$ or $\mathbf{A}$.
\item \textit{Reference frames} are denoted by a cursive F (generated using \texttt{\textbackslash mathcal{}} command) with a subscript to differentiate between reference frames, $\mathcal{F}_a$.
\item A reference frame $\mathcal{F}_a$ is defined by its \textit{unit vectors} $\lbrace \vec{a}_x, \vec{a}_y, \vec{a}_z \rbrace$.
\item A \textit{vectrix} defines a matrix of the unit vectors of a reference frame and is denoted by the reference frame symbol with an overhead arrow, \textit{i.e.}, $\vec{\mathcal{F}}_a^\top = \begin{bmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \end{bmatrix}$.
\end{itemize}
\section*{Standard Nomenclature}
A standard nomenclature to be used across all lab publications is found below.\\
\noindent\textit{Inertial and relative states of each platform}:
\begin{itemize}
\item Inertial position (general): $\mathbf{x} = \begin{bmatrix} x & y & \theta \end{bmatrix}^\top $
\begin{itemize}
\item Chaser inertial position: $\mathbf{x}_c = \begin{bmatrix} x_c & y_c & \theta_c \end{bmatrix}^\top $
\item Target inertial position: $\mathbf{x}_t = \begin{bmatrix} x_t & y_t & \theta_t \end{bmatrix}^\top $
\item Obstacle inertial position: $\mathbf{x}_o = \begin{bmatrix} x_o & y_o & \theta_o \end{bmatrix}^\top $
\end{itemize}
\item Target pose relative to chaser: $\mathbf{r}_{tc} = \mathbf{x}_t - \mathbf{x}_c $
\item Obstacle pose relative to chaser: $\mathbf{r}_{oc} = \mathbf{x}_o - \mathbf{x}_c $\\
\end{itemize}
\noindent\textit{Reference Frames} (using \texttt{\textbackslash mathcal{}} command):
\begin{itemize}
\item Inertial reference frame: $\mathcal{F}_I$
\item Body-fixed reference frame (general): $\mathcal{F}_B$
\begin{itemize}
% \item For each specific platform, the subscript specifies the platform.
\item The chaser platform has body-fixed reference frame $\mathcal{F}_{B_c}$
\item The target platform has body-fixed reference frame $\mathcal{F}_{B_t}$
\item The obstacle platform has body-fixed reference frame $\mathcal{F}_{B_o}$\\
\end{itemize}
\end{itemize}
\noindent\textit{Reference Frame Unit Vectors}:
\begin{itemize}
\item Inertial reference frame unit vectors: $\vec{I}_x$, $\vec{I}_y$, $\vec{I}_z$
\item Body-fixed reference frame unit vectors (general): $\vec{B}_x$, $\vec{B}_y$, $\vec{B}_z$
\begin{itemize}
% \item For each specific platform, the subscript specifies the platform.
\item The chaser platform has body-fixed reference frame unit vectors $\vec{B}_{cx}$, $\vec{B}_{cy}$, $\vec{B}_{cz}$
\item The target platform has body-fixed reference frame unit vectors $\vec{B}_{tx}$, $\vec{B}_{ty}$, $\vec{B}_{tz}$
\item The obstacle platform has body-fixed reference frame unit vectors $\vec{B}_{ox}$, $\vec{B}_{oy}$, $\vec{B}_{oz}$
\end{itemize}
\end{itemize}
\end{document}