hologram_visualizations - zfifteen/unified-framework GitHub Wiki

Advanced Hologram Visualizations for Z Framework

This document provides comprehensive examples and documentation for the enhanced hologram.py module, which supports advanced geometric visualizations relevant to the Z framework.

Overview

The enhanced hologram visualization system provides:

  • Modular Architecture: Class-based design with configurable parameters
  • Advanced Visualizations: Enhanced logarithmic spirals, Gaussian prime spirals, modular tori, and 5D projections
  • Interactive Exploration: Parameter variation and batch generation capabilities
  • Z Framework Integration: Uses golden ratio transforms and 5D helical embeddings
  • Comprehensive Documentation: Full API documentation and examples

Key Features

1. Enhanced Logarithmic Spirals

  • Configurable spiral rates and height scaling methods
  • Support for 2D and 3D projections
  • Prime highlighting with customizable colors and markers

2. Gaussian Prime Spirals

  • Multiple angle increment schemes (golden ratio, π-based, custom)
  • Optional connection lines between prime points
  • Helical coordinate mapping

3. Modular Tori

  • Configurable modular bases and torus parameters
  • Residue class filtering and coloring
  • Wireframe torus visualization

4. 5D Projections

  • Helical embeddings using Z framework transforms
  • Multiple projection types (helical, orthogonal, perspective)
  • Geodesic line visualization between primes

5. Interactive Parameter Exploration

  • Batch generation with parameter variations
  • Automated file saving and organization
  • Statistical analysis and reporting

Quick Start

from hologram import AdvancedHologramVisualizer

# Create visualizer with 1000 data points
visualizer = AdvancedHologramVisualizer(n_points=1000)

# Generate all visualizations and save to files
visualizer.visualize_all(save_plots=True, output_dir="./visualizations")

# Get statistics about the data
stats = visualizer.get_statistics()
print(f"Generated {stats['prime_count']} primes out of {stats['n_points']} points")

Detailed Examples

Example 1: Basic 3D Prime Geometry

from hologram import AdvancedHologramVisualizer

# Initialize with custom parameters
visualizer = AdvancedHologramVisualizer(
    n_points=2000,
    helix_freq=0.15,
    use_log_scale=True,
    figure_size=(14, 10)
)

# Create basic 3D prime geometry visualization
fig = visualizer.prime_geometry_3d(save_path="prime_geometry.png")

Example 2: Enhanced Logarithmic Spirals

# Different spiral configurations
spiral_configs = [
    {
        'spiral_rate': 0.1,
        'height_scale': 'sqrt',
        'projection': '3d'
    },
    {
        'spiral_rate': 0.2,
        'height_scale': 'log',
        'projection': '3d'
    },
    {
        'spiral_rate': 0.05,
        'height_scale': 'linear',
        'projection': '2d'
    }
]

for i, config in enumerate(spiral_configs):
    fig = visualizer.logarithmic_spiral(
        **config,
        save_path=f"spiral_{i+1}.png"
    )

Example 3: Gaussian Prime Spirals with Different Angle Schemes

# Golden ratio angle increments (recommended)
fig1 = visualizer.gaussian_prime_spiral(
    angle_increment='golden',
    connection_lines=True,
    save_path="gaussian_golden.png"
)

# π-based angle increments
fig2 = visualizer.gaussian_prime_spiral(
    angle_increment='pi',
    connection_lines=False,
    save_path="gaussian_pi.png"
)

# Custom angle increments
fig3 = visualizer.gaussian_prime_spiral(
    angle_increment='custom',
    connection_lines=True,
    save_path="gaussian_custom.png"
)

Example 4: Configurable Modular Tori

# Different modular bases and torus parameters
torus_configs = [
    {
        'mod1': 17,
        'mod2': 23,
        'torus_ratio': 3.0,
        'residue_filter': 6
    },
    {
        'mod1': 11,
        'mod2': 13,
        'torus_ratio': 2.5,
        'residue_filter': 4
    },
    {
        'mod1': 7,
        'mod2': 19,
        'torus_ratio': 4.0,
        'residue_filter': 8
    }
]

for i, config in enumerate(torus_configs):
    fig = visualizer.modular_torus(
        **config,
        save_path=f"torus_{i+1}.png"
    )

Example 5: 5D Projections with Z Framework

# Different 5D projection types
projection_configs = [
    {
        'projection_type': 'helical',
        'dimensions': (0, 1, 2)  # x, y, z coordinates
    },
    {
        'projection_type': 'orthogonal',
        'dimensions': (1, 2, 3)  # y, z, w coordinates
    },
    {
        'projection_type': 'perspective',
        'dimensions': (0, 2, 4)  # x, z, u coordinates
    }
]

for i, config in enumerate(projection_configs):
    fig = visualizer.projection_5d(
        **config,
        save_path=f"projection_5d_{i+1}.png"
    )

Example 6: Riemann Zeta Landscape

# Enhanced zeta landscape with custom parameters
fig = visualizer.riemann_zeta_landscape(
    real_range=(0.1, 1.0),
    imag_range=(10, 100),
    resolution=150,
    save_path="zeta_landscape.png"
)

Example 7: Interactive Parameter Exploration

# Run comprehensive exploration with multiple parameter sets
visualizer.interactive_exploration(
    save_plots=True,
    output_dir="./comprehensive_analysis"
)

# Get detailed statistics
stats = visualizer.get_statistics()
print("Analysis Statistics:")
print(f"- Data points: {stats['n_points']}")
print(f"- Prime count: {stats['prime_count']}")
print(f"- Prime density: {stats['prime_density']:.4f}")
print(f"- Helix frequency: {stats['helix_frequency']}")

if stats['embedding_statistics']:
    print("5D Embedding Statistics:")
    print(f"- Mean coordinates: {stats['embedding_statistics']['mean']}")
    print(f"- Std deviation: {stats['embedding_statistics']['std']}")

Advanced Usage

Custom Visualization Parameters

# Customize visualization appearance
visualizer = AdvancedHologramVisualizer(n_points=5000)

# Modify color scheme
visualizer.prime_color = 'gold'
visualizer.prime_marker = '^'
visualizer.prime_size = 75
visualizer.nonprime_color = 'darkblue'
visualizer.nonprime_alpha = 0.4

# Generate visualization with custom colors
fig = visualizer.prime_geometry_3d()

Integrating with Z Framework Core Modules

# Use with Z framework core modules (when available)
try:
    from core.domain import UniversalZetaShift
    from core.axioms import universal_invariance
    
    # Create custom zeta shifts for specific analysis
    zeta_shift = UniversalZetaShift(10, 20, 30)
    z_value = zeta_shift.compute_z()
    
    # Integrate with hologram visualizations
    visualizer = AdvancedHologramVisualizer(n_points=1000)
    fig = visualizer.projection_5d(projection_type='helical')
    
except ImportError:
    print("Core Z framework modules not available - using local implementations")

Batch Processing and Analysis

# Analyze different scales and parameters
scales = [500, 1000, 2000, 5000]
results = {}

for scale in scales:
    visualizer = AdvancedHologramVisualizer(n_points=scale)
    stats = visualizer.get_statistics()
    results[scale] = stats
    
    # Generate scaled visualizations
    output_dir = f"./analysis_scale_{scale}"
    visualizer.interactive_exploration(save_plots=True, output_dir=output_dir)

# Compare results across scales
for scale, stats in results.items():
    print(f"Scale {scale}: {stats['prime_density']:.4f} prime density")

API Reference

AdvancedHologramVisualizer Class

Constructor Parameters

  • n_points (int): Number of data points to generate (default: 5000)
  • helix_freq (float): Frequency for helical coordinates (default: 0.1003033)
  • use_log_scale (bool): Use logarithmic scaling for y-axis (default: False)
  • figure_size (tuple): Size for matplotlib figures (default: (12, 8))

Key Methods

prime_geometry_3d(save_path=None)

Create 3D prime geometry visualization with ZetaShift transforms.

logarithmic_spiral(spiral_rate=0.1, height_scale='sqrt', projection='3d', save_path=None)

Enhanced logarithmic spiral with configurable parameters.

  • spiral_rate: Rate of spiral growth
  • height_scale: Height scaling method ('sqrt', 'log', 'linear')
  • projection: Projection type ('3d', '2d')
gaussian_prime_spiral(angle_increment='golden', connection_lines=True, save_path=None)

Gaussian prime spirals with configurable angle increments.

  • angle_increment: Angle increment type ('golden', 'pi', 'custom')
  • connection_lines: Whether to draw lines between primes
modular_torus(mod1=17, mod2=23, torus_ratio=3.0, residue_filter=6, save_path=None)

Modular torus visualization with configurable parameters.

  • mod1, mod2: Modular bases
  • torus_ratio: Ratio of minor to major radius
  • residue_filter: Residue class filter
projection_5d(projection_type='helical', dimensions=(0,1,2), save_path=None)

5D projections using helical embeddings from Z framework.

  • projection_type: Type of projection ('helical', 'orthogonal', 'perspective')
  • dimensions: Which 3 dimensions to project
riemann_zeta_landscape(real_range=(0.1,1.0), imag_range=(10,50), resolution=100, save_path=None)

Enhanced Riemann zeta landscape visualization.

interactive_exploration(save_plots=False, output_dir="./hologram_output")

Interactive exploration of all visualization types with parameter variations.

get_statistics()

Get statistical information about computed data including prime counts, density, and 5D embedding statistics.

Mathematical Background

Golden Ratio Transforms

The visualizations use golden ratio curvature transformations:

θ'(n,k) = φ·((n mod φ)/φ)^k

where φ ≈ 1.618 is the golden ratio and k is the curvature parameter.

5D Helical Embeddings

Points are embedded in 5D space using:

  • x = √n · cos(θ_D)
  • y = √n · sin(θ_E)
  • z = Z/(e²) (frame normalized)
  • w = log(n+1) (invariant dimension)
  • u = n/c (relativistic dimension)

Z Framework Integration

The system integrates with the Z framework's universal form Z = A(B/c) where:

  • A is frame-dependent quantity
  • B is rate
  • c is the universal invariant (speed of light)

Performance Notes

  • For large datasets (n_points > 10,000), some visualizations may take several minutes
  • 5D projections are computationally intensive and recommended for n_points < 5,000
  • File saving adds overhead but enables batch analysis
  • Memory usage scales approximately O(n_points) for most visualizations

Troubleshooting

Common Issues

  1. Import Errors: Ensure you're running from the correct directory and PYTHONPATH is set
  2. Memory Issues: Reduce n_points for large visualizations
  3. Slow Performance: Use smaller datasets for testing, larger for final analysis
  4. Missing Plots: Check that matplotlib backend is properly configured for your environment

Environment Setup

# Set up environment
cd /path/to/unified-framework/src/number-theory/prime-curve
export PYTHONPATH=/path/to/unified-framework

# Install dependencies
pip install numpy matplotlib scipy

# Run basic test
python3 -c "from hologram import AdvancedHologramVisualizer; v = AdvancedHologramVisualizer(100); print('Success!')"

This enhanced hologram visualization system provides powerful tools for exploring geometric phenomena in number theory through the lens of the Z framework, enabling both mathematical research and educational visualization.

⚠️ **GitHub.com Fallback** ⚠️