ShardingSphere分库分表 - xinwu-yang/cube-java GitHub Wiki

分库分表原则

核心概念

表是透明化数据分片的关键概念。 Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下的数据分片需求。

逻辑表

相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。 例:订单数据根据主键尾数拆分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。

真实表

在水平拆分的数据库中真实存在的物理表。 即上个示例中的 t_order_0 到 t_order_9

绑定表

指分片规则一致的一组分片表。 使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛卡尔积关联或跨库关联,从而影响查询效率。 例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。 绑定表之间的多表关联查询不会出现笛卡尔积关联,关联查询效率将大大提升。 举例说明,如果 SQL 为

SELECT i.* FROM t_order o JOIN t_order_item i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

在不配置绑定表关系时,假设分片键 order_id 将数值 10 路由至第 0 片,将数值 11 路由至第 1 片,那么路由后的 SQL 应该为 4 条,它们呈现为笛卡尔积:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_0 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

在配置绑定表关系,并且使用 order_id 进行关联后,路由的 SQL 应该为 2 条:

SELECT i.* FROM t_order_0 o JOIN t_order_item_0 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

SELECT i.* FROM t_order_1 o JOIN t_order_item_1 i ON o.order_id=i.order_id WHERE o.order_id in (10, 11);

其中 t_order 表由于指定了分片条件,ShardingSphere 将会以它作为整个绑定表的主表。 所有路由计算将会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。

广播表

指所有的分片数据源中都存在的表,表结构及其数据在每个数据库中均完全一致。 适用于数据量不大且需要与海量数据的表进行关联查询的场景,例如:字典表。

单表

指所有的分片数据源中仅唯一存在的表。 适用于数据量不大且无需分片的表。

数据节点

数据分片的最小单元,由数据源名称和真实表组成。 例:ds_0.t_order_0。 逻辑表与真实表的映射关系,可分为均匀分布和自定义分布两种形式。

分片

分片键

用于将数据库(表)水平拆分的数据库字段。 例:将订单表中的订单主键的尾数取模分片,则订单主键为分片字段。 SQL 中如果无分片字段,将执行全路由,性能较差。 除了对单分片字段的支持,Apache ShardingSphere 也支持根据多个字段进行分片。

分片算法

用于将数据分片的算法,支持 =、>=、<=、>、<、BETWEEN 和 IN 进行分片。 分片算法可由开发者自行实现,也可使用 Apache ShardingSphere 内置的分片算法语法糖,灵活度非常高。

自动化分片算法

分片算法语法糖,用于便捷的托管所有数据节点,使用者无需关注真实表的物理分布。 包括取模、哈希、范围、时间等常用分片算法的实现。

自定义分片算法

提供接口让应用开发者自行实现与业务实现紧密相关的分片算法,并允许使用者自行管理真实表的物理分布。 自定义分片算法又分为:

标准分片算法

用于处理使用单一键作为分片键的 =、IN、BETWEEN AND、>、<、>=、<= 进行分片的场景。

复合分片算法

用于处理使用多键作为分片键进行分片的场景,包含多个分片键的逻辑较复杂,需要应用开发者自行处理其中的复杂度。

Hint 分片算法

用于处理使用 Hint 行分片的场景。

分片策略

包含分片键和分片算法,由于分片算法的独立性,将其独立抽离。 真正可用于分片操作的是分片键 + 分片算法,也就是分片策略。

强制分片路由

对于分片字段并非由 SQL 而是其他外置条件决定的场景,可使用 SQL Hint 注入分片值。 例:按照员工登录主键分库,而数据库中并无此字段。 SQL Hint 支持通过 Java API 和 SQL 注释两种方式使用。 详情请参见强制分片路由。

水平分片

水平分片又称为横向拆分。 相对于垂直分片,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个分片仅包含数据的一部分。 例如:根据主键分片,偶数主键的记录放入 0 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。

优点:

  1. 不存在单库大数据,高并发的性能瓶颈。

  2. 对应用透明,应用端改造较少。

  3. 按照合理拆分规则拆分,join 操作基本避免跨库。

  4. 提高了系统的稳定性跟负载能力。

缺点:

  1. 拆分规则难以抽象。

  2. 分片事务一致性难以解决。

  3. 数据多次扩展难度跟维护量极大。

  4. 跨库 join 性能较差。

垂直分片

按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。 在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的数据库。 下图展示了根据业务需要,将用户表和订单表垂直分片到不同的数据库的方案。

优点:

  1. 拆分后业务清晰,拆分规则明确。

  2. 系统之间整合或扩展容易。

  3. 数据维护简单。

缺点:

  1. 部分业务表无法 join,只能通过接口方式解决,提高了系统复杂度。

  2. 受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高。

  3. 事务处理复杂。

常用的分片策略:

1. 取模分片

优点:数据存放均匀

缺点:扩容需要大量数据迁移

2. 按范围分片(时间,id前缀,地区等)

优点:扩容不需要大量数据迁移

缺点:数据存放不均匀,容易产生数据倾斜

配置说明

rules:
- !SHARDING
  tables: # 数据分片规则配置
    <logic-table-name> (+): # 逻辑表名称
      actualDataNodes (?): # 由数据源名 + 表名组成(参考 Inline 语法规则)
      databaseStrategy (?): # 分库策略,缺省表示使用默认分库策略,以下的分片策略只能选其一
        standard: # 用于单分片键的标准分片场景
          shardingColumn: # 分片列名称
          shardingAlgorithmName: # 分片算法名称
        complex: # 用于多分片键的复合分片场景
          shardingColumns: # 分片列名称,多个列以逗号分隔
          shardingAlgorithmName: # 分片算法名称
        hint: # Hint 分片策略
          shardingAlgorithmName: # 分片算法名称
        none: # 不分片
      tableStrategy: # 分表策略,同分库策略
      keyGenerateStrategy: # 分布式序列策略
        column: # 自增列名称,缺省表示不使用自增主键生成器
        keyGeneratorName: # 分布式序列算法名称
  autoTables: # 自动分片表规则配置
    t_order_auto: # 逻辑表名称
      actualDataSources (?): # 数据源名称
      shardingStrategy: # 切分策略
        standard: # 用于单分片键的标准分片场景
          shardingColumn: # 分片列名称
          shardingAlgorithmName: # 自动分片算法名称
  bindingTables (+): # 绑定表规则列表
    - <logic_table_name_1, logic_table_name_2, ...> 
    - <logic_table_name_1, logic_table_name_2, ...> 
  broadcastTables (+): # 广播表规则列表
    - <table-name>
    - <table-name>
  defaultDatabaseStrategy: # 默认数据库分片策略
  defaultTableStrategy: # 默认表分片策略
  defaultKeyGenerateStrategy: # 默认的分布式序列策略
  defaultShardingColumn: # 默认分片列名称
  
  # 分片算法配置
  shardingAlgorithms:
    <sharding-algorithm-name> (+): # 分片算法名称
      type: # 分片算法类型
      props: # 分片算法属性配置
      # ...
  
  # 分布式序列算法配置
  keyGenerators:
    <key-generate-algorithm-name> (+): # 分布式序列算法名称
      type: # 分布式序列算法类型
      props: # 分布式序列算法属性配置
      # ...

更多资料请至移步 shardingsphere官网 查看

⚠️ **GitHub.com Fallback** ⚠️