1_DL_Course By James Zhou - xinshuaiqi/My_books GitHub Wiki

Course By James Zhou

L4

RNN

limitations of CNN

  • fixed input length

LSTM: Long short term memory; a variant of RNN

  • easier to retain longrange interactions.
  • LSTM application:
    • ehancer/TF prediction
    • ONT base calling

L5 Auto encoder

L6

regularization and optimization for deep learning

  • Regularization—prevent overfitting

    • Early stopping
    • L2 regularization (aka weight decay)
    • Multi-task learning; data augmentation
    • Dropout
  • Optimization—overcome underfitting

    • SGD, SGD with momentum
    • RMSProp

L9

DL: great power, but poor interpretability

  • find important features in individual input examples
    • perturbation 不安;扰乱
    • backpropagate contribution
    • deconvolutional nets

L13 Protein Structure prediction

  • amino acid residues
  • polypeptides
  • Structure level
    • primary: AA seq
    • secondary: local
      • alpha helix, beta sheet ...
    • Tertiary:
    • Quaternary: