Tech ‐ sklearn - yojulab/learn_MLs GitHub Wiki

Quick start

import pandas
from sklearn import linear_model

df = pandas.read_csv("data.csv")

X = df['Weight', 'Volume'](/yojulab/learn_MLs/wiki/'Weight',-'Volume')
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)
predictedCO2 = regr.predict([2300, 1300](/yojulab/learn_MLs/wiki/2300,-1300))

print(predictedCO2)

Beginner

분류 설명 비고
regression multiple_regression Linear, Polynomial
Classfication DecisionTree, Logistic Regression youtube-트리 구조 그리기 및 설명 변수 중요도
Clustering Hierarchical, KNN --

Intermediate

분류 설명 비고
preprocessing Scale, Categorical Data
Modeling Grid Search, Cross Validation, K-means
Evaluation Train/Test, Confusion Matrix, AUC - ROC Curve R2
Bootstrap Aggregation Bagging

Advanced

분류 설명 비고
Sampling -- --