lie_group_homework - yuhannah/skills_map GitHub Wiki
视觉SLAM十四讲-李群李代数
习题解析
-
验证${\rm SO}(3)$、${\rm SE}(3)$和${\rm Sim}(3)$关于乘法成群。
三维旋转矩阵构成了特殊正交群${\rm SO}(3)$: $$ {\rm SO}(3)={{\bf R} \in {\Bbb R}^{3 \times 3} ; | ; {\bf RR}^T={\bf I},det({\bf R})=1}. $$
证明:任意${\bf R}_1,{\bf R}_2 \in {\Bbb R}^{3 \times 3}$: $$ {\bf R}_1=\begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \ {\bf R}_2=\begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \ \sin \theta_2 & \cos \theta_2 \end{bmatrix} $$
$$ \begin{split} {\bf R}' &= {\bf R}_1{\bf R}_2 \ &= \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \ \sin \theta_2 & \cos \theta_2 \end{bmatrix} \ &= \begin{bmatrix} \cos \theta_1 \cos \theta_2-\sin \theta_1 \sin \theta_2 & -(\cos \theta_1 \sin \theta_2+\sin \theta_1 \cos \theta_2) \ \sin \theta_1 \cos \theta_2+\cos \theta_1 \sin \theta_2 & -(\sin \theta_1 \sin \theta_2-\cos \theta_1 \cos \theta_2)\end{bmatrix} \ &= \begin{bmatrix} \cos (\theta_1+\theta_2) & -\sin (\theta_1+\theta_2) \ \sin (\theta_1+\theta_2) & \cos (\theta_1+\theta_2)\end{bmatrix} \ &= \begin{bmatrix} \cos \theta' & -\sin \theta' \ \sin \theta' & \cos \theta' \end{bmatrix} \end{split} $$
$$ \begin{split} {\bf R'R'}^T &= \begin{bmatrix} \cos \theta' & -\sin \theta' \ \sin \theta' & \cos \theta' \end{bmatrix} \begin{bmatrix} \cos \theta' & \sin \theta' \ -\sin \theta' & \cos \theta' \end{bmatrix} \ &= \begin{bmatrix} \cos^2 \theta'+\sin^2 \theta' & \cos \theta' \sin \theta'-\sin \theta' \cos \theta' \ \sin \theta' \cos \theta'-\cos \theta' \sin \theta' & \sin^2 \theta'+\cos^2 \theta' \end{bmatrix} \ &= \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = {\bf I} \end{split} $$
$$ \begin{split} det({\bf R'}) &= \begin{vmatrix} \cos \theta' & -\sin \theta' \ \sin \theta' & \cos \theta' \end{vmatrix} \ &= \cos^2 \theta' -(-\sin^2 \theta') = 1 \end{split} $$
故${\bf R}_1{\bf R}_2={\bf R}' \in {\Bbb R}^{3 \times 3}$。
-
123