interactive_3d_visualization - zfifteen/unified-framework GitHub Wiki
This document describes the interactive 3D visualization capabilities for helical patterns exhibiting quantum nonlocality analogs within the Z framework.
The Interactive3DHelixVisualizer
provides comprehensive tools for visualizing and analyzing helical structures that demonstrate quantum nonlocality patterns. It integrates seamlessly with the Z framework's mathematical foundations while offering enhanced interactivity and parameter control.
The visualizations are built on the fundamental Z framework components:
-
Universal Z Form:
Z = A(B/c)
where A is frame-dependent, B is rate, c is invariant - DiscreteZetaShift: Integration with 5D helical embeddings
- Golden Ratio Transforms: φ = (1 + √5)/2 ≈ 1.618034 curvature modifications
- High Precision Arithmetic: mpmath with 50 decimal places (dps=50)
The system implements quantum-inspired correlations through:
- Harmonic Mean Entanglement: Creates entangled prime pairs via harmonic means
- Bell Inequality Testing: CHSH analog with classical threshold ~0.707
- Curved Space Correlations: Non-Hausdorff regime transformations
- Curvature Parameter Optimization: k* = 0.200 (optimal from proof analysis)
θ = φ * ((n mod φ) / φ)^k
Where:
- φ = golden ratio
- k = curvature parameter (default k* = 0.200)
- n = input sequence
entangled[i] = (θ[i] * θ[i+1]) / (θ[i] + θ[i+1])
Z_quantum = A * (B / C)
Where:
- A = entangled values
- B = prime gaps (rate)
- C = maximum entanglement (invariant)
- Real-time Interaction: Mouse controls for rotation, zoom, pan
- Prime Highlighting: Red diamonds for prime numbers, blue dots for composites
- Quantum Correlation Lines: Orange lines connecting entangled prime pairs
- Bell Violation Indicators: Gold markers for detected violations
- Parameter Information: Hover tooltips with detailed values
- Correlation Analysis: Computes quantum correlations between prime pairs
- Bell Inequality Testing: Detects violations indicating quantum nonlocality
- Statistical Analysis: Mean, standard deviation, and distribution analysis
- Fourier Analysis: Spectral decomposition of correlation patterns
- Curvature Parameter k: Controls geometric distortion (optimal k* = 0.200)
- Helical Frequency: Adjusts spiral tightness (default 0.1003033)
- Point Count: Number of sequence points to visualize
- High Precision Mode: Toggle for mpmath precision calculations
- Summary Reports: Comprehensive statistical analysis
- Parameter Sensitivity: Systematic parameter space exploration
- Performance Metrics: Prime density, gap statistics, correlation measures
- Validation: Cross-verification with known results
from src.visualization.interactive_3d_helix import Interactive3DHelixVisualizer
# Create visualizer with optimal parameters
viz = Interactive3DHelixVisualizer(
n_points=2000,
default_k=0.200, # Optimal curvature
helix_freq=0.1003033
)
# Generate main interactive plot
fig = viz.create_interactive_helix_plot(
show_primes=True,
show_quantum_correlations=True,
show_bell_violations=True
)
# Display in browser
fig.show()
# Generate analysis report
report = viz.generate_summary_report()
print(f"Prime density: {report['statistics']['prime_density']:.4f}")
if report['quantum_analysis']['bell_violation_detected']:
print("⚡ Quantum nonlocality detected!")
# Basic demonstration
python3 examples/interactive_3d_demo.py --n_points 2000 --k 0.200
# With animation
python3 examples/interactive_3d_demo.py --n_points 1000 --animation
# Parameter exploration
python3 examples/interactive_3d_demo.py --k 0.15 --freq 0.12
# Minimal visualization (no quantum features)
python3 examples/interactive_3d_demo.py --no_quantum --no_bell
# Parameter sweep analysis
k_values = np.linspace(0.1, 0.5, 20)
results = []
for k in k_values:
report = viz.generate_summary_report(k)
qa = report['quantum_analysis']
results.append({
'k': k,
'bell_violation': qa.get('bell_violation_detected', False),
'correlation': qa.get('correlation_coefficient', 0.0)
})
# Create animation showing parameter effects
anim_fig = viz.create_parameter_sweep_animation(
k_range=(0.1, 0.5),
k_steps=20
)
-
interactive_helix_main.html: Main 3D helical visualization
- Interactive plotly plot with zoom, rotation, pan controls
- Prime highlighting and quantum correlation indicators
- Bell violation markers and detailed hover information
-
quantum_correlations.html: Detailed correlation analysis
- Four-panel analysis: correlations, gaps, scatter plots, Fourier spectrum
- Statistical measures and distribution analysis
- Cross-correlation validation
-
helix_parameter_sweep.html: Parameter animation (when enabled)
- Animated visualization showing parameter effects
- Slider controls for manual parameter adjustment
- Play/pause controls for animation sequences
Reports include:
- Parameters: k, frequency, φ, point counts
- Statistics: Prime density, maximum prime, mean gap
- Quantum Analysis: Correlation counts, Bell violations, coefficients
- Performance: Computational timing and memory usage
The visualizer integrates with:
- src/core/axioms.py: Universal invariance functions
- src/core/domain.py: DiscreteZetaShift class and 5D embeddings
- Existing visualizations: Builds on hologram.py and earth_helix_visualizer.py
- Quantum analysis: Extends golden-curve/brute_force.py patterns
Ensures consistency with:
- Speed of light invariance (c = 299792458.0)
- Golden ratio calculations (φ = 1.618034...)
- High precision arithmetic (mpmath dps=50)
- Optimal curvature parameter (k* = 0.200)
- Point Generation: O(n) for basic sequence
- Prime Detection: O(n√n) for primality testing
- Quantum Correlations: O(p²) where p = number of primes
- 3D Rendering: Linear in visible points
- Base Data: ~8 bytes per point (coordinates)
- Prime Storage: Variable based on prime density
- Visualization: Dependent on browser capabilities
- High Precision: Additional overhead for mpmath calculations
- Point Limiting: Use reasonable point counts (1000-5000)
- Subset Rendering: Animation uses smaller subsets
- Caching: Automatic memoization of computed values
- Precision Toggle: Option to disable high precision for speed
- Prime Verification: Cross-check with known prime sequences
- Bell Inequalities: Validate against classical thresholds
- Z Framework: Consistency with universal form Z = A(B/c)
- Golden Ratio: Verify φ calculations to high precision
- Helical Patterns: Verify spiral geometry and frequency
- Prime Distribution: Check prime highlighting accuracy
- Correlation Lines: Validate quantum correlation visualization
- Parameter Effects: Confirm parameter sensitivity responses
Benchmarks on test system:
- 1000 points: ~2-3 seconds generation
- 2000 points: ~4-6 seconds with quantum analysis
- Animation (15 frames): ~30-45 seconds
- Memory usage: ~50-100 MB for typical visualizations
- Real-time Parameter Controls: Jupyter widget integration
- Enhanced Quantum Indicators: More sophisticated entanglement measures
- Multi-dimensional Projections: 4D/5D visualization capabilities
- Performance Optimization: GPU acceleration for large datasets
- Export Capabilities: High-resolution image and video export
The visualizer enables investigation of:
- Prime distribution patterns in curved space
- Quantum nonlocality analogs in number theory
- Parameter space exploration for optimal configurations
- Cross-dimensional correlations and embeddings
- Validation of theoretical predictions
- Import Errors: Ensure PYTHONPATH includes framework root
- Memory Issues: Reduce n_points for large visualizations
- Browser Performance: Use modern browsers with WebGL support
- Precision Errors: Verify mpmath installation and configuration
- "Insufficient data for correlation analysis": Too few primes generated
- "Invalid symbol": Plotly version compatibility issue
- "Memory error": Reduce point count or enable optimization
- Start with smaller point counts (500-1000) for testing
- Use animation mode sparingly due to computational cost
- Consider disabling quantum analysis for pure geometric visualization
- Ensure adequate system memory for high precision calculations
- README.md: Complete framework description
- MATH.md: Mathematical foundations and theory
- PROOFS.md: Formal mathematical proofs
- Core modules: axioms.py, domain.py for implementation details
- hologram.py: Prime hologram patterns
- earth_helix_visualizer.py: Helix trajectory demonstrations
- brute_force.py: Quantum correlation analysis foundations
- proof.py: Curvature optimization and k* = 0.200 derivation