PURE_MATH_V2 - zfifteen/unified-framework GitHub Wiki

🧠 Z5D Prime Predictor

Function Purpose

Predict the nth prime ( p_n ), for integers ( n \geq 6 ), using a closed-form symbolic expression with calibrated corrections.


Primary Equation

Let:

  • ( P(n) = n \cdot \left[ \ln n + \ln(\ln n) - 1 + \frac{\ln(\ln n) - 2}{\ln n} \right] )
  • ( D(n) = \left( \frac{\ln P(n)}{e^4} \right)^2 )
  • ( E(n) = P(n)^{-1/3} )

Then: [ p_{\text{Z5D}}(n) = P(n) \cdot \left[ 1 + c \cdot D(n) + k_\star \cdot E(n) \right] ]

  • Use natural logarithms.
  • Constants:
    • ( c = -0.00247 )
    • ( k_\star = 0.04449 )

Small-n Behavior (Guard Clause)

To ensure numerical safety for small (n), define:

If n < 6:
    Return exact values:
    p_Z5D(1) = 2
    p_Z5D(2) = 3
    p_Z5D(3) = 5
    p_Z5D(4) = 7
    p_Z5D(5) = 11

Required Mathematical Operations

  • Natural logarithm: ln(x)
  • Exponentiation: x^y
  • Arithmetic: +, -, ×, ÷
  • Constant: Euler’s number ( e ), raised to power 4

✅ Validated Attributes

Attribute Status
Symbolic / Closed-Form
Requires no data or iteration
Correct asymptotic growth
Vectorizable
Calibrated for low MRE

🧭 Summary Notes

  • Strictly avoid interpreting P(n) as involving factorial growth—Z5D behaves as ( O(n \log n) ), not ( O(n!) ).
  • Do not use this to count primes ≤ x. It predicts the value of the nth prime, not π(x).
  • Ensure numerical stability by clamping evaluations to ( n \geq 6 ), or explicitly handling ( n \in [1, 5] ).
  • Intermediate variables must be reused to avoid drift.