ABC lessons learned5 - zettsu-t/zettsu-t.github.io GitHub Wiki
ABC 6,7,8åäœå¶(126..ææ°)ã®Dåé¡ãã ãããè§£ããã®ã§ãããããåŸãæèšããŸãšããŠãããŸãã
ã³ãŒãã¯ãã¡ã
环ç©åãäžæã䜿ãã
äºé²æ°ã§
-
$i$ æ¡æªæºã®$?$ ããã¹ãŠ$0$ ã«çœ®ãæããŠå šäœã$N$ 以äžã«ãªããªã1ã«çœ®ãæãã - ããã§ãªããã°ã0ã«çœ®ãæãã
ãã£ãŠ -1
ãåºåããŠçµãããè¶
ããªããã°
- 0ãªã0ã«çœ®ãæããŠäžã€äžã®æ¡ãèŠã
- 1ãªã1ã«çœ®ãæããŠ
$N$ ãè¶ ããŠããŸããªãæã¡åã(ããã¯çºçããªã)ãè¶ ããªããã°äžã€äžã®æ¡ãèŠãã - ?ã¯äžèšã®æ¹æ³ã§0ã«ããã1ã«ãããæ±ºãã
ããšã§çããæ±ãŸãã
ã³ãŒãã¯ãã¡ã
Dãæå°åããã®ã§ã¯ãªãããšã«æ³šæããã
åã䟡å€ã®èŽãç©ã¯äžã€ã«ãŸãšããã std::unique(), erase()
ã€ãã£ãªã ã䜿ãã
std::upper_bound()
ã§ begin()
ãŸã㯠end()
ãæããŠãããšãã«æ³šæããã
ã³ãŒãã¯ãã¡ã
Union-findã§ã¯ãªãã£ãã
é£çµæåã®å€§ãããšããã¯ãšãªå èªã¿ãšããããããããšãèããå¿ èŠã¯ãªãã£ããåã«åé ç¹ã®å ¥åºæ¬¡æ°ãæ°ããã°ãããå ¥åºæ¬¡æ°ã0ã®é ç¹ã®æ°ã¯ãå ¥åºæ¬¡æ°ã0ãã1(ã¯ãšãª1)ã1ãã0(ã¯ãšãª2)ã«ãªããšãã«ã ãå€åããã
蟺ã std::vector<std::set<Num>>
ã§ç®¡çãããšã蟺ãåé€ãããšãã®èšç®éãæžãã
ã³ãŒãã¯ãã¡ã
æ¬åœã¯è¶ é ç¹ã ããè·é¢ã飿³é åã§æã€
æåã«ãéå
- ãã§ã«æ±ãŸã£ãŠããæçè·é¢ããé·ããªã£ããæ¢çŽ¢ãæã¡åã
- éåãå䜵å¯èœãã©ããã¯ãã®å Žã§æ±ãããå䜵å¯èœãª
$S_i$ ãç¡åã°ã©ãã§çµã¶ãšèŸºã®æ°ã$O(N^2)$ ã«ãªãã®ã§ãå šéšæ±ãããšTLEããã - ããéåããã®è·é¢ã¯
std::vector<Num> dist(n, INF)
ã§ã¯ãªããstd::map<Num, Num>
ã§ç®¡çãããåè ã ãš$1$ ãå«ãéåããããã«ã€ããŠ$O(N)$ ã®åæååŠçãèµ°ãããããåå ã§TLEããã
-1
ãçãã§ããã
æ³å®è§£ã¯æ°
è¶ é ç¹ãæç€ºãããš ãã¡ã ã®å®è£ ã«ãªãããTLE察çã倧å€ã§ããã
- äžèšã®éããããéåããã®è·é¢ã¯
std::vector<Num> dist(n, INF)
ã§ã¯ãªããstd::map<Num, Num>
ã§ç®¡çããã - 1ãå«ãéåã¯æç€ºçã«ã°ã©ãã«å ããªãã1ãå«ãéåã«å«ãæŽæ°=åæã§å°éããè¶ é ç¹ãåæç¶æ ãšããŠBFSãã
- æ¢ã«æ±ãŸã£ãçã以äžã®è·é¢ã¯æ¢çŽ¢ãæã¡åã
ã³ãŒãã¯ãã¡ã
å Žååããç¶²çŸ ã§ããã«è§£ããªãã£ããçŽèгã«é Œãããã¹ãŠã®çµã¿åãããæãããã
åé¡èªäœã¯ãCapsLockãoffãonãã§åçèšç»æ³ããã°è§£ãããåé¡ã¯ç¶æ é·ç§»ãç¶²çŸ ããããšã§ãããX (a), Y (Shift+a), Z (CapsLock) åç¬ã§ã¯è¶³ããããããã®çµã¿åããããã¹ãŠèããã
- X : CapsLockãoffãªãa, onãªãAãå ¥åãã
- Y : offãªãA, onãªãa
- Z : åç¬ã§ã¯äœ¿ãéãç¡ã
- X â Y, Y â X : äºæåå ¥åããã®ã§èããªã
- X â Z, Y â Z : 以äžã§ç¶²çŸ ã§ããã®ã§èããªã
- Z â X : CapsLockãoffãªãA, onãªãaãå ¥åãã
- Z â Y : CapsLockãoffãªãa, onãªãAãå ¥åãã
Z â Y ãæãã€ããªããšè§£ããªãã
ã³ãŒãã¯ãã¡ã
å顿ãèªããšæ¡ä»¶ã¯ç°¡åã§ããã
å顿ãããèã€ãŸã次æ°ã1ã®é ç¹å士ããé£çµããªãããšãåããããã£ãŠèãäžã€èŠã€ããã(å¿ ãèŠã€ãã)ããããã蟺ããã©ã£ããšãã«è-äžå¿-è-è-äžå¿-... ãšãã䞊ã³ã«ãªãããããBFSãDFSã§æ¢çŽ¢ããã°äžå¿ãèŠã€ãããäžå¿ã¯é£çµããªãã®ã§äžå¿ã®æ¬¡æ°ãçãã§ããã
é ç¹ããã©ãæ¹æ³ãããã«äžæãå®è£ ãããã§ãéãè§£çã§ãããã©ããæ±ºãŸããå ¬åŒè§£èª¬ã®æ¹æ³ãçŸãããäžå¿-è-èããã©ããšãããäºéforã«ãŒãã«ããå Žåãåãé ç¹ãäºåºŠãã©ããªãããã«ããªããšTLEããã
å ¬åŒè§£èª¬ã«ããç°¡æœãªå®è£ ã䜿ããš ãã¡ã ã«ãªãã
ã³ãŒãã¯ãã¡ã
座æšå§çž®ããã
座æšã®åãããå€ã std::distance()
ã§æ±ãŸããY軞äžã®åº§æšã
ããŒã¹ã«èŒã£ãŠããã€ããŽã®æ°ã¯é£æ³é
åã§ç®¡çãããå§çž®ããåŸã®X,Y座æšãããŒãã€ããŽã®æ°ãå€ãšãã飿³é
åãçšæããã°ã座æšå§çž®ããªããããŒã¹ã®ã€ããŽãæ°ããããã飿³é
åã«èŒã£ãŠããªãããŒã¹ã«ã€ããŠã¯ã€ããŽã®æ°ã¯æé»ã«0åã ããã€ããŽã0åã®ããŒã¹ããããã©ããã¯é£æ³é
åã®ãšã³ããªæ°ã
ã³ãŒãã¯ãã¡ã
Union-findæšã®ä»£è¡šå ã䜿ãã
ã°ã©ãã®é£çµæååè§£ã¯union-findæšã䜿ãã°ãããé£çµæå(éšåã°ã©ã)ã®èå¥åãšããŠä»£è¡šå ã䜿ãããšãã§ãããè¯ãã°ã©ãã§ã¯ãªããšããã®ã¯ãxãšyãç°ãªãé£çµæåã«ããããããã䜵åããŠããŸãããšã§ããããã£ãŠpãšqãçµãã æã
- pãšqãåã代衚å ã«å±ãããªããé£çµæåã¯å€ãããªãã®ã§ããã°ã©ãã®ãŸãŸ
- pãšqãç°ãªã代衚å ã«å±ãããªããxãšyã®çµãã§ã¯ãªããªã代衚å ãçµã¶ãšè¯ãã°ã©ãã§ãªããªãããã®ãããªä»£è¡šå ã®çµã¯ãxãšyããããã®ä»£è¡šå ã«ã€ããŠéåãäœã£ãŠããŒãã«åç §ããã°ããã
ã³ãŒãã¯ãã¡ã
æ·»ãåã®ç®¡çããããããã
ããããã
- èµ·åºãªã环ç©åãã
$A_j-t$ åŒããšçޝç©å°±å¯æéãæ±ãŸã - å°±å¯ãªã环ç©åããã®ãŸãŸçޝç©å°±å¯æéã§ãã
äžèšã®éãå®è£ ãããš ãã®ãã ã«ãªãã
ã³ãŒãã¯ãã¡ã
åæåæ¹æ³ã倧äºã
åèŠåå¡ãå°éå¯èœãªç¯å²ãBFSã§ç¶²çŸ ããã°ããããã®ãšããã€ãã®BFSã®æçè·é¢ã®ä»£ããã«èŠåå¡ã®äœåã䜿ããšãæ¢ã«èšªåãããšãã®äœåãå€ãé ç¹ããå ã¯æ¢çŽ¢ããã«æžãã
BFSã§èšªããé ç¹ã®ç®¡çã¯ãæ®ãäœåãå€ãé ç¹ãæåªå ã§æ¢çŽ¢ããããã«åªå 床ãã¥ãŒã䜿ãããã®ãšãåæç¶æ ã¯ãã¹ãŠã®èŠåå¡ã®åæé 眮ã«ããã1人ç®ãé 眮ããŠBFSã2人ç®ãé 眮ããŠBFSãšãããšTLEããã
ã³ãŒãã¯ãã¡ã
æ¥ãéãæ»ãã
ã€ã³ã¿ã©ã¯ãã£ããªåé¡ã¯è³ªçãäžæãå®è£ ããã®ã倧å€ã§ãããäžæãã«ãŒãã䜿ãå¿ èŠãããããããšè³ªååæ°ã¯æ±ºãæã¡ã§åå倧ããããã°ããã
é ç¹1ããæªæ¢çŽ¢ã®é ç¹ããã©ã£ãŠãããå
ã«æªæ¢çŽ¢ã®é ç¹ãç¡ããŸãŸé ç¹NãèŠã€ããããªããã°äžæ©æ»ããæªæ¢çŽ¢ã®é ç¹ãããã°ãã¡ãã«åãããæªæ¢çŽ¢ã®é ç¹ãç¡ããã°ããäžæ©æ»ãåæ§ããšããã®ãç¹°ãè¿ããããããã°ãã€ãé ç¹Nã«ãã©ãçããé ç¹1ããçŸåšå°ãŸã§ã©ããã©ãçããã㯠std::vector<Num> path
ã§å»¶ã°ãããçž®ãããããããããšæ¢çŽ¢æžã®é ç¹ã«ã€ããŠã飿¥ããé ç¹ãè¿ãã®ã§ã誀ã£ãŠäºåºŠç»é²ããªãã
ã³ãŒãã¯ãã¡ã
303-Dãšåæ§ã«ã2ç¶æ ã®åçèšç»æ³ã§ããã
ç¶æ é·ç§»ãç¶²çŸ ã§ãããã©ãããèå¿ã§ããããã®åé¡ã¯äžã²ãããã£ãŠãçŸå³ãããè² ã®ãšããããã®ã§é£ã¹ãªãæ¹ãããå Žåãããã
ã³ãŒãã¯ãã¡ã
éåãäºã€çšæããã
ã ããªã®ã ãããªããå®è£ ã«äºæéæãã£ãŠããŸã£ããæ¿å ¥ããŠåŸãã蟻劻ãåããããšããã
- åæç¶æ
ã¯0ã
$K$ åã®äžäœé£ã®éåãšã 0ã$N-K$ åã®äžäœé£ã®éåãäœããäžäœé£ã®ç·åã¯0ã§ããã -
$A_{X_i}$ ãäžäœé£ã®éåã«å«ãŸããã°é€ããããã§ãªããã°äžäœé£ã®éåã«å«ãŸããã¯ããªã®ã§é€ãã - é€ããæ¹ã®éåã«
$Y_i$ ã远å ããã - äžäœé£ã®æäžäœãšäžäœé£ã®æäžäœãé転ããŠãããå ¥ãæ¿ãã
- äžèšã®åé€ãæ¿å ¥ãå ¥ãæ¿ãã«äŒŽã£ãŠãäžäœé£ã®ç·åãæŽæ°ããã
éå㯠std::multiset<Num>
ã§ç®¡çããã
ã³ãŒãã¯ãã¡ã
座æšå§çž®
ãŸã
-
$A_i$ ã«ã€ããŠã¯ã$A_i$ ã®ãã¡$A_{i,k}$ ããå°ãªãèŠçŽ ã®æ°ãã€ãŸã$k-1$ åã§ããã - ãã¹ãŠã®
$A_j$ ã«ã€ããŠã¯ã$A_j$ ã®ãã¡$A_{i,k}$ ããå°ãªãèŠçŽ ã®æ°ã§ãããããã¯ã»ã°ã¡ã³ãæšããåããã
ã³ãŒãã¯ãã¡ã
Cåé¡ãæã«æ°Ždiffã«ãªãã
å ¥åãå°ããã®ã§6éforã«ãŒãã§ãTLEããªãããªã®ã§çŽ çŽã«ã·ãŒãã®éãåããäœçœ®ãäžã€äžã€ããããŠç·åœããããã°è§£ããããã ãã³ããŒã¢ã³ãããŒã¹ãã§ã³ãŒããæžããšãçŽãå¿ããŠãã°ãèµ·ãããå ±éããã³ãŒããäžæã颿°ããã¯ãã«ãŸãšãããšãã°ãèµ·ããªããªãã ãããå°éãªå®è£ åãåãããã
ã·ãŒããã¯ã©ã¹ã«ããŠå®è£ ãããš ãã¡ã ã«ãªãããã¯ãå®è£ éã¯å€ãã
- ãã¹ã®æšªäžåã¯æŽæ°ã®ããããã¿ãŒã³ã§è¡šçŸããC++20ã®ãããèµ°æ»ã§èª¿ã¹ã
- 瞊ã®åã¯æŽæ°ã®ãã¯ãã«ã§è¡šçŸãã
-
normalize
ã¯å·Šãšäžã®äœçœãåé€ãããå·Šäžã¯éæãªãã¹ãããããªãã -
merge
ã¯ã åŒæ°rhs
ã®ãã¹X=left, Y=top
ãthis
ã®ãã¹X=0, Y=0
ã«éãªãããã«éãããleft
ãštop
ã¯è² ã®å€ã§ãããããè² ã®å€ãäžæãæ±ãã®ã«å·¥å€«ãããã -
equal
ã¯normalize
æžã®ã·ãŒããäžèŽãããã©ãã調ã¹ã
ã³ãŒãã¯ãã¡ã
ãªã€ã©ãŒãã¢ãŒãšåæ§ãå®è£ ããããããã
(
, )
ã®å¯Ÿå¿ãããã·ã¥ããŠã³ãªãŒãããã³ã§åããã€ãŸã (
ãã¹ã¿ãã¯ã«ç©ãã§ )
ã§ã¹ã¿ãã¯ããèŠçŽ ãåãåºãããšããããšã¯ããã«ãããããããæ¬åŒ§ã®å¯Ÿå¿ããããŠãããšãã®ç°åžžç³»åŠçã®å®è£
ã倧å€ã§ããã
æ¬åŒ§ã«å ¥ã£ãŠããªãæååãç¹å¥æ±ããããšãã°ã®å ã«ãªãã®ã§ãç¹å¥æ±ãããã¹ã¿ãã¯ã®äžæ®µç®ã«èŒãããã€ãŸãåæç¶æ ãã空æååãäžã€ã¹ã¿ãã¯ã«ç©ãã ç¶æ ã«ããã
-
(
ãèŠã€ãããã(
èªèº«ãã¹ã¿ãã¯ã«èŒãããããããªããš)
ã®å¯Ÿå¿ãåããªããšãã«(
ãåºåã§ããªãã -
)
ãèŠã€ãããã¹ã¿ãã¯ãäžæ®µåãåºããŠ(...)
ãæšãŠãããã ãã¹ã¿ãã¯ãäžæ®µãããªããã€ãŸã(
ããªããšãã¯åãåºããã代ããã«)
èªèº«ãã¹ã¿ãã¯ã«èŒããã -
(
,)
ã®æåã¯ãã¹ã¿ãã¯ãããã®æååã®æ«å°Ÿã«è¿œå ãã
(
, )
ã®å¯Ÿå¿ãã©ããããæçµçã«ã¯ (
, )
ã®å¯Ÿå¿ãåããŠããªãæååãã¹ã¿ãã¯ã«ç©ãŸããããããã¹ã¿ãã¯ã®åºããé ã«é£çµãããšçãã«ãªãã
ã³ãŒãã¯ãã¡ã
挞ååŒ
èœã¡çããŠæŒžååŒãçµãã°åããã
1çªç®ã®äººã«0ãæž¡ããšæ±ºãæã¡ããŠãiçªç®ä»¥éã®äººã«0ãŸãã¯é0ãæž¡ãçµã¿åãã
- åæå€ã¯
$Z_1=1, NZ_1=0$ - 0ãæž¡ããªããã®åã«ã¯é0ãããªãã®ã§
$Z_i=Z_{i-1}$ - é0ãæž¡ããªããã®åã0ãªã
$m-1$ éããé0ãªã$m-2$ éãããã®ã§$NZ_i=Z_{i-1} \times (m-1) + NZ_{i-1} \times (m-2)$ - Nçªç®ã®äººã¯0ãæž¡ããªãã®ã§ã
$Z_{N-1} \times (m-1) + NZ_{N-1} \times (m-2)$ éã
1çªç®ã®äººã«
å ¬åŒè§£èª¬ãèªããšè§£æè§£ããããè§£æè§£ãæ±ããããšããŠäžæããããªãã£ãããDPã«ããã
ã³ãŒãã¯ãã¡ã
BFSã§ããã
åºçºç¹ã®ãã¹ã s
以å€ãªãæããã«ãŽãŒã«ã«å°éäžèœãšè§£ããããã§ãªããšãã¯å¹
åªå
æ¢çŽ¢ããã°ããã snuke
ã¯ãã¹ãŠã®æåãç°ãªããç¡éã«ãŒãããæå³ã¯ç¡ãã®ã§ãå¹
åªå
æ¢çŽ¢ã§äžåºŠã§ã蚪ããå Žæã¯å床蚪ããªãããã«å°ãã€ããã4æ¹åããŸãšãããš ãã¡ã ã®ã³ãŒãã«ãªãã
ã³ãŒãã¯ãã¡ã
环ç©åã§ããã
-
$E,X$ 9éãã®çµã¿åããã®æ°$\lvert j,k \rvert \quad j \in \lbrace 0,1,2 \rbrace , k \in \lbrace 0,1,2 \rbrace$ -
$X$ 3éãã®çµã¿åããã®æ°$\lvert k \lvert \quad k \in \lbrace 0,1,2 \rbrace$
环ç©åã¯
ã®åã
ã³ãŒãã¯ãã¡ã
ã¯ãŒãã³ã§äœãè²·ãããå²åŒé¡ã¯åãã
ãªã®ã§ã¯ãŒãã³ã䜿ããå Žé¢ãçããã®ãåŸã§ã䜿ããå Žé¢ãåºããã®ãå ã«äœ¿ã£ãŠæ§ããªããå ·äœçã¯ã以äžã®å°ºåãæ³ã§è§£ããã
- 倿®µã®å®ãç©ããé«ãç©ãé çªã«è²·ãããã®ãšã䜿ããå²åŒé¡ãæã倧ããã¯ãŒãã³ã䜿ã
-
$P_i >= L_j$ ãæºããã¯ãŒãã³ã¯ãã¹ãŠäœ¿ããããã®ãããªã¯ãŒãã³ãåªå 床ãã¥ãŒã«å ¥ããŠãå²åŒé¡ãæã倧ããã¯ãŒãã³ãåãåºãã
ã³ãŒãã¯ãã¡ã
ãã¯ãBFSã§ããã
åºçºç¹ãåºå®ããŠãä»ã®ç¹ãŸã§ã®æçè·é¢ã¯BFSã§æ±ãŸããé ç¹1ããæãé ãç¹ãšãé ç¹
ã³ãŒãã¯ãã¡ã
æ¯ãè¿ãã¯å€§äºã
ãã®åé¡ã¯ã305-Eã®å®è£ ãåºã«ãç¡åã°ã©ããæå¹ã°ã©ãã«å€ããã ãã§è§£ãããããããŠç·diffã§ã10åãåãããšãã§ããã
åé¡ã®å¶çŽãšããŠã芪ã®çªå·ã¯åã®çªå·ããå°ããã®ã§ãåã«çªå·é ã«DPããã ãè§£ãããå®è£ 㯠ãã¡ã ã
ã³ãŒãã¯ãã¡ã
å ¬åŒè§£èª¬2ãšåãããšãããã€ããã ã£ãã®ã ããçµå±ACã§ããªãã£ããå°ããç®±ããé ã«ã»ã°ã¡ã³ãæšã«å ¥ããããšããã®ãéãã ãããã
ã³ãŒãã¯ãã¡ã
å·å¿µãè¶³ããªããšè² ããããšãããã
std::next_permutation()
ã§è§£ãããšæã£ãŠè§£ãããDFSãšãããååž°ã§è§£ããã ãããšæã£ãŠè§£ãããè§£ãå§ããŠ2æéçµéåŸã«ãããããŠããŒã ã«äžäººãã€è¿œå ããã°ããã®ã§ã¯ãšæã£ãŠè«ŠããŠè§£èª¬ãèªãã ããã®éãã ã£ããè§£ãããã ãšæã£ããæéã眮ããŠè«Šããã«è§£ãã¹ãã ã£ãã
è§£ãæ¹ã ãã std::vector<std::set<Num>>
ã§ããŒã ãäœããæ¢åã®ããŒã ã«å¯èœãªãéžæãäžäººè¿œå ããããäžäººã ãã®ããŒã ãæ°ãã«äœãããšããã®ãååž°ããã°ãããéžæã远å ããé çªãåºå®ããã°ãããŒã ã®äžææ§ã¯æ
ä¿ã§ããã
èšç®éã®ãªãŒããŒã
ååž°ã§è§£ããããååž°ããå
ã§ std::vector
ãreallocããããšæªå®çŸ©åäœã«ãªãããªã®ã§ååž°åŒã³åºãã®ååŸã§ããã¯ã¿ã®èŠçŽ ãžã®åç
§ã䜿ããŸãããªãããã«ãããå®è£
㯠ãã¡ã ãstd::vector::reserve
ã§ãreallocãåé¿ã§ããããå¯èªæ§ãæªãä¿å®ã§ããªãã®ã§ãå§ãã§ããªãã
ã³ãŒãã¯ãã¡ã
å·å¿µãããã°åãŠãããšãããã
30åèããŠããããè§£æ³ãæãã€ããã
-
$A_i=0$ ãªãã$Z_i=1$ ã§$NZ_i=Z_{i-1}+NZ_{i-1}$ - å·Šçµåã®çµæãã©ãããNANDã¯1ã«ãªã
- NANDã0ã«ãªãåºéã¯
$[A_i,A_i]$ ã ãã«ãªã - NANDã1ã«ãªãåºéã®çŽ¯ç©æ°ã¯ã
$Z_{i-1}+NZ_{i-1}$ å¢ãã(å·Šçµåã®åºéäžžããš)
-
$A_i=1$ ãªãã$Z_i=NZ_{i-1}$ ã§$NZ_i=Z_{i-1}+1$ - å·Šçµåã®çµæãNANDã¯å転ãã
- NANDã1ã«ãªãåºéã¯ã
$Z_{i-1}$ ãš$[A_i,A_i]$ ã«ãªã - NANDã1ã«ãªãåºéã®çŽ¯ç©æ°ã¯ã
$Z_{i-1}+1$ å¢ãã
äžèšã
ã³ãŒãã¯ãã¡ã
確çDPã¯è§£ãããšæã£ããå šãã«æã«è² ããã解説ãèªãã§ãACã§ãããä»ã®æ¹ã®ã³ãŒããèªãã§ããããäžæéåæãã£ãACããã
確çã§ã¯ãªãååžã®ç¶æ é·ç§»ãèããããªãã ãεã€ãã·ãã³é·ç§»ãããæéãªãŒãããã³ã§æ£èŠè¡šçŸãè§£ããã®ããã ã
ã³ãŒãã¯ãã¡ã
æéãæãéããã
95åæãã£ãŠããŸã£ããæåã®1æéã¯ãªããã»ã°ã¡ã³ããŒã·ã§ã³ãã©ãŒã«ããåããããããããŠåºå®é·é
å Num visited[209][209]
ã«ãããçŽã£ãã boost::multi_array
ãããŒã«ã«å€æ°ããã°ããŒãã«å€æ°ã«ç§»åããããšããŠå€±æããããããåŸã®30åã¯ãåæãã¹ããåããªããšãã®çãã1ã ãšããããšã«æ°ãä»ããªãã£ãã
ãããŸã§åããã°BFSãDFSã§è§£ããã解説ã«ããéãç§»åäžãšããç¶æ
ãæãŠã°
å ¬åŒè§£æ³1ã®éããæ¹åå¥ã«åãããšBFSããããããã®ããã«æ¹è¯ããã³ãŒãã ãã¡ã ã以äžã®ç¹ã«æ°ãä»ããã
- BFSãæ·±å ãããã©ããã¯ãåè£ããã¥ãŒããæãããšãã§ãããå ãããšãã§ããããã³ãŒããé·ããªãã
- èšªåæžã¿åº§æšã¯4æ¹å+鿢ã®5éããªã®ã§ãã«ãŒãåæ°ã«æ°ãä»ãã
ã³ãŒãã¯ãã¡ã
æååé¡ãããã
穎ãç¡ãå Žæã«æ£æ¹åœ¢ãåºããã®ã«ãäžãããäžãããæãããã®äžéãã詊ããŠããã®æå°å€+1ã«ããããšããã®ã解説ãèªããŸã§åãããªãã£ããé åãéãªã£ãŠãªãããšããåºããå ã«ç©Žããã£ããã©ããããšããæ°ã«ãªã£ãŠåçèšç»æ³ã§ããªãã®ã ããæå°å€ãåãã®ã§ããã§å€§äžå€«ãšãã蚌æãèŒã£ãŠãã(ç°¡åã«èšããšãäžéãã®ã©ãããæºãããªããªãæ£æ¹åœ¢ãåºããããšã¯ã§ããªã)ã
穎ã§ã¯ãªã穎ãç¡ããšãããåºããã®ã ããããããŸãã§åãããªãã£ããäºåæ¢çŽ¢ã ãš ãã æžãããäºåæ¢çŽ¢ã§ãªãè§£ãæ¹ã¯çè§£ã§ããªãã£ãã
ã³ãŒãã¯ãã¡ã
èŠãããæã«ããé絊æ²ç·
Cåé¡è¶diffã ã1æéæãã£ãŠããŸã£ããé絊ãåè¡¡ãããªãäºåæ¢çŽ¢ã§æ±ãŸãããããåè¡¡ããªãå Žåããã£ããå®è£ ããªããšWAããã
ãŸã 売å€
a. ãã¹ãŠã®è²·å€ãããã¹ãŠã®å£²å€ã倧ãããã€ãŸãè²·å€ã®æå€§å€ãã売å€ã®æå€§å€ã倧ãããšãã¯å£²è²·ãæç«ããªãããã®ãšãã¯è²·ãæã売ãæã0人ãšããè§£ã«ã€ããŠãçãã€ãŸã誰ãè²·ããªãã誰ã売ããªã倿®µã®æå°å€ã¯ãè²·å€ã®æå€§å€+1ããªãã¡
b. ãã¹ãŠã®å£²å€ãããã¹ãŠã®è²·å€ã倧ãããã€ãŸã売å€ã®æå€§å€ããè²·å€ã®æå€§å€ã倧ãããšãã倿®µã¯æ°ã«ããè²·ãæã売ãæããããã³ã°ã§ãããã©ããã ãã§æ±ºãŸãã
- 売ãæãè²·ãæä»¥äžããã°å
šå¡è²·ãããã€ãŸãçãã¯è²·å€ã®æå€§å€
$B_M$ ã§ããã - 売ãæã®æ°
$N$ ãè²·ãæã®æ°$M$ ããå€ããã°ã$N+1$ çªç®ã«å€§ããªè²·å€ãã€ãã人ã«è«ŠããŠãããããã£ãŠçãã¯$B_{M-N} + 1$ ã§ããã
c. äžèšä»¥å€ãªãåè¡¡è§£ std::lower_bound
ãš std::upper_bound
ã䜿ãåããã
-
$v$ 以äžã®å£²ãæã®æ°ã¯ãstd::upper_bound(aset.begin(), aset.end(), base) - aset.begin()
-
$v$ 以äžã®è²·ãæã®æ°ã¯ãbset.end() - std::lower_bound(bset.begin(), bset.end(), base)
解説ãèªãã§ãããå®è£ ããäžèša,bãé€ããŠcã ãæ®ããã AC ãããçŠã£ãŠããŠèªåãäœãããŠããã®ãåãããªããªã£ãã®ãããããªãã
C++20ã§æžããš ãããªã ãæ¢çŽ¢ç¯å²ã
ã³ãŒãã¯ãã¡ã
ãã©ã°ãæã¡ã€ã€DP
瞊軞ã )
ãšå¯Ÿå¿ãåããŠããªã (
ã
- åæå€ã¯0æåç®ãŸã§ãæªå¯Ÿå¿ã0åã®ãšãã1éããä»ã¯INF
-
$i$ æåç®ã(
ãªã$DP[pos+1][i+1] = DP[pos][i]$ ãã ã$i<|s|$ ã§ãINFéãããã¯é·ç§»ããªã -
$i$ æåç®ã)
ãªã$DP[pos-1][i-1] = DP[pos][i]$ ãã ã$i>0$ ãINFéãããã¯é·ç§»ããªã -
$i$ æåç®ã?
ãªãäžèšã®äž¡æ¹ãæ°ãã
çãã¯æåŸã«æ¬åŒ§ã®å¯Ÿå¿ãåããŠããç¶æ³
ã³ãŒãã¯ãã¡ã
å°ºåãæ³
猶ããã§çŒ¶ãéãããã©ããã¯ã€ã³ããã¯ã¹ã«äŸåããªãããã£ãŠçŒ¶åãäžèŠãªçŒ¶ã®äŸ¡å€
æåã«å
¥æãããã®ã®éåã«ã猶åãäžèŠãªçŒ¶
- 猶åãã
$M$ å以äžãªã猶ã¯äžã€ãå ¥æã§ããªãã®ã§ããã以äžçŒ¶åãã¯èŠããªããéåã®å€§ããã$M$ ãã猶åãã®æ°ãåŒãããã®ã«å¶éãããšããã - 猶åãã1å远å ãããšéåã
$M$ åãè¶ ãããªããéåããæã䟡å€ãäœã猶ãé€ã - 猶åãã1å远å ããéåã®å€§ãããæå€§
$M$ åã«ãªããŸã§ããŸã éåã«å ¥ããŠããªãã猶åããå¿ èŠãªçŒ¶ã§æã䟡å€ã®é«ã猶ãå ¥ãããããã猶ãå ãããšäŸ¡å€ãå¢ããéãç¹°ãè¿ããã€ãŸã- 猶ãå
¥ããŠãéåã
$M$ åãè¶ ããªããªããç¡æ¡ä»¶ã§çŒ¶ãå ãã(䟡å€ã¯æ£ã®å€ãªã®ã§) - éåã
$M$ åãè¶ ãããªããæã䟡å€ãäœã猶ãé€ããé€ãã猶ãå ¥ãã猶ãã䟡å€ãé«ããã°ãé€ããªããã°ããã
- 猶ãå
¥ããŠãéåã
猶åããå¿
èŠãªçŒ¶ã®äŸ¡å€ std::multiset<Num>
ã§éåã管çãããšãå
šäœã®èšç®é㯠std::multiset<Num>
ã䜿ã£ãã
å
¬åŒè§£æ³ã¯ã猶åãäžèŠãªçŒ¶ã
ã³ãŒãã¯ãã¡ã
察è§ç·ãçºããã
以äžå
¬åŒè§£èª¬ã®åè§£éã§ããã
ããšã¯å
é
ã³ãŒãã¯ãã¡ã
ã©ã³ã¬ã³ã°ã¹å§çž®
ãŸã1以å€ã®æ°åã2é£ç¶ããå Žåã¯ç¡éã«æååã䌞ã³ãã®ã§-1ãè¿ãã以äžã1以å€ã®æ°åã®åŸã«ã¯å¿ ã1ãããã1ã¯é£ç¶ãããããããªããšããåæã§è©±ãé²ããã
2çªç®ä»¥éã®ã©ã³ããŸãããšæ®ã£ãŠãããšãã auto
ã䜿ã£ãŠãããšãã£ããééããããã
å
šãŠã®ã©ã³ãæ¶åããããšã 1
äžæåã®æååã¯ããä»¥äžæžããªãã®ã§)ã
å ¬åŒè§£èª¬1ã®æ¥œãªå®è£ 㯠ãã¡ã ã以äžã®ç¹ãå·§åŠã§ããã
- ã©ã³ã¬ã³ã°ã¹å§çž®ã§ãé£ç¶ãã1ãšãå€ç«ãã1以å€ãå¥ã®ã©ã³ãšããŠæ±ã
- æåãšæåŸã1ã§ãç¹å¥æ±ãããªãã§æ£ããçããåºãããã®ããã«æé»ã®1ãæ«å°Ÿã«ãããšä»®å®ããã
- ã©ã³ãå šéšæ¶åããã®ã§ãçãã¯åãã1åŒã
å ¬åŒè§£èª¬2ã®æ¥œãªå®è£ 㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
æçµæŽæ°æå»ãèŠããŠçœ®ãã
ãã¹ãŠã®æåã倧æåã«ããã®ãšããã¹ãŠã®æåãå°æåã«ããã®ã¯ãæåŸã«ãã€ã ã£ããèŠããŠçœ®ãããããšã¯å¥ã«ãæååã®ããããã®äœçœ®ã«ã©ã®æåãèšå®ãããèŠããŠçœ®ããåæå€ã¯ãã¹ãŠã®äœçœ®ã®æåãæå»0ã«èšå®ããããšã«ããã
ããæåã®äœçœ®ã«ã€ããŠããã®æåãæŽæ°ããæå»(ã¯ãšãªçªå·)ãããã¹ãŠã®æåã倧æåãŸãã¯å°æåã«ããããåŸãªããæŽæ°ããæåããã®ãŸãŸçããŠãããããã§ãªããã°æŽæ°åŸã«å€§æåãŸãã¯å°æåã«ãªã£ãŠãããã©ã®æåã§æŽæ°ãããã¯æåŸã®ãã®ã ãèŠããŠããã°ããã
ã³ãŒãã¯ãã¡ã
挞ååŒ
挞ååŒããŸã£ããæ³åã§ããªãã£ãã®ã§ãå ¬åŒè§£èª¬ãèŠããããªããå©åŸã0ã®é·ç§»ã¯åé€ã§ããããšããã®ã¯ç¥ã£ãŠããã»ããããã
ãšæžãããŸãŸã«ãªã£ãŠããã®ã ããåŸæ¥ AtCoder Daily Training ALL 2024/04/10 20:00 start ã§è§£ãã(60åå¶éã«ã¯éã«åããªãã£ãã)ã®ã§èª¬æãæžãã
-
$i + S_k \geq M$ ãªããã®ã«ãŒã¬ãããåãã³ã¹ã$C_j^{'}$ (æå³ã¯åŸè¿°) -
$i + S_k < M$ ãªãããã®ã«ãŒã¬ãããåããåŸã«ãã€ã³ã$i + S_k$ ã«ãªããšãã®ã³ã¹ã$dp[i + S_k] + C_j^{'}$ -
$1..k$ ã«ã€ããŠã®å¹³åå€ãã€ãŸãäžèšã®åã$k$ ã§å²ã£ããã®ãã ãã€ã³ãã$i$ ã§ã«ãŒã¬ãã$j$ ãéžãã æã®ã³ã¹ãã§ãã - ããããã¹ãŠã®
$j$ ã«ã€ããŠæå°å€ãåã
ã³ãŒãã¯ãã¡ã
æšã§ã䜿ãããããæ³ã
çµè«ããèšããšã察æŠããŒãã¡ã³ãã«ãããŠã察æŠããããŒã å士ãé£ãåã£ãŠãããšå¥œéœåã§ãããé£ãåã£ãŠãããšã¯ãèã€ãŸããã¬ãŒã€ã®çªå·ãå·ŠããèŠãæ·»ãåé ã§ã
ãªã®ã§ãã®ãããªå¯ŸæŠããŒãã¡ã³ãæšãæ§æããã®ãæ¬åé¡ã®å±±å Žã§ããã察æŠããŒãã¡ã³ãæšã®éšåæšãããæãã«å·Šå³å ¥ãæ¿ããã°ã§ããããªæ°ããããå®è£ äŸã¯ ãã¡ã ã
ãŸãã¯å¯ŸæŠé éãã«ãããã ã¢ããã«æšãæ§æããããã¬ãŒã€ãŒ
察æŠããŒãã¡ã³ãæšãæ§æãããããããããŠã³ã«ãã¬ãŒã€ãŒã®é åºã決ããããã察æŠã®åé ç¹ã¯å¿
ã2ã€ã§ãããå·Šåé ç¹ããã©ã£ãŠåŸãããè(ãã¬ãŒã€)ã®æ·»ãå < å³åé ç¹ããã©ã£ãŠåŸãããè(ãã¬ãŒã€)ã®æ·»ãåããšããé¢ä¿ãç¶æããã°ãããåé ç¹ãDFSããŠæåã«ã¿ã€ãããã¬ãŒã€ãŒããæ·»ãåãé çªã«æ¯ãããããããšå¯ŸæŠããŒãã¡ã³ãæšã«çœ®ãããã¬ã€ã€ãŒ
åŸã¯ãã¬ã€ã€ãŒ
å
¬åŒè§£èª¬ãã¿ãããæ®éã«DFSã§æåŸ
å€ãäŒæ¬ããã°
ã³ãŒãã¯ãã¡ã
Fenwick trees
Fenwick tree ãè¡ããšãåããšãæåããšã«äœãã°ãããæåã¯26çš®é¡ãããªãã®ã§ã atcoder::fenwick_tree<int16_t>
ã«ããã°MLEããªãã
ããšã¯å顿éãã·ãã¥ã¬ãŒã·ã§ã³ããã°ãããæ¶ããã¯ãããŒã¯äºæ¬¡å é åã§ã¯ãªããFenwick tree ã§ç®¡çãããšäžè²«æ§ãåãæéãçããããã ãäžåºŠæ¶å»ããè¡ãšåã以åŸèª¿ã¹ãªãããã«å°ãã€ããŠãããªããšTLEããã
è¡ãŸãã¯åã«ããçš®ã®ã¯ãããŒã2åãããã©ããã¯æ®éã«èª¿ã¹ãã°ããã®ã ãã2çš®é¡ä»¥äžãªãããšãšã1çš®é¡ã ã2å以äžããããšããã£ã¡ã調ã¹ãããã®å€æãééãããšWAããã
空é䜿çšéã¯26çš®ã®æåã宿°ãšããŠ
å ¬åŒè§£èª¬ã®éãããè²ã®ã¯ãããŒãããã€ããã管çããã°ãããFenwick treeã䜿ãããšãæ®éã®é£æ³é åãšäºæ¬¡å é åã§ç®¡çã§ããããã®ããã«æ¹è¯ããã®ã³ãŒã㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
ããããžã«ã«ãœãŒã
ããæ¬ãå ã«èªããšããäŸåé¢ä¿ãã°ã©ãã«ããŠãããããžã«ã«ãœãŒããããã®ãåºåããã°ããããã ããæ¬1ãã®ãã®ã¯åºåããªãã®ãšãæ¬1ãèªãããã«å¿ èŠãªæ¬ãBFSã§èª¿ã¹ãŠåºåããå¿ èŠãªãæ¬ã¯åºåããªããããã£ã«ã¿ãªã³ã°ããã
æåã°ã©ããªã®ã§ãunion-findæšã䜿ã£ãŠæ¬1ããå°éå¯èœãã©ãã調ã¹ããšWAãããããšãã° æ¬1ã«æ¬3ãèŠã, æ¬2ã«æ¬3ãèŠããšããæ¬2ã¯æ¬1ã«å¿ èŠãªãããunion-findæšã¯ç¡åãªã®ã§å¿ èŠãšèª€å€å®ããã
æŽæ°ã®ãã¯ãã«ã空çœåºåãã§åºåããã®ã¯ä»¥äžã®éãæžããã以äžãçµã¿èŸŒãã ã®ã ãã¡ã
std::ostringstream oss;
std::copy(books.begin(), books.end(), std::ostream_iterator<Num>(oss, " "));
os << oss.str() << "\n";
ã³ãŒãã¯ãã¡ã
DP
å ¬åŒè§£èª¬ãèªããšçŸåšå°ãšééåæ°ã§DPãšãããDPã®æäžã¯æçè·é¢ã ãã§æŽæ°ããŠãããã«ãã£ã¯DPã®éäžã§ã¯è¶³ããªãããšããããšãéèŠãããã
ãã¹ãŠã®åº§æšãéãç¶æ ããåºçºããŠãããã«ãã£ãæã£ãŠãäžã€é ç¹ãé€ãããªãæãè·é¢ãçž®ãŸãé ç¹ãé€ãããšããgreedyã¯WAããããã®éããåãããªãã
äžå¹³æ¹ã®å®ç㯠std::hypot
ã䜿ããšèšç®ã楜ã«ãªããçµã¿èŸŒãã ã®ã ãã¡ã
ã³ãŒãã¯ãã¡ã
DPã§ããã
åæç¶æ ã¯éžæåºç¡ãã§è°åž0ãªãéæ¿ããããã®äººæ°ã¯0人ã§ãããä»ã¯äººæ°ç¡é倧ãšããã
éžæåº
- ã³ã¹ããæããŠå¯Ÿçããªããªã
$dp[i+1][s] = dp[i][s]$ - æäœéã®äººæ°
$d=min(0, X_i - (X_i + Y_i) / 2)$ ãéæ¿ããããã$dp[i+1][min(win, s + Z_i)] = dp[i][s] + d$ ã§å·ŠèŸºããå³èŸºãå°ãªããã°æŽæ°ããã
çãã¯
DPã®éžæåºã¯çŽåãšä»ã ãèŠããŠããã°ããã®ã§ããã®ããã«æ¹è¯ããã®ã³ãŒã㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
èšç®éè§£æã
èŠç·ã®å
ã«ãããã¹ãéè¡äžå¯ãšå°ãã€ããã°ãããããããŠã
空ããã¹ã«4æ¹åããèŠç·ãåãããšãã«ãæ©ãŸã£ãŠä»ã®èŠç·ãé®ããªãããã«ãããããšã¯ãã€ãéãBFSã§ã¹ã¿ãŒããããŽãŒã«ã®æçè·é¢ãæ±ããã4æ¹åããèŠç·ãåããåŠçã¯ãŸãšããŠäžæãæžãããåã£ãããšãããªããŠããæ¯è¡æ¯å4æ¹åã調ã¹ãã°ãããããããåã空ããã¹ãåäžæ¹åã«2å調ã¹ãã ãã§ããã
4æ¹åããŸãšããããã«æ¹è¯ããã³ãŒã㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
äœãèŠèŠãããããšæã£ãã236-Dã ã£ã
å®å šã°ã©ããªã®ã§ãããé ç¹ã¯æ®ãã®ãã¹ãŠã®é ç¹ãšçµããããªã®ã§é ç¹ã®çµãç·åœããããŠãéžãã 蟺ã®éã¿ã®ç·åã«ã€ããŠæå€§å€ãæ±ããã°ããããŸãé ç¹æ°ã¯å¶æ°ãšããã
ç·åœãããäžæããããªããšTLEããããªã®ã§
- é ç¹1ãæ±ºãæã¡ããŠé ç¹
$2..N$ ãšçµãŸãã - é ç¹1ãé ç¹2ãšçµãŸãããªããé ç¹3ãé ç¹
$4..N$ ãšçµãŸãã - ããã§ãªãé ç¹1ã é ç¹
$i$ ãšçµãŸãããªããé ç¹2ãé ç¹1ããã³é ç¹$i$ 以å€ãšçµãŸãã
ãšããŸã 蟺ãç¡ãçªå·ã®å°ããé ç¹ããé ã«çµãŸãããšTLEããªãããããDFSã§æ±ãã
é ç¹æ°ã奿°ãªãããããããé ç¹
äžèšã®æ¹æ³ã¯å ¬åŒè§£èª¬2ãšåãã§ãããå ¬åŒè§£èª¬1ãšåãbit DPã§è§£ããŠã¿ããæ¹è¯æžã®ã³ãŒã㯠ãã¡ã
- ããããã¿ãŒã³ã®é åºã¯ä»¥äžãæºãããŠãã
- ããéåã«é ç¹ã2å远å ãããªãã远å åã®éã¿ã®ç·åã¯æ¢ã«æ±ãŸã£ãŠãã(远å åŸã®æ°ã¯è¿œå åã®æ°ããå°ããã®ã§)
- ããéåã«ã€ããŠã®è¿œå åã®éã¿ã®ç·åãåé·ã«æ±ããªã
-
$N$ ã奿°ã®ãšããç¹å¥æ±ãããªããŠæžãã®ã§ç°¡å
- 蟺ã®å§çµç¹ãåããªãã³ã¹ã0ãªã®ã§ãäœãããªãã®ãšåããæ¡ä»¶åå²ã§é€ãå¿ èŠã¯ãªãã
ã³ãŒãã¯ãã¡ã
- éåºé
$(P_{q-1}, P_{q})$ ãåé¡ã®$A_j$ -
$P_{1..q-1}$ ãåé¡ã®$A_i$ -
$P_{q..m}$ ãåé¡ã®$A_k$
ã«çžåœããããã£ãŠãã
ã³ãŒãã¯ãã¡ã
9ãã¹ã«ã€ããŠç·åœããã§æ±ããã
å®è£ äžã®å·¥å€«ãšããŠä»¥äžããããæ¹è¯æžã®ã³ãŒã㯠ãã¡ã
- ãã¯ãã«ã®èŠçŽ ãäžã€ãã€å
¥åããã®ã«
for(auto&& e : vec)
ãããšã³ãŒããçãã§ãã - ãã¯ãã«
$0..(N-1)$ ã¯std::iota()
ã§äœããã - èšç®éãå°ãªãã®ã§ã瞊暪æãã®ç·ãåæããã°ããã¹ãã©ã®ç·ã«å±ãããå šæ¢çŽ¢ããŠãããifæã ããã«ãªãããããã
- ãŸã èŠãŠããªããã¹ã¯
$-100..-92$ ãªã©ããããªãäžæã®å€ã«ãã
ã³ãŒãã¯ãã¡ã
äºåæ¢çŽ¢
æ®éã«
-
$W$ ããé·ãåèªã¯åãŸããªãã®ã§æã¡åã - åèªã远å ãããšãã®æäžè¡ã®å¹ ã¯ã空è¡ãªã远å ããåèªã®é·ããã®ãã®ããã以å€ã¯æäžè¡ã®å¹ +远å ããåèªã®é·ã+1ã§ããã
- æäžè¡ã®å¹
ã
$W$ ãè¶ ãããªããæ¹è¡ããŠè¿œå ããåèªã ãã®è¡ãäœããããã§ãªããã°æ¹è¡ããªãã -
$M$ è¡ãè¶ ãããæã¡åã
äºåæ¢çŽ¢ã®
å ¬åŒè§£èª¬ãã¿ããšãå®è£ äžã®å·¥å€«ãšããŠä»¥äžããããæ¹è¯æžã®ã³ãŒã㯠ãã¡ã
- ãŠã£ã³ããŠã®æšªå¹ ã®æå°å€ã¯ãåèªã®å¹ ã®æå€§å€ã§ããããŠã£ã³ããŠã®æšªå¹ ã®æå€§å€ã¯ããã¹ãŠã®åèªã®å¹ ã®åãšç©ºçœã®åã§ããã
- ãã¹ãŠã®åèªã®åã«ç©ºçœããããšèããŠã空çœå1ã ãå¹ ãè¶³ããŠãããçããã1倧ããå€ãåŸãããã
- C++20ã®
std::ranges::partition_point
ã䜿ãããC++20ã䜿ãããã«ãDocker Image ã ubuntu:22.04 ã«ããg++ã¯å ã 11.4.0ã ã12.3.0ãã€ã³ã¹ããŒã«ããã - è¿°èªã¯ç¡å颿°ã«ããããã¹ãŠã®å€æ°ããã£ããã£ããŠããã
- è¿°èªãæºãããªãæåã®æ°=
$M$ è¡ã«åãŸãæå°ã®ãŠã£ã³ããŠã®æšªå¹ ãè¿ãããããã1åŒãã
ã³ãŒãã¯ãã¡ã
åºçºæå»ããäžæ
æåã®ãã¹åã«ã€ããæå»ããããã¹åã§ã®åŸ ã¡æéã¯äžæã«æ±ãŸãããã£ãŠããããå¯èœæ§ãç¶²çŸ ããŠãã¯ãšãªã«åããã°ããã
ãã¹ã®åºçºåšæã§ãã¹åã§ã®åŸ
ã¡æéãæ±ºãŸããå¶çŽãšããŠ
ããšã¯æåã®ãã¹åã«çãããšãã®æå»
äžèšã§ACã§ããããä»ã®æ¹ã®ã³ãŒããèŠãŠä»¥äžã®å·¥å€«ããããšå®è£ ãç°¡æœã«ãªããæ¹è¯æžã®ã³ãŒã㯠ãã¡ã
- å€ã«ãŒããmod 840, å ã«ãŒãããã¹åã«ãã(ç§ã¯éã«ããŠãã)
- mod 840ã®èµ·ç¹ã¯åºçºå°ã«ãã(ç§ã¯æåã®ãã¹åã«ããŠãã)
ãããš1..8ã®æå°å ¬åæ°ã¯ä»¥äžã§æ±ãŸãã
std::vector<Num> vec(8);
std::iota(vec.begin(), vec.end(), 1LL);
const Num cycle = std::accumulate(vec.begin(), vec.end(), 1LL, std::lcm<Num, Num>);
ã³ãŒãã¯ãã¡ã
ã€ãã«æ©diffãè§£ããããŸã å ¬åŒè§£èª¬ãèªãã§ããªãã®ã§ã以äžã®èå¯ã«ã¯èª€ããæãããããããããªãã
è¶³æã3æ¥éãæ°æéæãã£ããè§£ãããäœæ®µãã®èå¯ãããã
è¬ã«ã€ããŠè²ªæ¬²æ³ãã€ãŸã广
æµãåããæã®æé·ã€ãŸã匷ãã®å¢å
å顿ã«ãããšãè¬ãããé ç¹ã«é«æ©ãããåããŠèšªãããšã髿©ããã¯è¬ã飲ãããšã«ãªã£ãŠããããè¬ããã®å Žã§é£²ãŸãæå
ã«åã£ãŠãããŠæ§ããªãã
è¬ã®åŒ·ãã
äžèšãèå¯ãããšãè¬ã飲ãé çªã決ãæã¡ããŠãé ç¹1ããæµãåããã ãåããŠãåããªãæµã ãã«ãªã£ããåããããã«ãªããŸã§è¬ã飲ã¿ãåã³åããã ãåãããšããã®ãç¹°ãè¿ããããé çªã§ãã¹ãŠã®æµãåããã Yes
ããã¹ãŠã®é çªã§åããªãæµãããŠè¬ãå°œããŠããŸã£ãã No
ã§ããã
çŸåšã®é ç¹(åæå€ã¯é ç¹1)ãããåããæµãæ¢çŽ¢ãããé ç¹ã«ã€ããŠBFSã§ãæ¢çŽ¢ããé ç¹ã¯æµã®åŒ·ã
- æ¢çŽ¢ããé ç¹ãè¬ãªãæå ã«ä¿åãããä»ãã飲ãŸãªãã
- æ¢çŽ¢ããé ç¹ãæµã§åãã(æµã®åŒ·ãã髿©ããã®åŒ·ã以äž)ãªãåããŠæé·ãããã®é ç¹ããé£ã«ç§»åã§ããé ç¹ãç§»åå ã«å ãããæšæ§é ãªã®ã§èŠªé ç¹ã«æ»ãå¿ èŠã¯ãªãã
- æ¢çŽ¢ããé ç¹ãæµã§åããªããªãæ¢çŽ¢ããã£ããæã¡åã
ãã®æ¢çŽ¢ãäžæãããšãããã¹ãŠã®æµãåããããä»ã®åŒ·ãã§ã¯åããªãæµããããã©ã¡ããã§ããããã¹ãŠã®æµãåããã Yes
ãšåºåããŠçµäºããã
ä»ã®åŒ·ãã§ã¯åããªãæµããããªãè¬ã飲ãã®ã ãããã®è¬ã飲ãé åºã決ãæã¡ããŠãããæ±ºãæã¡ããé åºã«åãããªãè¬ã¯é£²ããªãã®ã§ãã®é åã§ã¯åãŠãªããè¬ãäžæ¬é£²ãã§åŒ·ããªããå床æ¢çŽ¢ãåéãã(è¬ã®åŒ·ãã¯
ãªãè¬ã飲ãã§æé·ããçµæã髿©ããã®åŒ·ããæåŒ·ã®æµä»¥äžã«ãªã£ããæ®ãã®æµã¯å
šéšåããã®ã§ Yes
ã§ããããããå¿ãããšåŒ·ãããªãŒããŒãããŒããã
ãããŸã§ã®èå¯ãå®è£
ãããšã1 TLE以å€ã¯ACããããã®æéçãèãããäžèšã®å埩ã¯ãä»ã®åŒ·ãã§æµãåããç¯å²ãé ç¹1ããåŸã
ã«æ¡å€§ããŠããã®ã§ãã£ããè¬ã飲ãé çªã決ãæã¡ããŠè¬ãå
é ããäžå®æ°é£²ãã ãšãã®æµãåããç¯å²ã¯ãæ¢çŽ¢é åºã«ãããåãã«ãªããåããªãæµããããšãã«ãŸã 飲ãã§ããªãè¬ã®éåãåäžã«ãªããããã§ããã°ããã®ç¯å²ã®äžã§
ããããå³ããã®æ¡ä»¶ãšããŠãæµãç¡èŠããŠè¬åå£«ãæšæ§é ã®ã°ã©ãã§è¡šçŸãããšããé ç¹1ããã®æ·±ãã§åãã§
ãã®å§çž®ããªãå¹ãã®ããèå¯ãããæµã®åŒ·ãã¯æå€§
é åã«ããå§çž®ãå¹ããªããã€ãŸããã¹ãŠã®è¬ã®åŒ·ããç°ãªãããšãèããããã®ãšãã¯
acc = 0
2.upto(11) do |x|
acc = (acc + 1) * x
end
æ¢çŽ¢ãæã倧å€ãªã®ã¯ãè¬ã飲ãã§æåŸã®äžå¹ä»¥å€ã¯å
šéšåãããæåŸã®äžå¹ã
acc = 488 + 1
2.upto(10) do |x|
acc = (acc + 1) * x
end
äžã€åã®äŸã«æ»ããšãè¬ã® No
ã§ã)é åç·åœããã§ãè§£ããã
acc = 488 + 1
[2,(2..10).to_a].flatten.each do |x|
acc = (acc + 1) * x
end
å ¬åŒè§£èª¬ã«ãããšãè¬ãåãé çªãç·åœãããã代ããã«BitDPããããšã§ãèšç®éãå§çž®ããŠããããšããããšã¯ã匷ããã«ã³ã¹ãããã®ãæ©ããšèšãåé¡èšå®ã®ããã«ãç§ã®è§£æ³ãããŸããŸTLEããªãã£ãå¯èœæ§ãããã
ã³ãŒãã¯ãã¡ã
決ãæã¡ã§ç·åœãã
ãªãŒã«ã®æ°åã0..9ã®ã©ãã«ãããã3æ¬ã®ãªãŒã«ã®ã©ã®é çªã§æ¢ããã6éããèš60éããæ±ºãæã¡ããŠç·åœããããã°ãããæå»
- ãªãŒã«ã®æååã2åç¹°ãè¿ããšãæååäžã«æå
d
ãåºãäœçœ®ãæ±ããã®ã楜ã«ãªãã -
std::string::find(d, pos)
ã§pos
ããã³ãã以éã«d
ãåºçŸããäœçœ®ãåãã - äœçœ®ã
std::string::npos
ãªãæåã¯åºãªãã®ã§ããã®çµã¿åããã§ã¯ç®æšãéæããã®ã¯äžå¯èœã§ãã - äœçœ®ã¯0-based indexã§ãããäœçœ®ã mod M ã§ç®¡çããã
- æåã«æ¢ãããªãŒã«ã¯
d
ã®äœçœ®$p$ ãæ¢ããæ¢ããæç¹ã§æéã$p$ çµéããŠããã0ç§ç®ã§æ¢ããã1æåç®ã§æ¢ãŸãã®ã§ããã§ããã - äºçªç®ä»¥éã«æ¢ãããªãŒã«ã¯
$q = (p + 1) \quad mod \quad M$ ããã³ãã以éã®äœçœ®$r$ ãæ¢ãããã®ãšã$1 + r - q$ ã ãæéãçµéããŠããã - çµéæéã®åãçãã§ãã
å
¬åŒè§£èª¬2ã®éãã3åšããŠãæåãã¿ã€ãããªããªãç®æšãéæããã®ã¯äžå¯èœãšèšããã°ãå°ãå®è£
ãæ¥œã«ãªãããªãŒã«ã3åç¹°ãè¿ãããã®ãé ã« std::string::find(digit, cursor+1)
ã§èª¿ã¹ããã«ãŒãœã«ã笊å·ããæŽæ°ã«ã㊠cursor=-1
ãåæå€ã«ããã°ãããå®è£
㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
DFS
çžå¯Ÿåº§æšã飿³é
åã«å
¥ããçžå¯Ÿé¢ä¿ãã°ã©ãã§ç®¡çãããåŸã¯ undecidable
ã§ããã
ã³ãŒãã¯ãã¡ã
æé軞
ãããããæµããŠããæéãšäººãæ»ã£ãŠããæéãã€ãã³ã
- ãããããæµããŠããã®ã¯ã€ãã³ã
$(T_i,i),i \geq 1$ - äººãæ»ã£ãŠããã®ã¯ã€ãã³ã
$(T_i,-p),p \geq 1$
ããšã¯å顿éãã«å®è£ ãããåã®å ã®äœçœ®ã«æ»ã£ãŠãããã€ãŸãæ»ã£ã人ã¯åã®æåŸã«ã€ãã®ã§ã¯ãªãããšã«æ³šæãã(ãããééãããšå ¥åäŸ1ãè§£ããªãã®ã§åãã)ã
- æåã¯äºº
$1..N$ ãåstd::set<Num>
ã«ãã¹ãŠå± ã - ãããããæµããŠããã€ãã³ãã
std::priority_queue<Event, std::vector<Event>, std::greater<Event>>
ã«å ¥ãã - ã€ãã³ãã®ãã¡æãæå»ãæ©ã(åæå»ãªãçªå·ãå°ãã)ãã®ãååŸãã
- ã€ãã³ãã人ãªããåã«æ»ã
- ã€ãã³ãããããããªããåã®äžã§æãçªå·ãå°ãã人ã(ããããã°)é£ã¹ããé£ã¹ã人ã¯åããå€ããæå»
$T_i+S_i$ ã«æ»ã£ãŠããã€ãã³ãã«è¿œå ãã
æåŸã«äºº
ã³ãŒãã¯ãã¡ã
环ç©å
åŠäœã«ã环ç©åã§ãããå®é£ã®äŸ¡æ Œã¯äžéããã(æåäžéãšèªã¿ééãã)ã®ã§ãäž»èã®å€æ®µãåºå®ãããããã倿®µããé«ãå¯èã¯äžåŸåã倿®µãšã¿ãªãããšãã§ããããã£ãŠåã倿®µãšã¿ãªããªãéšåã¯çޝç©åãåãäŸ¡æ Œãšã¿ãªãéšåã¯å®æ°ã®æãç®ã§æ±ãŸãã
std::upper_bound
ã§æ±ããŠã
-
$B_j \leq p-A_i$ ãªå¯èã«ã€ããŠã¯$A_i \times j + cumsum_j$ -
$B_j > p-A_i$ ãªå¯èã«ã€ããŠã¯$p(m-j)$
ãè¶³ããš
ã³ãŒãã¯ãã¡ã
std::bit_width
é ç¹
æ ¹ããããé ç¹ std::bit_width
ã§æ±ããããšãã§ããã
ããé ç¹
-
$dist(v) + K > height$ ãªãç¡ã -
$dist(v) + K < height$ ãªã$2^{K}$ ãç¹ã«$K=0$ ãªãèªåèªèº«ãªã®ã§1åã -
$dist(v) + K = height$ ãªã$N$ 以äžã®å°éå¯èœãªãã¹ãŠã®èãèã®æå°å€$left$ ã¯$v$ ãç¹°ãè¿ã2åãããã®ãèã®æå€§å€$right$ ã¯$v$ ã2åããŠ1è¶³ãã®ãç¹°ãè¿ããå€ã§ãããèã®æå°å€ããæå€§å€ã«å«ãŸããèã®æ°ãã$N$ ãå«ãŸãããã©ããæ°ãã€ããŠæ°ãããš$max(0,min(right,N) - left + 1)$ ãšãªãã
ããé ç¹
-
$K \leq 0$ ãªãæ¢çŽ¢ãæã¡åã -
$v=1$ ã€ãŸãæ ¹ã«ãããªãæ¢çŽ¢ãæã¡åã -
$K=1$ ãªã芪ã ããªã®ã§1åã -
$v$ ã®ãããã ãã¯$v XOR 1$ ãªã®ã§ããããã ãããèã«åããæ¹åã§è·é¢$K-2$ ã¡ããã©ã®é ç¹ã®æ°ã§ããããããã ãããèã«åããåŠçã¯äžèšãšåããªã®ã§ãŸãšããã -
$v$ ã®èŠªã¯$\lfloor v/2 \rfloor$ ãªã®ã§$v$ ã芪ã«ã$K$ ã$K-1$ ã«çœ®ãæããŠç¹°ãè¿ãã
äžèšã®åèšãçãã§ããã
ã³ãŒãã¯ãã¡ã
åãDPãã
ã¿ã€ã1ã¯æ®éã«DPãªã®ã ããã¿ã€ã2ã€ãŸãããŒã«ãé€ããšãã«
ã¿ã€ã1ã§
-
$a + b < K$ ãã€$a + b + x \leq K$ ãªãã${a,b,x}$ ã«ã€ããŠDPã§æ°ããŠããã®ã§${a,b,x}$ ã®å¯äžåãåŒããè¶³ãé ãšéé ã«åŒããªããšäŸåé¢ä¿ãå£ããã -
$a + b \leq K$ ãã€$a + b + x > K$ ãªãã${a,b,x}$ ã«ã€ããŠã¯DPã§æ°ããŠããªãã®ã§DPããåŒãã¹ãå€ã¯ãªã
ãããã«ããŠãã
ãã®çš®ã®DPã«ã¯çãããæŽæ°å ãšæŽæ°å ãããã«ãããã¡ãªã³ã°ãããšè§£ããªããåŒããšãã¯åŒããåŸã®å€ã䜿ãã®ã§ãã·ã³ã°ã«ãããã¡ã§å€ãæã£ãп޿°ããªããã°ãªããªãã
ã³ãŒãã¯ãã¡ã
ç·åœãã
C++ãªãç·åœããã§ã105 msã§è§£ãããèœã¡çããŠå®è£ ãããã
ããªãªããã®åè»¢ã¯æåã«äžåã ãè¡ãã°ããã90床å転åã®
ããªãªããã®å·Šäžã®äœçœ®ã¯çžŠæšªãšã
ãããå šéšè©Šãã°ããã詊ããšãã¯è§£ã§ã¯ãªããã®ãæ©ãã«æã¡åãã
- 4x4ãã¹ããã¯ã¿åºããäœçœ®ã«ããã眮ãããšãããæã¡åã
- ãã§ã«ããã眮ãããŠãããã¹ã«ããã眮ãããšãããæã¡åã
- ããªãªããã3ã€ãããŠããã¹ãŠã®16ãã¹ãåãŸããªããã°æ¬¡ã®åè£ã«è¡ã
- çããèŠã€ãã£ããå³
Yes
ãåºåããŠçµãã
ãªãããªãªããã®ãããåèš16ã§ãªããã°ãã©ãé 眮ããŠãæ¡ä»¶ãæºãããªãã®ã§æ¢çŽ¢ãããŸã§ããªãã
ã³ãŒãã¯ãã¡ã
ä»åºŠã¯6鲿°
éçºæ¡
- éçºæ¡
$i$ ãæ¡çšããªããã°$DP[i][q]=DP[i-1][q]$ - éçºæ¡
$i$ ãæ¡çšããã°$DP[i][r]=min(DP[i][r], DP[i-1][q]+C_i)$ ã§ãããããã§æŽæ°åŸã®ãã©ã¡ãŒã¿ã¯$r=[min(p,q_1+A_{i,1}),...,min(p,q_K+A_{i,K})]$ ã§ããã
-1
ãåºåããã
ã³ãŒãã¯ãã¡ã
é å»¶è©äŸ¡ã»ã°ã¡ã³ãæš
ãšããã®ãç¥ããªãã£ãã®ã§å
šãè§£ããªãã£ããå
¬åŒè§£èª¬éãã«å®è£
ãã atcoder::lazy_segtree
ã®ããã¥ã¡ã³ãéãã«ããã³ãã¬ãŒãã®åŒæ°ãé ã«èª¬æããã
- ã»ã°ã¡ã³ãæšã®ããŒãã«è©äŸ¡ããããã®ãèŒãããããã§ã¯é£ç¶ãã1ãšé£ç¶ãã0ã§ãããé£å士ã®ããŒããå䜵ããããã«å·§åŠãªããŒã¿æ§é ãå¿ èŠã§ããã詳ããã¯å ¬åŒè§£èª¬ãåç §ã
- é£å士ã®ããŒããå䜵ãããå·§åŠã«ããŒã¿ãçµããšãäºã€ã®ããŒãã®é£ç¶ãã0/1ã®æå€§æ°ãããå䜵ããããŒãã®é£ç¶ãã0/1ã®æå€§æ°ãæ±ããããšãã§ããã
- ããŒãã®åäœå ãå¹ 0ã®åºéãå®çŸ©ããã
- ã»ã°ã¡ã³ãæšã«å ããæäœã®åœ¢ãããã§ã¯åºéã®å転ãæç€ºããæŽæ°ã«ããã
- ã»ã°ã¡ã³ãæšã«å ããæäœã®çµæãããŒããã©ãå€ããããããã§ã¯0/1ã1/0ã«å転ããã
- ã»ã°ã¡ã³ãæšã«å ããæäœãåæãããå転ã®å転ã¯å éããªã®ã§XORã§ããã
- ã»ã°ã¡ã³ãæšã«å ããæäœã®æçååãå éããªã®ã§0ã§ããã
atcoder::lazy_segtree
ã®ãã³ãã¬ãŒãã¯èªç±é¢æ°ãªã®ã§ãåŒæ°ã«å¯Ÿããã¡ã³ã颿°ã«è»¢éãããåºæ¬çã«å€ãè¿ãã®ã§ãã³ã³ã¹ãã©ã¯ã¿ä»¥å€ã¯ const ã¡ã³ã颿°ã§ãããã€ãã§ã«ã³ã³ã¹ãã©ã¯ã¿ã« explicit
ãã€ããŠããã®ããã¹ããã©ã¯ãã£ã¹ã§ããã
ãã®ããã«ãããšãã¯ãšãªã«åºã¥ããŠé å»¶è©äŸ¡ã»ã°ã¡ã³ãæšãæäœããã³ãŒãèªäœã¯çãã
ã³ãŒãã¯ãã¡ã
ã·ãã¥ã¬ãŒã·ã§ã³
ã¹ã©ã€ã ãåæãããšå¿
ã倧ãããªãã®ã§ãã¹ã©ã€ã ã¯åæããŠæžãããåæã§ããã«æžããªããã©ã¡ããã§ãããåæã§ããªãã®ã¯ãµã€ãº
- ããæç¹ã§ã¹ã©ã€ã ã®éåã«ãµã€ãº
$S_i$ ã®ã¹ã©ã€ã ã$C_i$ å¹ããããšãããµã€ãºã®æé ã«ç®¡çãããstd::set<std::pair<Num, Num>>
ã䜿ãã - éåã§æãå°ãããµã€ãº
$S_i$ ã®ã¹ã©ã€ã ã$C_i$ å¹ãããåæããŠããµã€ãº$2S_i$ ã®ã¹ã©ã€ã ã$\lfloor C_i/2 \rfloor$ å¹ã€ãããéåã«å ããã -
$C_i$ ã奿°ãªããµã€ãº$S_i$ ã®ã¹ã©ã€ã ã1å¹äœããããåæããçžæã¯ããªãã®ã§ãäœãã1å¹å¢ããããªã®ã§éåã§æãå°ãããµã€ãº$S_i$ ã®ã¹ã©ã€ã ã¯$C_i$ ã奿°ã§ãå¶æ°ã§ãå¿ ãåãé€ãã - äžèšãéåã空ã«ãªããŸã§ç¹°ãè¿ãã
äœã£ãã¹ã©ã€ã ã®å¹æ°ãçãã§ããã
å ¬åŒè§£èª¬ã¯äžå€éãçšããè峿·±ã蚌æã§ãããå®è£ 㯠ãã¡ã
ã³ãŒãã¯ãã¡ã
確çDP
æå»
- æå»0以åã«æ²ã¯æãããªãã®ã§ã䟿å®äž
$DP[t][]=0 \quad for \quad t < 0$ ãšããã - æå»0ã«ã¯ã©ã®æ²ãçãã確çã§æããããã®ã§ã
$DP[0][]=1/N$ ãšããã - æå»
$t$ ã«æ°ãã«æ²ãæãå§ãããã確çã¯äžèšã®èª¬æããã$p=\sum_{i=1}^{N} DP[t-T_i][i]$ ã§ããããã®ãšãæ¬¡ã®æ²ãæãããã確çã¯ããããçããã®ã§$p/N$ ã§ãããã€ãŸã$DP[t][]=p/N$ ã§ããã
æå»
åºæ¬çã«äžèšã§ãã£ãŠããããå
¬åŒè§£èª¬ã«ãããš
ã³ãŒãã¯ãã¡ã
å Žååããå€ãããŠäœãããŠãããåãããªããªã£ãŠè«Šãããå ¬åŒè§£èª¬2ãèªãã§ããããçè§£ãããäžè¬çã«ä»¥äžã®åŠçããããšã³ãŒããç°¡æœã«ãªãã
- ã©ãããåç¹ã«å¹³è¡ç§»åãã
- æ®ãã®ã©ããã第äžè±¡éã«åºå®ããããå転ãã
- XãšYã®åŠçã察象ã«ããŠãåŒæ°ãå ¥ãæ¿ããããšã§äž¡æ¹èª¿ã¹ã
ã³ãŒãã¯ãã¡ã
Eåé¡ã®ãã³ã
ç·šéè·é¢(ã¬ãŒãã³ã·ã¥ã¿ã€ã³è·é¢)ãæ£ç¢ºã«æ±ããå¿ èŠã¯ãªãããã£ãšè»œãå®è£ ãããã
- æååé·ã2以äžç°ãªããªãã
$T^{'}$ ã¯$T$ ã«æ»ããªã - æåæ°ãäžèŽããå Žåã¯ãåãäœçœ®ã§çžç°ãªãæåã1å以äžãªã
$T^{'}$ ã¯$T$ ã«æ»ãã2å以äžãªãæ»ããªãã
æåæ°ã1ã ãç°ãªãå Žåãçãæ¹ã®æååã
- ã«ãŒãœã«ã
$S_i=1$ ,$L_i=1$ ã§åæåãã -
$S[S_i] = L[L_i]$ ãªã$S_i, L_i$ ãšãã«äžåé²ãã -
$S[S_i] \ne L[L_i]$ ãªã$L_i$ ã ãäžåé²ãã - ããã
$S_i \leq |S|$ ãã€$L_i \leq |L|$ ã®éç¹°ãè¿ã
å
¬åŒè§£èª¬2ãèŠãŠçŽããã³ãŒãã ãã¡ã ã
ã³ãŒãã¯ãã¡ã
TLEã«æ³šæã
0åãã«ããã¥ãã¥ã¬ãŒã¿ã䜿ã£ãããsnprintfã®æ¹ãéããããããªãã
std::ostringstream oss;
oss << std::setfill('0') << std::right << std::setw(n) << x;
ã³ãŒãã¯ãã¡ã
æé·å ±ééšååã§ã¯ãªãã£ãã
æé·å ±ééšåå(LCS: Longest Common Subsequence)ã¯åçèšç»æ³ã§æ±ãŸããã空é䜿çšéãšèšç®éãäºã€ã®æååã®é·ãã®ç©ãªã®ã§ãä»åã®åé¡ã§ã¯TLEãMLEããããªã®ã§ãã£ãšè»œãæ¹ãå¿ èŠã§ããã
Cåé¡ãå¿çšããŠã
åè
㯠std::lower_bound
ã§æ±ããã
std::lower_bound
ã䜿ããã
ã³ãŒãã¯ãã¡ã
äºåæ¢çŽ¢ã ãšã¯æããªãã£ãã
æ·±ãåªå
æ¢çŽ¢ããããšçµã¿åããããã¹ãå€ãããŠTLEããããªå Žåã¯ãäºåæ¢çŽ¢ã«ãããšè§£ããããšããããããããã§ã¯å§ç¹ããã®ã³ã¹ããæå€§åãããæã®çµç¹ã¯å§ç¹ããçªå·ã倧ãããšæ±ºãŸã£ãŠããã®ã§ãå®ã¯å§ç¹ããšã«å°éå¯èœãªé£ã®çµç¹ã®ã³ã¹ããæŽæ°ããã°ãããçµç¹ãš
å®è£ æ¹éãšããŠã¯ããã ãã ããå®è£ ã®çްéšãç¹çްã§å°ãã§ãééãããšWAãšTLEãããä»ã®æ¹ã®å®è£ ãåèã«äœåºŠãæžãçŽããã