MODULAR_TOPOLOGY_SUITE - zfifteen/unified-framework GitHub Wiki

Modular Topology Visualization Suite

A comprehensive visualization suite for discrete data using helical and modular-geodesic embeddings, built on the Z Framework's mathematical foundations.

Features

  • Generalized θ′(n, k) Embedding: Extends the golden ratio modular transformation for arbitrary discrete datasets
  • 3D/5D Helical Visualizations: Interactive helical and spiral plots using Plotly
  • Pattern Analysis: Automated detection of clusters, symmetries, and anomalies in geometric space
  • Web Interface: Flask/Dash-based interactive web application
  • Data Export: Publication-quality export functionality for coordinates, images, and analysis reports
  • High Precision: Mathematical computations with mpmath (50 decimal precision)

Components

Core Classes

  1. GeneralizedEmbedding: Implements θ′(n, k) transformations and coordinate generation
  2. TopologyAnalyzer: Detects patterns, clusters, symmetries, and anomalies
  3. VisualizationEngine: Creates interactive 3D/5D visualizations
  4. DataExporter: Handles export of coordinates, reports, and images

Applications

  1. modular_topology_suite.py: Core mathematical and visualization functionality
  2. topology_web_interface.py: Interactive web interface using Dash
  3. cli_demo.py: Command-line interface for batch processing

Usage

Command Line Interface

# Analyze prime numbers with cluster detection
python3 cli_demo.py --dataset primes --limit 200 --k 0.3 --analyze-clusters --show-summary

# Analyze Fibonacci sequence with full analysis
python3 cli_demo.py --dataset fibonacci --limit 100 --analyze-clusters --analyze-symmetries --analyze-anomalies --export-coords --export-report

# Custom dataset analysis
python3 cli_demo.py --dataset custom --file data.txt --k 0.25 --modulus 2.718 --export-images

Web Interface

# Launch web interface
python3 src/applications/topology_web_interface.py
# Open browser to http://localhost:8050

Python API

from modular_topology_suite import GeneralizedEmbedding, TopologyAnalyzer, VisualizationEngine

# Initialize components
embedding = GeneralizedEmbedding(modulus=1.618)
analyzer = TopologyAnalyzer()
visualizer = VisualizationEngine()

# Generate data and embeddings
sequence = [2, 3, 5, 7, 11, 13, 17, 19, 23]
theta_transformed = embedding.theta_prime_transform(sequence, k=0.3)
coordinates = embedding.helical_5d_embedding(sequence, theta_transformed)

# Analyze patterns
clusters, stats = analyzer.detect_clusters(coordinates)
symmetries = analyzer.detect_symmetries(coordinates)
anomalies, scores = analyzer.detect_anomalies(coordinates)

# Create visualizations
fig_3d = visualizer.plot_3d_helical_embedding(coordinates)
fig_clusters = visualizer.plot_cluster_analysis(coordinates, clusters, stats)

Mathematical Foundations

θ′(n, k) Transformation

The generalized modular-geodesic embedding:

θ′(n, k) = modulus · ((n mod modulus)/modulus)^k

Where:

  • n is the input sequence value
  • k is the curvature parameter (typically 0.3 for optimal prime enhancement)
  • modulus is the modular base (φ ≈ 1.618 for golden ratio)

5D Helical Embedding

Maps discrete sequences to 5D helical coordinates:

x = a * cos(θ_D)
y = a * sin(θ_E) 
z = κ(n) = d(n) · ln(n+1)/e²
w = normalized intensity
u = normalized transformed values

Curvature Function

Frame-normalized curvature for geodesic analysis:

κ(n) = d(n) · ln(n+1)/e²

Where d(n) is the number of divisors of n.

Applications

Prime Number Analysis

  • Reveals clustering patterns in prime distributions
  • Detects geometric anomalies and symmetries
  • Optimal curvature parameter k* ≈ 0.3 for 15% density enhancement

Integer Sequence Visualization

  • Fibonacci sequences show golden ratio spiral patterns
  • Mersenne numbers exhibit exponential growth visualizations
  • Custom sequences reveal hidden geometric structures

Network Data Analysis

  • Node connectivity patterns in helical space
  • Community detection through geometric clustering
  • Anomaly detection in network topologies

Export Capabilities

Coordinate Data

  • CSV format for spreadsheet analysis
  • JSON format for web applications
  • HDF5 format for large datasets

Visualizations

  • PNG/PDF for publications
  • HTML for interactive web sharing
  • SVG for vector graphics

Analysis Reports

  • Comprehensive JSON reports with:
    • Cluster statistics and properties
    • Symmetry analysis results
    • Anomaly detection metrics
    • Coordinate statistics

Testing

Run the comprehensive test suite:

export PYTHONPATH=/path/to/unified-framework
python3 tests/test_modular_topology_suite.py

The test suite covers:

  • Mathematical accuracy of transformations
  • Visualization component functionality
  • Data export/import capabilities
  • Performance with large datasets
  • Integration workflows

Dependencies

  • numpy: Numerical computations
  • matplotlib: 2D plotting backend
  • plotly: Interactive 3D visualizations
  • dash: Web interface framework
  • pandas: Data manipulation
  • scikit-learn: Machine learning algorithms
  • scipy: Scientific computing
  • mpmath: High-precision arithmetic
  • sympy: Symbolic mathematics

Performance

  • Small datasets (< 100 points): Sub-second processing
  • Medium datasets (100-1000 points): ~2 seconds
  • Large datasets (1000+ points): Scales linearly with high precision maintained

Integration with Z Framework

The visualization suite extends the existing Z Framework capabilities:

  • Builds upon src/core/domain.py DiscreteZetaShift embeddings
  • Uses src/core/axioms.py mathematical foundations
  • Integrates with existing hologram visualizations in src/number-theory/prime-curve/
  • Maintains high-precision arithmetic standards (mpmath dps=50)

Educational Applications

  • Interactive exploration of number theory concepts
  • Visualization of modular arithmetic properties
  • Geometric interpretation of prime distributions
  • Pattern recognition in discrete sequences

Research Applications

  • Analysis of prime number distributions
  • Investigation of integer sequence properties
  • Network topology analysis
  • Anomaly detection in discrete data
  • Publication-ready visualization generation

Future Extensions

  • Support for complex number sequences
  • Additional clustering algorithms
  • Real-time data streaming capabilities
  • Machine learning pattern classification
  • Integration with mathematical databases
⚠️ **GitHub.com Fallback** ⚠️