test output README - zfifteen/unified-framework GitHub Wiki
This directory contains the golden master outputs for the prime-curve density enhancement test.
Raw bin counts comparing prime distribution vs all integer distribution:
-
bin_index
: Bin number (0 to B-1) -
prime_counts
: Number of primes in this bin -
all_counts
: Number of all integers in this bin -
enhancement_pct
: Density enhancement percentage for this bin
Bootstrap resampling results for confidence interval calculation:
-
bootstrap_sample
: Sample number (0 to 999) -
max_enhancement
: Maximum KDE-smoothed enhancement for this bootstrap sample
Sample θ′ transformation values for first 20 integers:
-
n
: Integer value (1 to 20) -
theta_prime
: Transformed value θ′ = φ * (((n mod φ) / φ) ** k)
- N: 100,000 (number range)
- k: 0.3 (curvature parameter)
- B: 20 (number of bins)
- SEED: 0 (for reproducibility)
- φ: 1.618033988749895 (golden ratio)
- Binning: edges = np.linspace(0, φ, B+1)
- Maximal Enhancement (robust): 160.634% ± 0.005
-
Bootstrap CI (95%):
- 2.5%: 7.750% ± 0.005
- 97.5%: 681.902% ± 0.005
- Bootstrap samples: 1000 resamples using percentile method
- Generate primes and all integers from 1 to N
- Apply θ′ transformation:
θ′ = φ * (((n mod φ) / φ) ** k)
- Bin values into B bins with edges from 0 to φ
- Compute density enhancement:
(prime_density - all_density) / all_density * 100
- Apply robust maximum to find maximum enhancement
- Bootstrap resample primes 1000 times for confidence interval
- Use percentile method for CI bounds
All outputs include metadata with φ value, parameters, and generation timestamp.