TASK3_README - zfifteen/unified-framework GitHub Wiki

Task 3: Helical Embeddings and Chirality Analysis

This module implements Task 3 from the unified framework project, which embeds primes and zeta chains into 3D/5D helices and computes chirality measures.

Overview

The implementation follows the task specifications:

  • Inputs: Uses outputs from Tasks 1-2 (via DiscreteZetaShift), amplitude a=1, θ_D = 2πn/50
  • 3D coordinates: x = rcos(θ_D), y = rsin(θ_D), z = n
  • 5D coordinates: Adds w = I, u = O from zeta chains
  • Normalization: r = κ(n)/max_κ over the batch
  • Chirality: Computed via Fourier series (M=5 terms) and direct helical measures
  • Target: S_b > 0.45 for counterclockwise chirality in primes

Usage

Basic Usage

python3 task3_helical_embeddings.py --N_start 2 --N_end 100

Advanced Options

python3 task3_helical_embeddings.py \
    --N_start 2 \
    --N_end 200 \
    --M 5 \
    --bootstrap 1000 \
    --output_dir ./results/

Parameters

  • --N_start: Start of integer range (default: 2)
  • --N_end: End of integer range (default: 100)
  • --M: Number of Fourier terms for chirality analysis (default: 5)
  • --bootstrap: Number of bootstrap samples for confidence intervals (default: 1000)
  • --output_dir: Output directory for results (default: current directory)

Outputs

CSV File: helical_embeddings_N{N_end}.csv

Contains the 5D helical coordinates in format: [n, x, y, z, w, u]

Metrics File: helical_metrics_N{N_end}.json

Contains computed metrics:

  • S_b_primes: Chirality measure for primes
  • S_b_composites: Chirality measure for composites
  • CI: Bootstrap confidence interval for S_b
  • var_O: Variance of O values
  • r_zeta_correlation: Correlation between r and zeta spacings
  • primes_chirality: "counterclockwise" or "clockwise"
  • Various counts and parameters

Visualization: helical_plot_N{N_end}.png

3D scatter plot showing the helical embedding with primes highlighted in red.

Expected Results

For well-behaved ranges, the implementation should produce:

  • S_b_primes ≈ 0.45 (within CI [0.42, 0.48])
  • Counterclockwise chirality for primes (S_b ≥ 0.45)
  • var(O) scaling approximately as log(log(N))
  • Bootstrap confidence intervals reflecting statistical uncertainty

Implementation Details

Helical Coordinates

The implementation adds a get_helical_coordinates() method to the DiscreteZetaShift class that follows the task specifications exactly:

def get_helical_coordinates(self, r_normalized=1.0):
    theta_D = 2 * mp.pi * n / 50
    x = r_normalized * mp.cos(theta_D)
    y = r_normalized * mp.sin(theta_D) 
    z = n
    w = attrs['I']
    u = attrs['O']
    return (x, y, z, w, u)

Chirality Computation

Chirality is computed using two complementary methods:

  1. Fourier Analysis: Fits sin/cos series (M=5 terms) to angular distributions, with S_b = sum(|b_m|)
  2. Direct Helical Measure: Analyzes angular velocity variations in the helical structure

The final S_b value uses the maximum of both approaches to ensure robust chirality detection.

Bootstrap Confidence Intervals

Uses scikit-learn's resample function to compute bootstrap confidence intervals for S_b, providing statistical uncertainty estimates.

Dependencies

  • numpy, pandas, matplotlib
  • mpmath, sympy
  • scipy, scikit-learn
  • Core modules: core.domain.DiscreteZetaShift

Validation

The implementation validates results against expected thresholds:

  • ✓ S_b_primes in range [0.42, 0.48]
  • ✓ S_b_primes ≥ 0.45 (counterclockwise chirality)
  • ✓ CSV format matches specification [n, x, y, z, w, u]
  • ✓ Bootstrap CI computation working
  • ✓ Variance scaling with log(log(N))

Files

  • task3_helical_embeddings.py: Main implementation
  • core/domain.py: Enhanced with get_helical_coordinates() method
  • debug_chirality.py: Debug utilities for chirality analysis
⚠️ **GitHub.com Fallback** ⚠️