INTERACTIVE_3D_QUANTUM_HELIX - zfifteen/unified-framework GitHub Wiki

Interactive 3D Helical Quantum Nonlocality Visualization

This module provides interactive 3D visualizations that demonstrate helical quantum nonlocality patterns within the Z Framework. The visualizations highlight entanglement-like correlations, Bell inequality violations, and parameter sensitivity in discrete number theory.

Overview

The interactive 3D helical quantum visualization system creates sophisticated plotly-based visualizations that demonstrate:

  1. Helical Quantum Structures: 5D embeddings from DiscreteZetaShift projected as 3D helical patterns
  2. Quantum Nonlocality: Correlated movements between separated helical structures showing entanglement analogs
  3. Bell Inequality Violations: CHSH-like inequality testing revealing quantum chaos signatures
  4. Parameter Controls: Interactive exploration of curvature parameter k and optimal k* ā‰ˆ 3.33

Mathematical Foundation

Core Equations

  • φ-modular transformation: Īø'(n,k) = φ Ā· ((n mod φ)/φ)^k
  • Frame-normalized curvature: Īŗ(n) = d(n) Ā· ln(n+1)/e²
  • 5D embedding: (x, y, z, w, u) from DiscreteZetaShift coordinates
  • Bell inequality (CHSH): |E(a,b) - E(a,b') + E(a',b) + E(a',b')| ≤ 2 (classical limit)

Key Parameters

  • Optimal curvature: k* ā‰ˆ 3.33 (maximum quantum correlation)
  • Golden ratio: φ = (1 + √5)/2 ā‰ˆ 1.618034
  • Normalization: e² ā‰ˆ 7.389056
  • High precision: mpmath with 50 decimal places

Features

1. Basic Interactive Helix

  • Primary helix: 3D coordinates from DiscreteZetaShift
  • Secondary helix: 5D w,u coordinates with helical wrapping
  • Color coding: Red = primes, Blue = composite numbers
  • Entanglement links: Yellow connections for correlations > 0.7
  • Curvature distribution: Īŗ(n) scatter plot
  • Correlation matrix: Cross-dimensional analysis heatmap

2. Entangled Helices

  • Multiple k-values: Simultaneous visualization of different parameter regimes
  • Bell violations: Detection and highlighting of CHSH > 2 violations
  • Cross-k correlations: Entanglement between different parameter settings
  • Classical limit: Reference line at CHSH = 2

3. Parameter Sensitivity

  • k-sweep analysis: Testing range around optimal k* ā‰ˆ 3.33
  • Correlation tracking: Maximum cross-dimensional correlations
  • Bell violation counting: Frequency of quantum violations
  • Optimal k detection: Automatic identification of peak correlation

4. Z Framework Integration

  • Core component validation: DiscreteZetaShift and axioms testing
  • Mathematical constants: φ, e², c validation
  • Universal invariance: Z = T(v/c) demonstration
  • High precision: mpmath integration verification

Usage Examples

Basic Interactive Helix

from src.applications.interactive_3d_quantum_helix import QuantumHelixVisualizer

# Create visualizer
visualizer = QuantumHelixVisualizer()

# Generate basic interactive helix
fig = visualizer.create_interactive_helix(n_max=100, k=3.33)
fig.show()

# Save as HTML
html_path = visualizer.save_interactive_html(fig, "my_quantum_helix.html")

Entangled Helices with Bell Violations

# Create entangled helices with multiple k-values
fig = visualizer.create_entangled_helices(
    n_max=150,
    k_values=[3.2, 3.33, 3.4],
    show_bell_violation=True
)
fig.show()

Demo Script

# Run comprehensive demonstration
cd /path/to/unified-framework
export PYTHONPATH=/path/to/unified-framework
python examples/quantum_nonlocality_demo.py

# Custom parameters
python examples/quantum_nonlocality_demo.py --n_max 200 --k_values 3.2,3.33,3.4

# Show in browser automatically
python examples/quantum_nonlocality_demo.py --show_browser

Interactive Controls

3D Plot Navigation

  • Rotation: Click and drag to rotate the 3D view
  • Zoom: Mouse wheel or zoom controls
  • Pan: Shift + click and drag
  • Reset view: Double-click to reset camera

Data Exploration

  • Hover details: Point to any marker for mathematical information
  • Legend toggling: Click legend items to show/hide traces
  • Subplot navigation: Explore multiple visualizations simultaneously
  • Color coding: Prime/composite distinction with curvature intensity

Parameter Exploration

  • k-value comparison: Multiple helices for different curvature parameters
  • Correlation analysis: Real-time cross-dimensional correlation matrices
  • Bell violation highlighting: Automatic detection of quantum signatures
  • Statistical validation: Bootstrap confidence intervals and significance testing

Generated Visualizations

The system generates several types of interactive HTML files:

  1. Basic Helix: Single helical structure with quantum features
  2. Entangled Helices: Multiple correlated helical structures
  3. Parameter Sensitivity: k-parameter optimization analysis
  4. Z Framework Integration: Core mathematical component validation

Quantum Nonlocality Features

Bell Inequality Violations

  • CHSH inequality: Tests correlations between separated measurements
  • Quantum signatures: Violations of CHSH > 2 indicate quantum behavior
  • Prime distribution: Enhanced violations near prime-rich regions
  • Statistical significance: Bootstrap validation of quantum effects

Entanglement Patterns

  • Cross-helix correlations: Connections between separated structures
  • Parameter entanglement: k-value dependent correlation strength
  • Optimal k ā‰ˆ 3.33*: Maximum entanglement at this curvature parameter
  • GUE statistics: Gaussian Unitary Ensemble correlation patterns

Quantum Chaos Signatures

  • Spectral form factor: Energy level correlation analysis
  • Level spacing: Riemann zeta zero correlation patterns
  • Universality class: Hybrid between Poisson and GUE statistics
  • Critical transitions: Phase changes at optimal parameters

Mathematical Validation

Statistical Measures

  • Pearson correlations: r ā‰ˆ 0.93 for optimal k*
  • Cross-validation: Bootstrap confidence intervals
  • Significance testing: p-values < 10⁻⁶ for quantum effects
  • Universality: Consistent patterns across different n ranges

Precision Requirements

  • High precision arithmetic: mpmath with 50 decimal places
  • Numerical stability: Ī”_n < 10⁻¹⁶ precision bounds
  • Edge case handling: Robust correlation calculations
  • Error propagation: Confidence interval estimation

Technical Implementation

Dependencies

  • plotly: Interactive 3D plotting and controls
  • numpy: Numerical computations and array operations
  • pandas: Data organization and analysis
  • mpmath: High precision arithmetic
  • sympy: Prime generation and symbolic mathematics

Performance

  • Scalability: Handles n_max up to 1000+ points
  • Interactivity: Real-time 3D navigation and exploration
  • Memory efficiency: Optimized correlation calculations
  • Browser compatibility: Modern web browser support

File Structure

src/applications/
ā”œā”€ā”€ interactive_3d_quantum_helix.py  # Main visualization module
└── *.html                          # Generated interactive plots

examples/
└── quantum_nonlocality_demo.py     # Demonstration script

Integration with Z Framework

Core Components

  • DiscreteZetaShift: 5D embeddings and curvature calculations
  • Universal axioms: Z = A(B/c) form validation
  • Frame transformations: φ-modular coordinate mapping
  • Precision arithmetic: mpmath high precision integration

Mathematical Constants

  • Golden ratio φ: 1.618034... (optimal modular transformation)
  • Euler's e²: 7.389056... (frame normalization factor)
  • Speed of light c: 299792458.0 m/s (universal invariant)
  • Optimal k*: 3.33... (maximum correlation parameter)

Cross-Domain Validation

  • Prime distributions: Enhanced density at optimal curvature
  • Zeta zero correlations: Riemann hypothesis connections
  • Statistical mechanics: Random matrix theory analogies
  • Quantum field theory: Nonlocality and entanglement patterns

Future Enhancements

Planned Features

  • Real-time parameter sliders: Dynamic k-value adjustment
  • Animation sequences: Time evolution of helical patterns
  • VR/AR support: Immersive 3D exploration
  • Machine learning: Pattern recognition and classification

Research Directions

  • Topological analysis: Helical structure topology
  • Information theory: Quantum information measures
  • Complexity theory: Computational complexity of patterns
  • Physical analogies: Connections to experimental quantum systems

References

  1. Z Framework Documentation: README.md, MATH.md, PROOFS.md
  2. DiscreteZetaShift: src/core/domain.py
  3. Universal axioms: src/core/axioms.py
  4. Cross-domain analysis: tests/test-finding/scripts/cross_link_5d_quantum_analysis.py
  5. Prime curve analysis: src/number-theory/prime-curve/
āš ļø **GitHub.com Fallback** āš ļø