PURE_MATH_V2 - zfifteen/unified-framework GitHub Wiki
🧠 Z5D Prime Predictor
Function Purpose
Predict the nth prime ( p_n ), for integers ( n \geq 6 ), using a closed-form symbolic expression with calibrated corrections.
Primary Equation
Let:
- ( P(n) = n \cdot \left[ \ln n + \ln(\ln n) - 1 + \frac{\ln(\ln n) - 2}{\ln n} \right] )
- ( D(n) = \left( \frac{\ln P(n)}{e^4} \right)^2 )
- ( E(n) = P(n)^{-1/3} )
Then: [ p_{\text{Z5D}}(n) = P(n) \cdot \left[ 1 + c \cdot D(n) + k_\star \cdot E(n) \right] ]
- Use natural logarithms.
- Constants:
- ( c = -0.00247 )
- ( k_\star = 0.04449 )
Small-n Behavior (Guard Clause)
To ensure numerical safety for small (n), define:
If n < 6:
Return exact values:
p_Z5D(1) = 2
p_Z5D(2) = 3
p_Z5D(3) = 5
p_Z5D(4) = 7
p_Z5D(5) = 11
Required Mathematical Operations
- Natural logarithm: ln(x)
- Exponentiation: x^y
- Arithmetic: +, -, ×, ÷
- Constant: Euler’s number ( e ), raised to power 4
✅ Validated Attributes
Attribute | Status |
---|---|
Symbolic / Closed-Form | ✅ |
Requires no data or iteration | ✅ |
Correct asymptotic growth | ✅ |
Vectorizable | ✅ |
Calibrated for low MRE | ✅ |
🧭 Summary Notes
- Strictly avoid interpreting P(n) as involving factorial growth—Z5D behaves as ( O(n \log n) ), not ( O(n!) ).
- Do not use this to count primes ≤ x. It predicts the value of the nth prime, not π(x).
- Ensure numerical stability by clamping evaluations to ( n \geq 6 ), or explicitly handling ( n \in [1, 5] ).
- Intermediate variables must be reused to avoid drift.