Places365 - xyfJASON/image-datasets GitHub Wiki
Official website | Papers with Code | Download
Copied from paperswithcode.
The Places365 dataset is a scene recognition dataset. It is composed of 10 million images comprising 434 scene classes. There are two versions of the dataset: Places365-Standard with 1.8 million train and 36000 validation images from K=365 scene classes, and Places365-Challenge-2016, in which the size of the training set is increased up to 6.2 million extra images, including 69 new scene classes (leading to a total of 8 million train images from 434 scene classes).
Numbers: 2,168,460
Splits: 1,803,460 / 36,500 / 328,500 (train / valid / test)
Resolution:
- High-resolution: resized to have a minimum dimension of 512 while preserving the aspect ratio of the image. Original images that had a dimension smaller than 512 have been left unchanged.
- Small: resized to 256 * 256 regardless of the original aspect ratio.
Annotations: 365 scene categories
Notes (copied from official website): Compared to the train set of Places365-Standard, the train set of Places365-Challenge has 6.2 million extra images, leading to totally 8 million train images for the Places365 challenge 2016. The validation set and testing set are the same as the Places365-Standard.
Numbers: 8,391,628
Splits: 8,026,628 / 36,500 / 328,500 (train / valid / test)
Resolution: The same as Places365-Standard.
Annotations: 365 scene categories
Content | Filename | Size | MD5 | ||
---|---|---|---|---|---|
High-res | Train | Standard | train_large_places365standard.tar | 105GB | 67e186b496a84c929568076ed01a8aa1 |
Challenge | train_large_places365challenge.tar | 476GB | 605f18e68e510c82b958664ea134545f | ||
Validation | val_large.tar | 2.1GB | 9b71c4993ad89d2d8bcbdc4aef38042f | ||
Test | test_large.tar | 19GB | 41a4b6b724b1d2cd862fb3871ed59913 | ||
Small | Train | Standard | train_256_places365standard.tar | 24GB | 53ca1c756c3d1e7809517cc47c5561c5 |
Challenge | train_256_places365challenge.tar | 108GB | 741915038a5e3471ec7332404dfb64ef | ||
Validation | val_256.tar | 501MB | e27b17d8d44f4af9a78502beb927f808 | ||
Test | test_256.tar | 4.4GB | f532f6ad7b582262a2ec8009075e186b |
Please organize the downloaded dataset in the following file structure:
root
├── categories_places365.txt
├── places365_train_standard.txt
├── places365_train_challenge.txt
├── places365_val.txt
├── places365_test.txt
├── data_256_standard (extracted from train_256_places365standard.tar)
│ ├── a
│ ├── ...
│ └── z
├── data_large_standard (extracted from train_large_places365standard.tar)
│ ├── a
│ ├── ...
│ └── z
├── val_256 (extracted from val_256.tar)
│ ├── Places365_val_00000001.jpg
│ ├── ...
│ └── Places365_val_00036500.jpg
├── val_large (extracted from val_large.tar)
│ ├── Places365_val_00000001.jpg
│ ├── ...
│ └── Places365_val_00036500.jpg
├── test_256 (extracted from test_256.tar)
│ ├── Places365_test_00000001.jpg
│ ├── ...
│ └── Places365_test_00328500.jpg
└── test_large (extracted from test_large.tar)
├── Places365_test_00000001.jpg
├── ...
└── Places365_test_00328500.jpg
Places365(root: str, split: str = 'train', small: bool = False, is_challenge: bool = False, transforms: Optional[Callable] = None)
-
root
: Root directory of dataset. -
split
: One of {'train', 'valid', 'test'}. -
small
: if True, use 256x256 version; otherwise, use high-resolution version. Default to False. -
is_challenge
: if True, use Places365-Challenge-2016 training split; otherwise, use Places365-Standard. Default to False. -
transforms
: A function/transform that takes in an PIL image and returns a transformed version.
from image_datasets import Places365
root = '~/data/Places365/' # path to downloaded dataset
train_set = Places365(root=root, split='train', small=True)
valid_set = Places365(root=root, split='valid', small=True)
test_set = Places365(root=root, split='test', small=True)
print(len(train_set)) # 1803460
print(len(valid_set)) # 36500
print(len(test_set)) # 328500
print(train_set[0]) # (<PIL.Image.Image image mode=RGB size=256x256 at 0x7FD8EE031C10>, 0)
print(valid_set[100]) # (<PIL.Image.Image image mode=RGB size=256x256 at 0x7FCDF70A2E50>, 296)
print(test_set[1000]) # (<PIL.Image.Image image mode=RGB size=256x256 at 0x7FCDF70A2E50>, None)