Axioms - zfifteen/unified-framework GitHub Wiki
Axioms and Mathematical Foundations
Core principle
- Normalize observations via Z = A(B / c); A = frame-dependent, B = rate/shift, c = invariant.
Axiom summary
- Empirical Validation First
- Reproducible tests required; use mpmath with precision target < 1e-16.
- Explicitly label hypotheses UNVERIFIED until validated.
- Domain-Specific Forms
- Physical: Z = T(v / c) with causality checks (ValueError for |v| ≥ c).
- Discrete: Z = n(Δ_n / Δ_max), κ(n)=d(n)·ln(n+1)/e²; avoid zero-division.
- Geometric Resolution
- Use θ′(n,k)=φ·((n mod φ)/φ)^k with k ≈ 0.3 for prime-density mapping.
- Style and Tools
- Prefer simple, precise solutions. Use mpmath, numpy, sympy. Cross-check predictions with datasets (e.g., zeta_zeros.csv).
Empirical validation guidelines
- Create unit and integration tests that reproduce numerical results.
- Set mp.dps and document the target precision.
- Record RNG seeds or deterministic steps for reproducibility.
References
- Link to Z5D_Reference_Impl-2.ipynb
- Link to code modules: axioms.py, domain.py