adam优化器和学习率衰减 - yubo105139/paper GitHub Wiki
Adam优化器原理解释
ref:https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter07_optimization/7.8_adam
adam公式总结:
$$ v_t = \beta_1*v_{t-1} + (1-\beta_1)*g_t $$
$$ s_t = \beta_2*s_{t-1} + (1-\beta_2)*g_{t}^2 $$
$$ \hat{v_t} = \frac{v_t}{1-\beta_1^t} $$
$$ \hat{s_t} = \frac{s_t}{1-\beta_2^t} $$
$$ \Delta x = -\frac{\hat{v_t}}{\sqrt{\hat{s_t}} + \epsilon}*\eta $$
$$ x_{t} = x_{t-1} + \Delta x $$
adam伪代码
adam优化器torch源码实现:
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
amsgrad = group['amsgrad']
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsgrad:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = (max_exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
else:
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = group['lr'] / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom) # -step_size*(exp_avg/denom)
return loss
adam优化器参数中的衰减权重和学习率衰减权重
根据torch下的adam算法源码,adam的参数decay参与梯度更新的方式为,$grad = grad + decay*x
$, 然后更新后的grad 再参与到adam算法来更新元素值,decay的设置参数的量级和梯度的量级有关。
输入adam算法中的lr是固定的,参数的更新是自适应变化的,因为其考虑到了最近的n个时间步长的梯度以及更新量。
训练过程中的lr变化主要由调度策略影响。
平常所指的学习率衰减权重直接参与到学习率变化中。常见的学习率衰减:
$$
lr = \frac{1}{1+decay*epoch}*lr_0
$$
$$ lr = 0.95^{epoch} lr $$