INTERACTIVE_3D_QUANTUM_HELIX - zfifteen/unified-framework GitHub Wiki
This module provides interactive 3D visualizations that demonstrate helical quantum nonlocality patterns within the Z Framework. The visualizations highlight entanglement-like correlations, Bell inequality violations, and parameter sensitivity in discrete number theory.
The interactive 3D helical quantum visualization system creates sophisticated plotly-based visualizations that demonstrate:
- Helical Quantum Structures: 5D embeddings from DiscreteZetaShift projected as 3D helical patterns
- Quantum Nonlocality: Correlated movements between separated helical structures showing entanglement analogs
- Bell Inequality Violations: CHSH-like inequality testing revealing quantum chaos signatures
- Parameter Controls: Interactive exploration of curvature parameter k and optimal k* ā 3.33
-
Ļ-modular transformation:
Īø'(n,k) = Ļ Ā· ((n mod Ļ)/Ļ)^k
-
Frame-normalized curvature:
κ(n) = d(n) · ln(n+1)/e²
-
5D embedding:
(x, y, z, w, u)
from DiscreteZetaShift coordinates -
Bell inequality (CHSH):
|E(a,b) - E(a,b') + E(a',b) + E(a',b')| ⤠2
(classical limit)
-
Optimal curvature:
k* ā 3.33
(maximum quantum correlation) -
Golden ratio:
Ļ = (1 + ā5)/2 ā 1.618034
-
Normalization:
e² ā 7.389056
- High precision: mpmath with 50 decimal places
- Primary helix: 3D coordinates from DiscreteZetaShift
- Secondary helix: 5D w,u coordinates with helical wrapping
- Color coding: Red = primes, Blue = composite numbers
- Entanglement links: Yellow connections for correlations > 0.7
- Curvature distribution: Īŗ(n) scatter plot
- Correlation matrix: Cross-dimensional analysis heatmap
- Multiple k-values: Simultaneous visualization of different parameter regimes
- Bell violations: Detection and highlighting of CHSH > 2 violations
- Cross-k correlations: Entanglement between different parameter settings
- Classical limit: Reference line at CHSH = 2
- k-sweep analysis: Testing range around optimal k* ā 3.33
- Correlation tracking: Maximum cross-dimensional correlations
- Bell violation counting: Frequency of quantum violations
- Optimal k detection: Automatic identification of peak correlation
- Core component validation: DiscreteZetaShift and axioms testing
- Mathematical constants: Ļ, e², c validation
- Universal invariance: Z = T(v/c) demonstration
- High precision: mpmath integration verification
from src.applications.interactive_3d_quantum_helix import QuantumHelixVisualizer
# Create visualizer
visualizer = QuantumHelixVisualizer()
# Generate basic interactive helix
fig = visualizer.create_interactive_helix(n_max=100, k=3.33)
fig.show()
# Save as HTML
html_path = visualizer.save_interactive_html(fig, "my_quantum_helix.html")
# Create entangled helices with multiple k-values
fig = visualizer.create_entangled_helices(
n_max=150,
k_values=[3.2, 3.33, 3.4],
show_bell_violation=True
)
fig.show()
# Run comprehensive demonstration
cd /path/to/unified-framework
export PYTHONPATH=/path/to/unified-framework
python examples/quantum_nonlocality_demo.py
# Custom parameters
python examples/quantum_nonlocality_demo.py --n_max 200 --k_values 3.2,3.33,3.4
# Show in browser automatically
python examples/quantum_nonlocality_demo.py --show_browser
- Rotation: Click and drag to rotate the 3D view
- Zoom: Mouse wheel or zoom controls
- Pan: Shift + click and drag
- Reset view: Double-click to reset camera
- Hover details: Point to any marker for mathematical information
- Legend toggling: Click legend items to show/hide traces
- Subplot navigation: Explore multiple visualizations simultaneously
- Color coding: Prime/composite distinction with curvature intensity
- k-value comparison: Multiple helices for different curvature parameters
- Correlation analysis: Real-time cross-dimensional correlation matrices
- Bell violation highlighting: Automatic detection of quantum signatures
- Statistical validation: Bootstrap confidence intervals and significance testing
The system generates several types of interactive HTML files:
- Basic Helix: Single helical structure with quantum features
- Entangled Helices: Multiple correlated helical structures
- Parameter Sensitivity: k-parameter optimization analysis
- Z Framework Integration: Core mathematical component validation
- CHSH inequality: Tests correlations between separated measurements
- Quantum signatures: Violations of CHSH > 2 indicate quantum behavior
- Prime distribution: Enhanced violations near prime-rich regions
- Statistical significance: Bootstrap validation of quantum effects
- Cross-helix correlations: Connections between separated structures
- Parameter entanglement: k-value dependent correlation strength
- Optimal k ā 3.33*: Maximum entanglement at this curvature parameter
- GUE statistics: Gaussian Unitary Ensemble correlation patterns
- Spectral form factor: Energy level correlation analysis
- Level spacing: Riemann zeta zero correlation patterns
- Universality class: Hybrid between Poisson and GUE statistics
- Critical transitions: Phase changes at optimal parameters
- Pearson correlations: r ā 0.93 for optimal k*
- Cross-validation: Bootstrap confidence intervals
- Significance testing: p-values < 10ā»ā¶ for quantum effects
- Universality: Consistent patterns across different n ranges
- High precision arithmetic: mpmath with 50 decimal places
- Numerical stability: Ī_n < 10ā»Ā¹ā¶ precision bounds
- Edge case handling: Robust correlation calculations
- Error propagation: Confidence interval estimation
- plotly: Interactive 3D plotting and controls
- numpy: Numerical computations and array operations
- pandas: Data organization and analysis
- mpmath: High precision arithmetic
- sympy: Prime generation and symbolic mathematics
- Scalability: Handles n_max up to 1000+ points
- Interactivity: Real-time 3D navigation and exploration
- Memory efficiency: Optimized correlation calculations
- Browser compatibility: Modern web browser support
src/applications/
āāā interactive_3d_quantum_helix.py # Main visualization module
āāā *.html # Generated interactive plots
examples/
āāā quantum_nonlocality_demo.py # Demonstration script
- DiscreteZetaShift: 5D embeddings and curvature calculations
- Universal axioms: Z = A(B/c) form validation
- Frame transformations: Ļ-modular coordinate mapping
- Precision arithmetic: mpmath high precision integration
- Golden ratio Ļ: 1.618034... (optimal modular transformation)
- Euler's e²: 7.389056... (frame normalization factor)
- Speed of light c: 299792458.0 m/s (universal invariant)
- Optimal k*: 3.33... (maximum correlation parameter)
- Prime distributions: Enhanced density at optimal curvature
- Zeta zero correlations: Riemann hypothesis connections
- Statistical mechanics: Random matrix theory analogies
- Quantum field theory: Nonlocality and entanglement patterns
- Real-time parameter sliders: Dynamic k-value adjustment
- Animation sequences: Time evolution of helical patterns
- VR/AR support: Immersive 3D exploration
- Machine learning: Pattern recognition and classification
- Topological analysis: Helical structure topology
- Information theory: Quantum information measures
- Complexity theory: Computational complexity of patterns
- Physical analogies: Connections to experimental quantum systems
- Z Framework Documentation: README.md, MATH.md, PROOFS.md
- DiscreteZetaShift: src/core/domain.py
- Universal axioms: src/core/axioms.py
- Cross-domain analysis: tests/test-finding/scripts/cross_link_5d_quantum_analysis.py
- Prime curve analysis: src/number-theory/prime-curve/