test output README - zfifteen/unified-framework GitHub Wiki

Golden Master Test Outputs

This directory contains the golden master outputs for the prime-curve density enhancement test.

Files

counts_primes_vs_all.csv

Raw bin counts comparing prime distribution vs all integer distribution:

  • bin_index: Bin number (0 to B-1)
  • prime_counts: Number of primes in this bin
  • all_counts: Number of all integers in this bin
  • enhancement_pct: Density enhancement percentage for this bin

bootstrap_midbin_enhancement.csv

Bootstrap resampling results for confidence interval calculation:

  • bootstrap_sample: Sample number (0 to 999)
  • max_enhancement: Maximum KDE-smoothed enhancement for this bootstrap sample

theta_prime_n1_20_k0.3.csv

Sample θ′ transformation values for first 20 integers:

  • n: Integer value (1 to 20)
  • theta_prime: Transformed value θ′ = φ * (((n mod φ) / φ) ** k)

Test Parameters

  • N: 100,000 (number range)
  • k: 0.3 (curvature parameter)
  • B: 20 (number of bins)
  • SEED: 0 (for reproducibility)
  • φ: 1.618033988749895 (golden ratio)
  • Binning: edges = np.linspace(0, φ, B+1)

Expected Golden Master Values

  • Maximal Enhancement (robust): 160.634% ± 0.005
  • Bootstrap CI (95%):
    • 2.5%: 7.750% ± 0.005
    • 97.5%: 681.902% ± 0.005
  • Bootstrap samples: 1000 resamples using percentile method

Algorithm

  1. Generate primes and all integers from 1 to N
  2. Apply θ′ transformation: θ′ = φ * (((n mod φ) / φ) ** k)
  3. Bin values into B bins with edges from 0 to φ
  4. Compute density enhancement: (prime_density - all_density) / all_density * 100
  5. Apply robust maximum to find maximum enhancement
  6. Bootstrap resample primes 1000 times for confidence interval
  7. Use percentile method for CI bounds

All outputs include metadata with φ value, parameters, and generation timestamp.

⚠️ **GitHub.com Fallback** ⚠️