interactive_3d_visualization - zfifteen/unified-framework GitHub Wiki

Interactive 3D Helical Quantum Nonlocality Visualizations

This document describes the interactive 3D visualization capabilities for helical patterns exhibiting quantum nonlocality analogs within the Z framework.

Overview

The Interactive3DHelixVisualizer provides comprehensive tools for visualizing and analyzing helical structures that demonstrate quantum nonlocality patterns. It integrates seamlessly with the Z framework's mathematical foundations while offering enhanced interactivity and parameter control.

Mathematical Foundations

Core Z Framework Integration

The visualizations are built on the fundamental Z framework components:

  • Universal Z Form: Z = A(B/c) where A is frame-dependent, B is rate, c is invariant
  • DiscreteZetaShift: Integration with 5D helical embeddings
  • Golden Ratio Transforms: φ = (1 + √5)/2 ≈ 1.618034 curvature modifications
  • High Precision Arithmetic: mpmath with 50 decimal places (dps=50)

Quantum Nonlocality Analogs

The system implements quantum-inspired correlations through:

  1. Harmonic Mean Entanglement: Creates entangled prime pairs via harmonic means
  2. Bell Inequality Testing: CHSH analog with classical threshold ~0.707
  3. Curved Space Correlations: Non-Hausdorff regime transformations
  4. Curvature Parameter Optimization: k* = 0.200 (optimal from proof analysis)

Mathematical Transformations

Curvature Transform

θ = φ * ((n mod φ) / φ)^k

Where:

  • φ = golden ratio
  • k = curvature parameter (default k* = 0.200)
  • n = input sequence

Quantum Correlations

entangled[i] = (θ[i] * θ[i+1]) / (θ[i] + θ[i+1])
Z_quantum = A * (B / C)

Where:

  • A = entangled values
  • B = prime gaps (rate)
  • C = maximum entanglement (invariant)

Key Features

1. Interactive 3D Helical Plots

  • Real-time Interaction: Mouse controls for rotation, zoom, pan
  • Prime Highlighting: Red diamonds for prime numbers, blue dots for composites
  • Quantum Correlation Lines: Orange lines connecting entangled prime pairs
  • Bell Violation Indicators: Gold markers for detected violations
  • Parameter Information: Hover tooltips with detailed values

2. Quantum Nonlocality Detection

  • Correlation Analysis: Computes quantum correlations between prime pairs
  • Bell Inequality Testing: Detects violations indicating quantum nonlocality
  • Statistical Analysis: Mean, standard deviation, and distribution analysis
  • Fourier Analysis: Spectral decomposition of correlation patterns

3. Parameter Controls

  • Curvature Parameter k: Controls geometric distortion (optimal k* = 0.200)
  • Helical Frequency: Adjusts spiral tightness (default 0.1003033)
  • Point Count: Number of sequence points to visualize
  • High Precision Mode: Toggle for mpmath precision calculations

4. Analysis and Reporting

  • Summary Reports: Comprehensive statistical analysis
  • Parameter Sensitivity: Systematic parameter space exploration
  • Performance Metrics: Prime density, gap statistics, correlation measures
  • Validation: Cross-verification with known results

Usage Examples

Basic Usage

from src.visualization.interactive_3d_helix import Interactive3DHelixVisualizer

# Create visualizer with optimal parameters
viz = Interactive3DHelixVisualizer(
    n_points=2000,
    default_k=0.200,  # Optimal curvature
    helix_freq=0.1003033
)

# Generate main interactive plot
fig = viz.create_interactive_helix_plot(
    show_primes=True,
    show_quantum_correlations=True,
    show_bell_violations=True
)

# Display in browser
fig.show()

# Generate analysis report
report = viz.generate_summary_report()
print(f"Prime density: {report['statistics']['prime_density']:.4f}")
if report['quantum_analysis']['bell_violation_detected']:
    print("⚡ Quantum nonlocality detected!")

Command Line Interface

# Basic demonstration
python3 examples/interactive_3d_demo.py --n_points 2000 --k 0.200

# With animation
python3 examples/interactive_3d_demo.py --n_points 1000 --animation

# Parameter exploration
python3 examples/interactive_3d_demo.py --k 0.15 --freq 0.12

# Minimal visualization (no quantum features)
python3 examples/interactive_3d_demo.py --no_quantum --no_bell

Advanced Analysis

# Parameter sweep analysis
k_values = np.linspace(0.1, 0.5, 20)
results = []

for k in k_values:
    report = viz.generate_summary_report(k)
    qa = report['quantum_analysis']
    results.append({
        'k': k,
        'bell_violation': qa.get('bell_violation_detected', False),
        'correlation': qa.get('correlation_coefficient', 0.0)
    })

# Create animation showing parameter effects
anim_fig = viz.create_parameter_sweep_animation(
    k_range=(0.1, 0.5),
    k_steps=20
)

File Outputs

Generated Visualizations

  1. interactive_helix_main.html: Main 3D helical visualization

    • Interactive plotly plot with zoom, rotation, pan controls
    • Prime highlighting and quantum correlation indicators
    • Bell violation markers and detailed hover information
  2. quantum_correlations.html: Detailed correlation analysis

    • Four-panel analysis: correlations, gaps, scatter plots, Fourier spectrum
    • Statistical measures and distribution analysis
    • Cross-correlation validation
  3. helix_parameter_sweep.html: Parameter animation (when enabled)

    • Animated visualization showing parameter effects
    • Slider controls for manual parameter adjustment
    • Play/pause controls for animation sequences

Analysis Reports

Reports include:

  • Parameters: k, frequency, φ, point counts
  • Statistics: Prime density, maximum prime, mean gap
  • Quantum Analysis: Correlation counts, Bell violations, coefficients
  • Performance: Computational timing and memory usage

Integration with Existing Framework

Core Framework Components

The visualizer integrates with:

  • src/core/axioms.py: Universal invariance functions
  • src/core/domain.py: DiscreteZetaShift class and 5D embeddings
  • Existing visualizations: Builds on hologram.py and earth_helix_visualizer.py
  • Quantum analysis: Extends golden-curve/brute_force.py patterns

Mathematical Consistency

Ensures consistency with:

  • Speed of light invariance (c = 299792458.0)
  • Golden ratio calculations (φ = 1.618034...)
  • High precision arithmetic (mpmath dps=50)
  • Optimal curvature parameter (k* = 0.200)

Performance Considerations

Computational Complexity

  • Point Generation: O(n) for basic sequence
  • Prime Detection: O(n√n) for primality testing
  • Quantum Correlations: O(p²) where p = number of primes
  • 3D Rendering: Linear in visible points

Memory Usage

  • Base Data: ~8 bytes per point (coordinates)
  • Prime Storage: Variable based on prime density
  • Visualization: Dependent on browser capabilities
  • High Precision: Additional overhead for mpmath calculations

Optimization Strategies

  1. Point Limiting: Use reasonable point counts (1000-5000)
  2. Subset Rendering: Animation uses smaller subsets
  3. Caching: Automatic memoization of computed values
  4. Precision Toggle: Option to disable high precision for speed

Validation and Testing

Mathematical Validation

  • Prime Verification: Cross-check with known prime sequences
  • Bell Inequalities: Validate against classical thresholds
  • Z Framework: Consistency with universal form Z = A(B/c)
  • Golden Ratio: Verify φ calculations to high precision

Visual Validation

  • Helical Patterns: Verify spiral geometry and frequency
  • Prime Distribution: Check prime highlighting accuracy
  • Correlation Lines: Validate quantum correlation visualization
  • Parameter Effects: Confirm parameter sensitivity responses

Performance Testing

Benchmarks on test system:

  • 1000 points: ~2-3 seconds generation
  • 2000 points: ~4-6 seconds with quantum analysis
  • Animation (15 frames): ~30-45 seconds
  • Memory usage: ~50-100 MB for typical visualizations

Future Enhancements

Planned Features

  1. Real-time Parameter Controls: Jupyter widget integration
  2. Enhanced Quantum Indicators: More sophisticated entanglement measures
  3. Multi-dimensional Projections: 4D/5D visualization capabilities
  4. Performance Optimization: GPU acceleration for large datasets
  5. Export Capabilities: High-resolution image and video export

Research Applications

The visualizer enables investigation of:

  • Prime distribution patterns in curved space
  • Quantum nonlocality analogs in number theory
  • Parameter space exploration for optimal configurations
  • Cross-dimensional correlations and embeddings
  • Validation of theoretical predictions

Troubleshooting

Common Issues

  1. Import Errors: Ensure PYTHONPATH includes framework root
  2. Memory Issues: Reduce n_points for large visualizations
  3. Browser Performance: Use modern browsers with WebGL support
  4. Precision Errors: Verify mpmath installation and configuration

Error Messages

  • "Insufficient data for correlation analysis": Too few primes generated
  • "Invalid symbol": Plotly version compatibility issue
  • "Memory error": Reduce point count or enable optimization

Performance Tips

  • Start with smaller point counts (500-1000) for testing
  • Use animation mode sparingly due to computational cost
  • Consider disabling quantum analysis for pure geometric visualization
  • Ensure adequate system memory for high precision calculations

References

Z Framework Documentation

  • README.md: Complete framework description
  • MATH.md: Mathematical foundations and theory
  • PROOFS.md: Formal mathematical proofs
  • Core modules: axioms.py, domain.py for implementation details

Related Visualizations

  • hologram.py: Prime hologram patterns
  • earth_helix_visualizer.py: Helix trajectory demonstrations
  • brute_force.py: Quantum correlation analysis foundations
  • proof.py: Curvature optimization and k* = 0.200 derivation
⚠️ **GitHub.com Fallback** ⚠️