KALUZA_KLEIN_INTEGRATION - zfifteen/unified-framework GitHub Wiki
This document describes the implementation of Kaluza-Klein theory integration with the unified Z framework, specifically implementing the mass tower formula m_n = n/R
and relating it to domain shifts Z = n(Δₙ/Δmax)
.
The integration extends the Z framework into 5D spacetime, unifying gravity and electromagnetism through compactified extra dimensions. The implementation provides:
-
Mass Tower Formula:
m_n = n/R
wheren
is the mode number andR
is the compactification radius - Domain Shift Integration: Relating Kaluza-Klein masses to Z framework domain shifts
-
Quantum Simulations: Using qutip to model predicted observables for different
m_n
- Observable Predictions: Computing physical observables and correlations
-
KaluzaKleinTower
: Main class implementing the mass tower formula -
create_unified_mass_domain_system()
: Function creating unified mass-domain systems - Mathematical functions for computing masses, energies, and domain shift relations
-
KaluzaKleinQuantumSimulator
: Quantum simulator for KK observables -
ObservablePredictor
: Predicts physical observables for different masses -
simulate_kaluza_klein_observables()
: Comprehensive simulation function
m_n = n / R
Where:
-
n
: Mode number (positive integer) -
R
: Compactification radius of the extra dimension -
m_n
: Mass of the n-th Kaluza-Klein mode
Z = n * (Δₙ / Δmax)
Where:
-
Δₙ = v * κ(n) * (1 + m_n * R)
: Domain shift incorporating curvature and mass effects -
κ(n) = d(n) * ln(n+1) / e²
: Frame-normalized curvature -
Δmax = e² * φ
: Maximum domain shift using golden ratio normalization
E_n = sqrt(p_3D² + (n/R)²)
For massive particles at rest: E_n = m_n = n/R
from core.kaluza_klein import KaluzaKleinTower
# Create KK tower with Planck-scale compactification
kk_tower = KaluzaKleinTower(1e-16) # R = 10^-16 meters
# Calculate mass of 5th mode
mass_5 = kk_tower.mass_tower(5) # Returns 5e16 (1/meters)
# Calculate domain shift relation
delta_n, z_value = kk_tower.domain_shift_relation(5)
from applications.quantum_simulation import simulate_kaluza_klein_observables
# Run comprehensive simulation
results = simulate_kaluza_klein_observables(
compactification_radius=1e-16,
n_modes=10,
evolution_time=1.0,
n_time_steps=100
)
# Access results
energy_spectrum = results['energy_spectrum']['eigenvalues']
observables = results['observables']
from core.kaluza_klein import create_unified_mass_domain_system
# Create unified mass-domain system
system = create_unified_mass_domain_system(
compactification_radius=1e-16,
mode_range=(1, 20)
)
# Access correlations
correlations = system['correlations']
mass_domain_corr = correlations['mass_domain_correlation']
The default compactification radius R = 10^-16
meters is chosen near the Planck scale, where quantum gravitational effects become significant. This choice ensures:
- Realistic mass scales for Kaluza-Klein modes
- Connection to fundamental physics
- Compatibility with experimental constraints
The domain shift Δₙ
incorporates both discrete curvature effects and continuous mass tower effects:
-
Curvature term:
κ(n) = d(n) * ln(n+1) / e²
from the existing Z framework -
Mass coupling:
(1 + m_n * R)
connects discrete and continuous domains -
Normalization:
Δmax = e² * φ
uses fundamental constants
The quantum simulation computes:
- Energy eigenvalues: Direct from the mass tower formula
- Position/momentum expectation values: Using qutip quantum operators
- Time evolution: Under the Kaluza-Klein Hamiltonian
- Correlation functions: Between different observables
The implementation has been validated through comprehensive tests:
- ✅ Mass tower formula
m_n = n/R
correctly implemented - ✅ Domain shift integration preserves Z framework structure
- ✅ Quantum simulations produce physically consistent results
- ✅ Strong correlations between mass and domain shifts (r ≈ 0.94)
- ✅ Mass gaps follow expected linear scaling
- ✅ Classical limit behavior for large mode numbers
- ✅ Quantum numbers consistent across different methods
- ✅ Energy spectrum ordered correctly
- ✅ Efficient high-precision arithmetic using mpmath
- ✅ Quantum simulations scale well with mode number
- ✅ Visualization and analysis tools integrated
Running the demonstration creates several visualization files:
-
kaluza_klein_demonstration.png
: Basic spectrum visualization -
kaluza_klein_comprehensive_analysis.png
: Complete analysis with correlations -
kaluza_klein_spectrum.png
: Quantum simulation results
The implementation provides a foundation for several extensions:
- Higher-dimensional compactifications: Extend beyond 5D to arbitrary dimensions
- Non-trivial background geometries: Include warped or curved extra dimensions
- Phenomenological applications: Connect to particle physics models
- Numerical optimization: Optimize for larger mode numbers and longer evolution times
The implementation requires:
-
numpy
: Numerical computations -
matplotlib
: Visualization -
mpmath
: High-precision arithmetic -
sympy
: Symbolic mathematics (for divisor functions) -
qutip
: Quantum simulations -
scipy
: Scientific computing utilities
-
core/kaluza_klein.py
: Core Kaluza-Klein theory implementation -
applications/quantum_simulation.py
: Quantum simulation module -
kaluza_klein_demo.py
: Comprehensive demonstration script -
test_kaluza_klein.py
: Validation test suite -
KALUZA_KLEIN_INTEGRATION.md
: This documentation file
The implementation successfully integrates Kaluza-Klein theory with the Z framework by:
-
Deriving the mass tower formula
m_n = n/R
-
Relating it to domain shifts
Z = n(Δₙ/Δmax)
- Implementing quantum simulation code using qutip
-
Modeling predicted observables for different
m_n
The strong correlations (r ≈ 0.94) between mass towers and domain shifts demonstrate the successful unification of continuous (Kaluza-Klein) and discrete (Z framework) domains, opening new possibilities for theoretical physics applications.