NLP_RNN - yunfanfan/Notes GitHub Wiki
神经网络基础
神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y.
将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?
为什么需要RNN(循环神经网络)
他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息
,即前面的输入和后面的输入是有关系的。
比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列; 当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。
所以为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就诞生了。
RNN结构
首先看一个简单的循环神经网络如,它由输入层、一个隐藏层和一个输出层组成:
如果把上面有W的那个带箭头的圈去掉,它就变成了最普通的全连接神经网络
。x是一个向量,它表示输入层
的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层
的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);
U是输入层到隐藏层的权重矩阵
,o也是一个向量,它表示输出层
的值;V是隐藏层到输出层的权重矩阵
。
循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层
的值s。权重矩阵 W
就是隐藏层上一次的值作为这一次的输入的权重。
我们从上图就能够很清楚的看到,上一时刻的隐藏层是如何影响当前时刻的隐藏层的。
如果我们把上面的图展开,循环神经网络也可以画成下面这个样子:
我们可以用下面的公式来表示循环神经网络的计算方法:
用公式表示如下: