Axioms - zfifteen/unified-framework GitHub Wiki

Axioms and Mathematical Foundations

Core principle

  • Normalize observations via Z = A(B / c); A = frame-dependent, B = rate/shift, c = invariant.

Axiom summary

  1. Empirical Validation First
    • Reproducible tests required; use mpmath with precision target < 1e-16.
    • Explicitly label hypotheses UNVERIFIED until validated.
  2. Domain-Specific Forms
    • Physical: Z = T(v / c) with causality checks (ValueError for |v| ≥ c).
    • Discrete: Z = n(Δ_n / Δ_max), κ(n)=d(n)·ln(n+1)/e²; avoid zero-division.
  3. Geometric Resolution
    • Use θ′(n,k)=φ·((n mod φ)/φ)^k with k ≈ 0.3 for prime-density mapping.
  4. Style and Tools
    • Prefer simple, precise solutions. Use mpmath, numpy, sympy. Cross-check predictions with datasets (e.g., zeta_zeros.csv).

Empirical validation guidelines

  • Create unit and integration tests that reproduce numerical results.
  • Set mp.dps and document the target precision.
  • Record RNG seeds or deterministic steps for reproducibility.

References

  • Link to Z5D_Reference_Impl-2.ipynb
  • Link to code modules: axioms.py, domain.py