Extended Riesel problems - xayahrainie4793/Extended-Sierpinski-Riesel-conjectures GitHub Wiki

Riesel problems

Definition For the original Riesel problem, it is finding and proving the smallest k such that k×bn-1 is not prime for all integers n ≥ 1 and GCD(k-1, b-1)=1.

Extended definiton Finding and proving the smallest k such that (k×bn-1)/GCD(k-1, b-1) is not prime for all integers n ≥ 1.

Notes All n must be >= 1.

k-values that make a full covering set with all or partial algebraic factors are excluded from the conjectures.

k-values that are a multiple of base (b) and where (k-1)/gcd(k-1,b-1) is not prime are included in the conjectures but excluded from testing.

Such k-values will have the same prime as k / b.

Table Colors used proven and all primes are defined primes

proven but some primes are only probable primes that have not been certified
unproven

Base

Conjectured smallest Riesel k

Covering set

k’s that make a full covering set with all or partial algebraic factors

Remaining k to find prime

(n testing limit)

Top 10 k’s with largest first primes: k(n)

(only sorted by n)

Comments

2

509203

3, 5, 7, 13, 17, 241

2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231, 215443, 226153, 234343, 245561, 250027, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 351134, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 478214, 485557, 494743 (k = 351134 and 478214 at n=6.5M, other k at n=10M)

273809 (8932416)

502573 (7181987)

402539 (7173024)

40597 (6808509)

304207 (6643565)

398023 (6418059)

252191 (5497878)

353159 (4331116)

141941 (4299438)

123547 (3804809)

3

12119

2, 5, 7, 13, 73

1613, 1831, 1937, 3131, 3589, 5755, 6787, 7477, 7627, 7939, 8713, 8777, 9811, 10651, 11597 (all at n=50K)

8059 (47256)

11753 (36665)

6119 (28580)

7511 (26022)

313 (24761)

11251 (24314)

9179 (21404)

997 (20847)

6737 (17455)

7379 (16856)

4

361

3, 5, 7, 13

All k = m^2 for all n;

factors to:

(m*2^n - 1) *

(m*2^n + 1)

none - proven

106 (4553)

74 (1276)

219 (206)

191 (113)

312 (51)

247 (42)

223 (33)

274 (22)

234 (18)

91 (17)

k = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, and 324 proven composite by full algebraic factors.

5

13

2, 3

none - proven

2 (4)

1 (3)

11 (2)

8 (2)

12 (1)

9 (1)

7 (1)

6 (1)

4 (1)

3 (1)

6

84687

7, 13, 31, 37, 97

1597, 6236, 9491, 37031, 49771, 50686, 53941, 55061, 57926, 76761, 79801, 83411 (k = 1597 at n=5.3M, other k at n=40K)

36772 (1723287)

43994 (569498)

77743 (560745)

51017 (528803)

57023 (483561)

78959 (458114)

59095 (171929)

48950 (143236),

29847 (141526)

9577 (121099)

7

457

2, 3, 5, 13, 19

none - proven (with probable primes that have not been certified: k = 197 and 367)

197 (181761)

367 (15118)

313 (5907)

159 (4896)

429 (3815)

419 (1052)

391 (938)

299 (600)

139 (468)

79 (424)

8

14

3, 5, 13

All k = m^3 for all n;

factors to:

(m*2^n - 1) *

(m2*4n + m*2^n + 1)

none - proven

11 (18)

5 (4)

12 (3)

7 (3)

2 (2)

13 (1)

10 (1)

9 (1)

6 (1)

4 (1)

k = 1 and 8 proven composite by full algebraic factors.

9

41

2, 5

All k = m^2 for all n;

factors to:

(m*3^n - 1) *

(m*3^n + 1)

none - proven

11 (11)

24 (8)

14 (8)

38 (3)

18 (3)

39 (2)

34 (2)

32 (2)

29 (2)

27 (2)

k = 1, 4, 9, 16, 25, and 36 proven composite by full algebraic factors.

10

334

3, 7, 13, 37

none - proven

121 (483)

109 (136)

98 (90)

230 (60)

289 (35)

89 (33)

32 (28)

233 (18)

324 (17)

100 (17)

11

5

2, 3

none - proven

1 (17)

3 (2)

2 (2)

4 (1)

12

376

5, 13, 29

(Condition 1):

All k where k = m^2

and m = = 5 or 8 mod 13:

for even n let k = m^2

and let n = 2*q; factors to:

(m*12^q - 1) *

(m*12^q + 1)

odd n:

factor of 13

(Condition 2):

All k where k = 3*m^2

and m = = 3 or 10 mod 13:

even n:

factor of 13

for odd n let k = 3*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*3q - 1] *

none - proven

298 (1676)

157 (285)

46 (194)

304 (40)

259 (40)

94 (36)

292 (30)

147 (28)

301 (27)

349 (25)

k = 25, 64, and 324 proven composite by condition 1.

k = 27 and 300 proven composite by condition 2.

13

29

2, 7

none - proven

25 (15)

28 (14)

20 (10)

1 (5)

22 (3)

17 (3)

16 (3)

27 (2)

21 (2)

12 (2)

14

4

3, 5

none - proven

2 (4)

1 (3)

3 (1)

15

622403

2, 17, 113, 1489

47, 203, 239, 407, 437, 451, 889, 893, 1945, 2049, 2245, 2487, 2507, 2689, 2699, 2863, 2940, 3059, 3163, 3179, 3261, 3409, 3697, 3701, 3725, 4173, 4249, 4609, 4771, 4877, 5041, 5243, 5425, 5441, 5503, 5669, 5857, 5913, 5963, 6231, 6447, 6787, 6879, 6999, 7386, 7407, 7459, 7473, 7527, 7615, 7683, 7687, 7859, 8099, 8610, 8621, 8671, 8839, 8863, 9025, 9267, 9409, 9655, 9663, 9707, 9817, 9955 (for k ⇐ 10K) (all at n=1.5K)

2940 (13254)

8610 (5178)

2069 (1461)

3917 (1427)

1145 (1349)

1583 (1330)

7027 (1316)

8831 (1296)

5305 (1273)

4865 (1265)

16

100

3, 7, 13

All k = m^2 for all n;

factors to:

(m*4^n - 1) *

(m*4^n + 1)

none - proven

74 (638)

78 (26)

48 (15)

58 (12)

31 (12)

95 (8)

46 (8)

88 (6)

44 (6)

39 (6)

k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors.

17

49

2, 3

none - proven

44 (6488)

29 (4904)

13 (1123)

36 (243)

10 (117)

26 (110)

5 (60)

11 (46)

46 (25)

35 (24)

18

246

5, 13, 19

none - proven

151 (418)

78 (172)

50 (110)

79 (63)

237 (44)

184 (44)

75 (44)

215 (36)

203 (32)

93 (32)

19

9

2, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*19^q - 1) *

(m*19^q + 1)

odd n:

factor of 5

none - proven

1 (19)

7 (2)

3 (2)

8 (1)

6 (1)

5 (1)

2 (1)

k = 4 proven composite by partial algebraic factors.

20

8

3, 7

none - proven

2 (10)

1 (3)

6 (2)

5 (2)

7 (1)

4 (1)

3 (1)

21

45

2, 11

none - proven

29 (98)

34 (17)

43 (10)

32 (4)

5 (4)

6 (3)

1 (3)

44 (2)

37 (2)

31 (2)

22

2738

5, 23, 97

208, 211, 898, 976, 1036, 1885, 1933, 2050, 2161, 2278, 2347, 2434 (all at n=13K)

1013 (26067)

185 (11433)

1335 (11155)

2719 (9671)

2083 (8046)

883 (5339)

2529 (3700)

2116 (3371)

2230 (3236)

1119 (2849)

23

5

2, 3

none - proven

3 (6)

2 (6)

4 (5)

1 (5)

24

32336

5, 7, 13, 73, 577

(Condition 1):

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*24^q - 1) *

(m*24^q + 1)

odd n:

factor of 5

(Condition 2):

All k where k = 6*m^2

and m = = 1 or 4 mod 5:

even n:

factor of 5

for odd n let k = 6*m^2

and let n=2*q-1; factors to:

[m*2(3q-1)*3q - 1] *

389, 461, 1581, 1711, 2094, 2606, 3006, 3754, 4239, 5356, 5784, 5791, 6116, 6579, 6781, 6831, 7321, 7809, 10219, 10399, 10666, 11101, 11516, 12326, 12429, 12674, 13269, 13691, 15019, 15151, 15614, 15641, 16124, 16234, 16616, 17019, 17436, 18054, 18454, 18964, 19116, 20026, 20576, 20611, 20879, 21004, 21464, 21524, 21639, 21809, 23549, 24404, 25046, 25136, 25349, 25389, 25419, 25646, 25731, 26176, 26229, 26661, 27049, 27154, 28001, 28384, 28849, 28859, 29211, 29531, 29569, 29581, 31071, 31466, 31734, 31854, 31994, 31996, 32099 (k = 1 mod 23 at n=12.4K, other k at n=260K)

10171 (259815)

11906 (252629)

23059 (252514)

21411 (252303)

28554 (239686)

20804 (233296)

8894 (210624)

2844 (203856)

25379 (175842)

22604 (169372)

k = 2^2, 3^2, 7^2, 8^2, 12^2, 13^2, 17^2, 18^2 (etc. pattern repeating every 5m) proven composite by condition 1.

k = 6*1^2, 6*4^2, 6*6^2, 6*9^2, 6*11^2, 6*14^2, 6*16^2, 6*19^2 (etc. pattern repeating every 5m) proven composite by condition 2.

25

105

2, 13

All k = m^2 for all n;

factors to:

(m*5^n - 1) *

(m*5^n + 1)

none - proven

86 (1029)

58 (26)

72 (24)

67 (24)

79 (21)

37 (17)

38 (14)

92 (13)

57 (10)

98 (9)

k = 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100 proven composite by full algebraic factors.

26

149

3, 7, 31, 37

none - proven

115 (520277)

32 (9812)

121 (1509)

73 (537)

80 (382)

128 (300)

124 (249)

37 (233)

25 (133)

65 (100)

27

13

2, 7

All k = m^3 for all n;

factors to:

(m*3^n - 1) *

(m2*9n + m*3^n + 1)

none - proven

9 (23)

11 (10)

12 (2)

7 (2)

6 (2)

3 (2)

10 (1)

5 (1)

4 (1)

2 (1)

k = 1 and 8 proven composite by full algebraic factors.

28

3769

5, 29, 157

(Condition 1):

All k where k = m^2

and m = = 12 or 17 mod 29:

for even n let k = m^2

and let n = 2*q; factors to:

(m*28^q - 1) *

(m*28^q + 1)

odd n:

factor of 29

(Condition 2):

All k where k = 7*m^2

and m = = 5 or 24 mod 29:

even n:

factor of 29

for odd n let k = 7*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*7q - 1] *

233, 376, 943, 1132, 1422, 2437 (k = 233 and 1422 at n=1M, other k at n=20.3K)

2319 (65184)

3232 (9147)

3019 (7073)

460 (5400)

1688 (4760)

2406 (4634)

2464 (4324)

849 (3129)

1507 (2938)

472 (2414)

k = 144, 289, 1681, and 2116 proven composite by condition 1.

k = 175 proven composite by condition 2.

29

4

3, 5

none - proven

2 (136)

1 (5)

3 (1)

30

4928

13, 19, 31, 67

k = 1369:

for even n let n=2*q; factors to:

(37*30^q - 1) *

(37*30^q + 1)

odd n:

covering set 7, 13, 19

659, 1024, 1580, 1936, 2293, 2916, 3719, 4372, 4897 (all at n=500K)

1642 (346592)

239 (337990)

2538 (262614)

249 (199355)

3256 (160619)

225 (158755)

774 (148344)

1873 (50427)

3253 (43291)

1654 (38869)

31

145

2, 3, 7, 19

5, 19, 51, 73, 97 (all at n=6K)

123 (1872)

124 (1116)

113 (643)

49 (637)

115 (464)

21 (275)

39 (250)

70 (149)

142 (140)

33 (107)

32

10

3, 11

All k = m^5 for all n;

factors to:

(m*2^n - 1) *

(m4*16n + m3*8n + m2*4n + m*2^n + 1)

none - proven

3 (11)

2 (6)

9 (3)

8 (2)

5 (2)

7 (1)

6 (1)

4 (1)

k = 1 proven composite by full algebraic factors.

33

545

2, 17

(Condition 1):

All k where k = m^2

and m = = 4 or 13 mod 17:

for even n let k = m^2

and let n = 2*q; factors to:

(m*33^q - 1) *

(m*33^q + 1)

odd n:

factor of 17

(Condition 2):

All k where k = 33*m^2

and m = = 4 or 13 mod 17:

(Condition 3):

All k where k = m^2

and m = = 15 or 17 mod 32:

for even n let k = m^2

and let n = 2*q; factors to:

(m*33^q - 1) *

(m*33^q + 1)

odd n:

factor of 2

257, 339 (both at n=12K)

186 (16770)

254 (3112)

142 (2568)

370 (1628)

272 (1418)

222 (919)

108 (360)

213 (233)

387 (191)

277 (187)

k = 16, 169, and 441 proven composite by condition 1.

k = 528 proven composite by condition 2.

k = 225 and 289 proven composite by condition 3.

34

6

5, 7

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*34^q - 1) *

(m*34^q + 1)

odd n:

factor of 5

none - proven

1 (13)

5 (2)

3 (1)

2 (1)

k = 4 proven composite by partial algebraic factors.

35

5

2, 3

none - proven

1 (313)

3 (6)

2 (6)

4 (1)

36

33791

13, 31, 43, 97

All k = m^2 for all n;

factors to:

(m*6^n - 1) *

(m*6^n + 1)

1148, 1555, 2110, 2133, 3699, 4551, 4737, 6236, 6883, 7253, 7362, 7399, 7991, 8250, 8361, 8363, 8472, 9491, 9582, 11014, 12320, 12653, 13641, 14358, 14540, 14836, 14973, 14974, 15228, 15687, 15756, 15909, 16168, 17354, 17502, 17946, 18203, 19035, 19646, 20092, 20186, 20630, 21880, 22164, 22312, 23213, 23901, 23906, 24236, 24382, 24645, 24731, 24887, 25011, 25159, 25161, 25204, 25679, 25788, 26160, 26355, 27161, 29453, 29847, 30970, 31005, 31634, 32302, 33047, 33627 (all at n=10K)

13800 (9790)

20485 (9140)

19389 (9119)

20684 (8627)

19907 (8439)

11216 (7524)

28416 (7315)

32380 (7190)

27296 (7115)

10695 (6672)

k = 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2, 10^2, 11^2, 12^2, 13^2, 14^2, 15^2, 16^2, etc. proven composite by full algebraic factors.

37

29

2, 5, 7, 13, 67

none - proven

5 (900)

19 (63)

18 (14)

1 (13)

8 (4)

25 (3)

23 (3)

14 (3)

6 (3)

4 (3)

38

13

3, 5, 17

none - proven

11 (766)

9 (43)

7 (7)

1 (3)

12 (2)

8 (2)

5 (2)

2 (2)

10 (1)

6 (1)

39

9

2, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*39^q - 1) *

(m*39^q + 1)

odd n:

factor of 5

none - proven

1 (349)

7 (2)

3 (2)

2 (2)

8 (1)

6 (1)

5 (1)

k = 4 proven composite by partial algebraic factors.

40

25462

3, 7, 41, 223

(Condition 1):

All k where k = m^2

and m = = 9 or 32 mod 41:

for even n let k = m^2

and let n = 2*q; factors to:

(m*40^q - 1) *

(m*40^q + 1)

odd n:

factor of 41

(Condition 2):

All k where k = 10*m^2

and m = = 18 or 23 mod 41:

even n:

factor of 41

for odd n let k = 10*m^2

and let n=2*q-1; factors to:

[m*2(3q-1)*5q - 1] *

157, 490, 520, 534, 618, 709, 739, 787, 862, 955, 1067, 1114, 1174, 1242, 1352, 1544, 1559, 1762, 1795, 1805, 2254, 2290, 2830, 2887, 3033, 3034, 3156, 3342, 3361, 3418, 3650, 3750, 3830, 3859, 3922, 4006, 4132, 4183, 4219, 4297, 4582, 4673, 4724, 4771, 5218, 5233, 5308, 5431, 5629, 6107, 6192, 6220, 6436, 6463, 6582, 6618, 6682, 6684, 6709, 6946, 7089, 7094, 7126, 7258, 7282, 7381, 7504, 7602, 7678, 7702, 7795, 8032, 8035, 8173, 8461, 8572, 8899, 8959, 9121, 9226, 9347, 9424, 9472, 9511, 9716, 9748, 9874, 9964, 10003, 10060, 10285, 10615, 10744, 11030, 11470, 11479, 11560, 11847, 11971, 12178, 12193, 12226, 12250, 12256, 12299, 12301, 12422, 12505, 12544, 12547, 12568, 12709, 12742, 12750, 12873, 13005, 13022, 13039, 13165, 13191, 13212, 13624, 13666, 13777, 13894, 13939, 14146, 14262, 14272, 14362, 14494, 14513, 14636, 14766, 14802, 14980, 15046, 15154, 15271, 15374, 15376, 15388, 15417, 15496, 15579, 15661, 15730, 15907, 15967, 16108, 16235, 16579, 16705, 16728, 16891, 16897, 16932, 17014, 17137, 17275, 17287, 17344, 17536, 17653, 17707, 17801, 17860, 17896, 17923, 17998, 18114, 18292, 18397, 18697, 18787, 18818, 18853, 18949, 19117, 19310, 19510, 19606, 19722, 19751, 19756, 19761, 19780, 19825, 19927, 20158, 20212, 20253, 20428, 20458, 20479, 20491, 20583, 20632, 20747, 20788, 20809, 21058, 21082, 21276, 21321, 21403, 21493, 21731, 21817, 21895, 21975, 22114, 22130, 22262, 22263, 22303, 22344, 22570, 22706, 22879, 23371, 23615, 23851, 24184, 24189, 24268, 24337, 24397, 24421, 24448, 24483, 24519, 24805, 24979 (all at n=1K)

23977 (982)

13072 (982)

20952 (963)

8749 (962)

18103 (957)

22759 (939)

220 (939)

23795 (935)

8113 (918)

13654 (905)

k = 81, 1024, 2500, 5329, 8281, 12996, 17424, and 24025 proven composite by condition 1.

k = 3240 and 5290 proven composite by condition 2.

41

8

3, 7

none - proven

7 (153)

5 (10)

1 (3)

6 (2)

2 (2)

4 (1)

3 (1)

42

15137

5, 43, 353

603, 1049, 1600, 2538, 4299, 4903, 5118, 5978, 6836, 6964, 6971, 7309, 8297, 8341, 9029, 9201, 9633, 9848, 11267, 11781, 11911, 11996, 12125, 12127, 12213, 12598, 13288, 13347, 14884 (k = 1600, 6971 and 14884 at n=8K, other k at n=200K)

7051 (188034)

5417 (179220)

13898 (152983)

1633 (128734)

13757 (126934)

7913 (108747)

15024 (104613)

8453 (89184)

7658 (79316)

10923 (61071)

43

21

2, 11

13 (12K)

4 (279)

12 (203)

17 (79)

3 (24)

1 (5)

19 (4)

15 (4)

7 (4)

11 (2)

10 (2)

44

4

3, 5

none - proven

1 (5)

2 (4)

3 (1)

45

93

2, 23

none - proven

24 (153355)

53 (582)

70 (167)

29 (146)

76 (102)

85 (82)

91 (50)

77 (26)

1 (19)

33 (11)

46

928

3, 7, 103

281, 436, 800 (k = 800 at n=500K, other k at n=28K)

870 (51699)

86 (26325)

93 (24162)

561 (5011)

576 (3659)

100 (2955)

386 (2425)

338 (1478)

597 (950)

121 (935)

47

5

2, 3

none - proven

4 (1555)

1 (127)

2 (4)

3 (2)

48

3226

5, 7, 461

313, 384, 708, 909, 916, 1093, 1457, 1686, 1877, 1896, 1898, 2071, 2148, 2172, 2402, 2589, 2682, 2927, 2939, 3044, 3067 (all at n=200K)

2157 (169491)

2549 (169453)

1478 (167541)

2822 (129611)

2379 (116204)

118 (107422)

692 (103056)

1842 (87175)

953 (81493)

2582 (75696)

49

81

2, 5

All k = m^2 for all n;

factors to:

(m*7^n - 1) *

(m*7^n + 1)

none - proven

79 (212)

44 (122)

69 (42)

30 (24)

59 (16)

53 (15)

70 (14)

24 (14)

31 (9)

74 (6)

k = 1, 4, 9, 16, 25, 36, 49, and 64 proven composite by full algebraic factors.

50

16

3, 17

none - proven

14 (66)

13 (19)

5 (12)

11 (6)

6 (6)

1 (3)

8 (2)

2 (2)

15 (1)

12 (1)

51

25

2, 13

none - proven (with probable primes that have not been certified: k = 1)

1 (4229)

23 (96)

3 (8)

12 (4)

14 (3)

4 (3)

22 (2)

19 (2)

18 (2)

15 (2)

52

25015

3, 7, 53, 379

(Condition 1):

All k where k = m^2

and m = = 23 or 30 mod 53:

for even n let k = m^2

and let n = 2*q; factors to:

(m*52^q - 1) *

(m*52^q + 1)

odd n:

factor of 53

(Condition 2):

All k where k = 13*m^2

and m = = 7 or 46 mod 53:

even n:

factor of 53

for odd n let k = 13*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*13q - 1] *

82, 139, 233, 239, 349, 363, 372, 472, 476, 478, 547, 557, 607, 613, 654, 657, 796, 813, 902, 931, 991, 1012, 1069, 1104, 1161, 1167, 1231, 1234, 1271, 1357, 1502, 1534, 1589, 1591, 1651, 1669, 1711, 1801, 1881, 1909, 1966, 2035, 2049, 2113, 2227, 2364, 2384, 2437, 2492, 2557, 2578, 2643, 2722, 2725, 2767, 2769, 3022, 3073, 3106, 3128, 3163, 3199, 3229, 3277, 3298, 3418, 3423, 3550, 3559, 3607, 3637, 3656, 3764, 3788, 3847, 3870, 3921, 4003, 4036, 4043, 4117, 4195, 4239, 4294, 4329, 4347, 4348, 4366, 4534, 4561, 4582, 4597, 4665, 4754, 4762, 4824, 4876, 4894, 4975, 4981, 5037, 5056, 5107, 5142, 5158, 5236, 5239, 5246, 5299, 5541, 5575, 5672, 5836, 5882, 6190, 6193, 6256, 6308, 6361, 6394, 6424, 6434, 6442, 6462, 6493, 6568, 6589, 6619, 6628, 6697, 6732, 6835, 6873, 6962, 6981, 6997, 7252, 7288, 7386, 7399, 7408, 7594, 7603, 7631, 7633, 7727, 7797, 7799, 7847, 7879, 7894, 7936, 8008, 8032, 8138, 8161, 8163, 8201, 8248, 8257, 8377, 8389, 8422, 8488, 8587, 8637, 8641, 8691, 8693, 8713, 8744, 8903, 8932, 8958, 9053, 9055, 9144, 9148, 9187, 9223, 9382, 9400, 9421, 9433, 9436, 9472, 9624, 9647, 9654, 9667, 9682, 9699, 9753, 9769, 9782, 9799, 9802, 9808, 9854, 9859, 9892, 9907, 9928, 9967, 10056, 10069, 10129, 10134, 10173, 10174, 10237, 10243, 10306, 10429, 10462, 10489, 10546, 10618, 10645, 10792, 10806, 10917, 10919, 10954, 10984, 10996, 11161, 11164, 11290, 11297, 11299, 11326, 11355, 11371, 11394, 11401, 11500, 11656, 11677, 11698, 11722, 11767, 11826, 11827, 11833, 11854, 11926, 12064, 12074, 12133, 12148, 12186, 12212, 12239, 12304, 12352, 12401, 12405, 12423, 12449, 12454, 12668, 12688, 12694, 12719, 12827, 12889, 12928, 12931, 13025, 13031, 13045, 13196, 13198, 13264, 13297, 13306, 13324, 13357, 13372, 13392, 13461, 13551, 13673, 13687, 13719, 13786, 13856, 13999, 14044, 14065, 14101, 14116, 14179, 14234, 14266, 14309, 14453, 14584, 14589, 14647, 14682, 14692, 14698, 14736, 14759, 14786, 14827, 14833, 14947, 14968, 14998, 15007, 15010, 15022, 15051, 15109, 15124, 15139, 15154, 15181, 15212, 15244, 15265, 15316, 15370, 15574, 15677, 15688, 15733, 15899, 15928, 15937, 16007, 16039, 16087, 16096, 16111, 16216, 16227, 16293, 16308, 16324, 16342, 16388, 16429, 16535, 16614, 16714, 16726, 16729, 16748, 16836, 16854, 16884, 16897, 16906, 16927, 16963, 17092, 17102, 17182, 17197, 17224, 17229, 17277, 17311, 17418, 17423, 17438, 17489, 17714, 17734, 17754, 17782, 17821, 17882, 17911, 17916, 17989, 18604, 18670, 18709, 18757, 18761, 18787, 18871, 18883, 18899, 18903, 19024, 19026, 19028, 19079, 19098, 19102, 19132, 19142, 19163, 19189, 19282, 19357, 19363, 19549, 19556, 19558, 19594, 19609, 19672, 19678, 19821, 19876, 19946, 19982, 20008, 20088, 20094, 20139, 20212, 20267, 20308, 20318, 20359, 20395, 20417, 20616, 20649, 20793, 20821, 20881, 20883, 20983, 21013, 21016, 21049, 21092, 21148, 21151, 21235, 21307, 21316, 21368, 21403, 21404, 21413, 21464, 21526, 21537, 21572, 21676, 21684, 21729, 21757, 21784, 21796, 21803, 21804, 21837, 21859, 21866, 21898, 22096, 22146, 22180, 22216, 22308, 22312, 22324, 22383, 22406, 22429, 22447, 22456, 22459, 22471, 22528, 22566, 22643, 22688, 22704, 22723, 22738, 22744, 22771, 22789, 22842, 22846, 22874, 22887, 23056, 23191, 23215, 23268, 23315, 23344, 23377, 23427, 23518, 23531, 23533, 23584, 23692, 23759, 23773, 23829, 23924, 23991, 24042, 24175, 24244, 24331, 24403, 24412, 24448, 24503, 24553, 24557, 24591, 24646, 24671, 24763, 24911 (all at n=1K)

13298 (1000)

19006 (994)

10592 (993)

427 (992)

10687 (989)

14621 (982)

20044 (980)

8959 (980)

19084 (977)

k = 529, 900, 5776, 6889, 16641, and 18496 proven composite by condition 1.

k = 637 proven composite by condition 2.

53

13

2, 3

none - proven

12 (71)

10 (71)

2 (44)

7 (11)

1 (11)

8 (8)

11 (6)

9 (3)

5 (2)

6 (1)

54

21

5, 11

(Condition 1):

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*54^q - 1) *

(m*54^q + 1)

odd n:

factor of 5

(Condition 2):

All k where k = 6*m^2

and m = = 1 or 4 mod 5:

even n:

factor of 5

for odd n let k = 6*m^2

and let n=2*q-1; factors to:

[m*2q*3(3q-1) - 1] *

none - proven

20 (8)

19 (6)

10 (4)

17 (3)

1 (3)

14 (2)

7 (2)

3 (2)

18 (1)

16 (1)

k = 4 and 9 proven composite by condition 1.

k = 6 proven composite by condition 2.

55

13

2, 7

none - proven

3 (76)

1 (17)

11 (8)

9 (3)

7 (2)

6 (2)

12 (1)

10 (1)

8 (1)

5 (1)

56

20

3, 19

none - proven

14 (26)

10 (23)

1 (7)

18 (4)

17 (4)

7 (3)

11 (2)

8 (2)

5 (2)

2 (2)

57

144

5, 13, 29

All k where k = m^2

and m = = 3 or 5 mod 8:

for even n let k = m^2

and let n = 2*q; factors to:

(m*57^q - 1) *

(m*57^q + 1)

odd n:

factor of 2

none - proven

87 (242)

54 (157)

100 (109)

59 (83)

115 (34)

124 (31)

88 (27)

63 (22)

139 (20)

38 (20)

k = 9, 25, and 121 proven composite by partial algebraic factors.

58

547

3, 7, 163

71, 130, 169, 178, 319, 456, 493, 499 (k = 71 and 456 at n=100K, other k at n=14K)

382 (7188)

400 (5245)

421 (4526)

176 (2854)

473 (1641)

487 (1412)

312 (1079)

334 (724)

53 (645)

457 (492)

59

4

3, 5

none - proven

3 (8)

1 (3)

2 (2)

60

20558

13, 61, 277

(Condition 1):

All k where k = m^2

and m = = 11 or 50 mod 61:

for even n let k = m^2

and let n = 2*q; factors to:

(m*60^q - 1) *

(m*60^q + 1)

odd n:

factor of 61

(Condition 2):

All k where k = 15*m^2

and m = = 22 or 39 mod 61:

even n:

factor of 61

for odd n let k = 15*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*15q - 1] *

36, 1770, 4708, 5317, 5611, 6101, 6162, 6274, 7060, 7870, 8722, 9212, 9454, 9881, 10249, 11101, 12061, 12072, 12098, 12479, 12996, 13297, 13480, 14275, 14851, 15800, 16167, 17185, 17620, 18055, 18965, 18972, 19336, 19394, 19397 (k = 16167 and 18055 at n=8K, other k at n=100K)

1024 (90701)

12121 (84208)

15227 (80625)

15185 (79350)

8649 (79159)

20131 (71977)

19457 (68854)

16333 (61172)

18776 (60164)

1486 (58932)

k = 121, 2500, 5184, 14641, and 17689 proven composite by condition 1.

k = 7260 proven composite by condition 2.

61

125

2, 31

37, 53, 100 (all at n=10K)

13 (4134)

77 (3080)

10 (1552)

41 (755)

42 (174)

22 (117)

57 (89)

109 (86)

103 (78)

93 (60)

62

8

3, 7

none - proven

3 (59)

4 (9)

1 (3)

6 (2)

5 (2)

2 (2)

7 (1)

63

857

2, 5, 397

37, 65, 93, 129, 139, 177, 211, 231, 237, 251, 271, 281, 291, 333, 417, 457, 471, 473, 491, 493, 497, 513, 587, 599, 633, 669, 677, 679, 687, 691, 695, 717, 733, 771, 817, 819, 821, 831, 853 (all at n=1K)

64 (1483)

372 (1320)

839 (940)

495 (916)

183 (904)

97 (851)

39 (848)

277 (835)

775 (710)

411 (678)

64

14

5, 13

All k = m^2 for all n; factors to:

(m*8^n - 1) *

(m*8^n + 1)

-or-

All k = m^3 for all n; factors to:

(m*4^n - 1) *

(m2*16n + m*4^n + 1)

none - proven

11 (9)

12 (6)

5 (2)

13 (1)

10 (1)

7 (1)

6 (1)

3 (1)

2 (1)

k = 1, 4, 8, and 9 proven composite by full algebraic factors.

65

10

3, 11

none - proven

1 (19)

8 (10)

4 (9)

2 (4)

5 (2)

9 (1)

7 (1)

6 (1)

3 (1)

66

unknown

unknown

testing not started

67

33

2, 17

All k where k = m^2

and m = = 4 or 13 mod 17:

for even n let k = m^2

and let n = 2*q; factors to:

(m*67^q - 1) *

(m*67^q + 1)

odd n:

factor of 17

none - proven

25 (2829)

2 (768)

23 (42)

21 (27)

1 (19)

31 (10)

19 (8)

18 (7)

13 (7)

11 (6)

k = 16 proven composite by partial algebraic factors.

68

22

3, 23

none - proven

7 (25395)

5 (13574)

11 (198)

8 (62)

10 (53)

3 (10)

1 (5)

14 (4)

2 (4)

9 (3)

69

6

3, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*69^q - 1) *

(m*69^q + 1)

odd n:

factor of 5

none - proven

5 (4)

1 (3)

3 (1)

2 (1)

k = 4 proven composite by partial algebraic factors.

70

853

13, 29, 71

376, 496, 811 (all at n=1K)

729 (28625)

434 (3820)

489 (2096)

278 (1320)

550 (764)

31 (545)

174 (441)

778 (356)

841 (335)

211 (329)

71

5

2, 3

none - proven

2 (52)

1 (3)

3 (2)

4 (1)

72

293

5, 17, 73

none - proven

4 (1119849)

79 (28009)

291 (26322)

116 (13887)

118 (4599)

67 (4308)

197 (3256)

24 (2648)

11 (2445)

18 (1494)

73

112

5, 13, 37

(Condition 1):

All k where k = m^2

and m = = 6 or 31 mod 37:

for even n let k = m^2

and let n = 2*q; factors to:

(m*73^q - 1) *

(m*73^q + 1)

odd n:

factor of 37

(Condition 2):

All k where k = m^2

and m = = 3 or 5 mod 8:

for even n let k = m^2

and let n = 2*q; factors to:

(m*73^q - 1) *

(m*73^q + 1)

odd n:

factor of 2

79, 101 (both at n=4K)

105 (102)

48 (73)

54 (63)

42 (50)

26 (50)

97 (47)

61 (39)

89 (32)

83 (26)

58 (25)

k = 36 proven composite by condition 1.

k = 9 and 25 proven composite by condition 2.

74

4

3, 5

none - proven

2 (132)

1 (5)

3 (2)

75

37

2, 19

none - proven

35 (1844)

16 (119)

18 (54)

30 (41)

3 (16)

22 (15)

5 (9)

17 (5)

4 (5)

23 (4)

76

34

7, 11

none - proven

1 (41)

27 (40)

20 (22)

25 (11)

15 (11)

30 (7)

21 (4)

19 (4)

13 (4)

10 (4)

77

13

2, 3

none - proven

2 (14)

1 (3)

12 (2)

11 (2)

8 (2)

5 (2)

3 (2)

10 (1)

9 (1)

7 (1)

78

90059

5, 79, 1217

274, 302, 631, 1816, 2292, 2381, 3872, 3949, 4344, 4383, 4489, 4937, 5057, 5766, 5782, 6077, 6436, 7032, 7800, 8469, 8499, 8649, 8758, 10263, 10924, 10928, 10942, 11044, 11936, 12167, 12187, 12244, 12286, 12332, 12622, 13212, 13287, 13668, 13824, 14059, 14456, 14526, 14932, 15722, 15799, 16451, 16688, 17029, 17039, 17221, 17271, 17732, 17886, 18013, 18663, 19614, 19846, 19909, 19986, 20027, 20182, 20462, 20879, 21197, 21631, 21961, 23052, 23079, 23801, 23899, 24214, 24949, 25061, 25532, 25901, 26377, 26385, 26804, 27021, 27096, 27175, 27256, 27399, 27439, 27842, 29073, 29389, 29668, 29863, 30444, 31046, 31053, 31742, 31836, 31917, 31994, 32705, 33298, 33412, 33671, 33888, 33892, 34728, 35179, 35568, 36233, 36344, 36609, 37024, 38354, 38438, 38711, 38886, 39173, 39901, 40131, 40239, 40289, 40437, 40998, 41079, 41316, 41711, 41748, 42106, 42337, 42896, 43331, 43842, 43886, 44038, 44374, 44634, 44871, 45214, 45221, 45466, 46012, 46187, 46593, 46922, 47004, 47562, 47573, 47636, 47657, 47986, 48004, 48112, 48371, 48973, 48979, 49386, 49611, 49988, 51430, 52042, 52929, 53719, 53761, 54188, 54936, 55245, 55491, 55617, 56563, 56721, 56757, 56904, 57234, 57317, 57611, 57786, 57842, 58402, 58455, 58696, 58854, 59093, 59536, 59774, 60187, 60919, 60978, 61762, 61783, 61937, 62481, 62646, 62854, 63043, 63281, 63351, 64309, 64384, 64744, 65157, 65814, 65885, 66102, 66249, 66991, 67386, 67588, 67593, 67706, 67880, 68027, 68573, 68804, 69630, 69914, 71254, 71338, 72003, 72916, 72997, 73706, 73708, 73734, 73787, 74757, 74823, 75307, 75482, 75857, 75888, 76056, 76392, 76781, 77057, 77594, 78135, 78604, 78835, 78959, 79630, 79633, 79674, 80421, 80725, 80788, 80976, 81208, 81369, 83186, 83739, 84484, 85218, 85506, 85886, 86137, 86164, 86329, 86353, 86446, 86692, 88718, 88817, 88866, 89314, 89538, 89664, 89846 (k = 1 mod 7 and k = 1 mod 11 at n=1K, other k at n=100K)

3633 (94500)

68571 (91386)

51476 (88677)

78053 (84433)

58412 (83824)

45661 (73022)

11412 (72798)

72638 (70230)

23462 (69162)

23543 (62677)

79

9

2, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*79^q - 1) *

(m*79^q + 1)

odd n:

factor of 5

none - proven

1 (5)

7 (4)

3 (4)

6 (3)

8 (1)

5 (1)

2 (1)

k = 4 proven composite by partial algebraic factors.

80

253

3, 37, 173

10, 31, 214 (all at n=400K)

170 (148256)

106 (16237)

154 (9753)

46 (5337)

232 (2997)

157 (2613)

169 (1959)

45 (1156)

218 (776)

244 (653)

81

74

7, 13, 73

All k = m^2 for all n;

factors to:

(m*9^n - 1) *

(m*9^n + 1)

none - proven

53 (268)

42 (99)

23 (68)

18 (15)

35 (14)

30 (12)

71 (4)

60 (4)

40 (4)

24 (4)

k = 1, 4, 9, 16, 25, 36, 49, and 64 proven composite by full algebraic factors.

82

22326

5, 83, 269

118, 133, 290, 331, 334, 439, 625, 649, 667, 748, 757, 763, 829, 878, 883, 898, 997, 1163, 1252, 1279, 1327, 1348, 1351, 1531, 1741, 1827, 1936, 1991, 2050, 2157, 2263, 2278, 2419, 2431, 2539, 2543, 2588, 2635, 2668, 2797, 2836, 2896, 2929, 2971, 2974, 3079, 3121, 3156, 3293, 3319, 3436, 3653, 3796, 3817, 4068, 4078, 4083, 4118, 4372, 4399, 4447, 4481, 4483, 4780, 4801, 4867, 4898, 4972, 5053, 5182, 5230, 5311, 5329, 5401, 5560, 5562, 5713, 5893, 5899, 5975, 6028, 6122, 6124, 6143, 6178, 6186, 6226, 6296, 6343, 6418, 6427, 6571, 6631, 6925, 6994, 7054, 7056, 7303, 7386, 7388, 7396, 7474, 7615, 7723, 7801, 7813, 7822, 7884, 7892, 7969, 8065, 8314, 8368, 8384, 8499, 8629, 8761, 8830, 8878, 8891, 8941, 9124, 9166, 9304, 9409, 9461, 9712, 9739, 9967, 9988, 10000, 10036, 10075, 10147, 10162, 10448, 10542, 10891, 10957, 11056, 11086, 11119, 11123, 11271, 11372, 11485, 11533, 11553, 11665, 11728, 11827, 11884, 11929, 12079, 12169, 12202, 12211, 12283, 12547, 12562, 12587, 12791, 13126, 13141, 13358, 13531, 13613, 13768, 13779, 13792, 13862, 13891, 14095, 14109, 14161, 14188, 14242, 14257, 14275, 14349, 14441, 14524, 14531, 14563, 14614, 14687, 14855, 14939, 14941, 14986, 15046, 15136, 15271, 15343, 15349, 15403, 15493, 15508, 15634, 15679, 15682, 15852, 15997, 16024, 16103, 16131, 16242, 16312, 16534, 16633, 16753, 16756, 16767, 16954, 17011, 17401, 17512, 17518, 17761, 17803, 17833, 17878, 18058, 18061, 18431, 18448, 18514, 18538, 18550, 18757, 19093, 19237, 19309, 19372, 19414, 19444, 19519, 19672, 19678, 19930, 19946, 20002, 20050, 20113, 20218, 20251, 20413, 20491, 20578, 20581, 20708, 20773, 20980, 21052, 21088, 21215, 21282, 21334, 21382, 21398, 21433, 21449, 21453, 21454, 21466, 21514, 21541, 21631, 21683, 21762, 21862, 21871, 21913, 22012, 22132, 22162, 22243, 22245 (k = 1 mod 3 at n=1K, other k at n=100K)

15978 (99999)

21429 (96772)

18989 (96049)

17592 (83837)

22233 (75716)

12912 (74869)

5811 (72615)

16091 (65850)

18576 (64927)

4482 (63245)

83

5

2, 3

none - proven

2 (8)

1 (5)

3 (2)

4 (1)

84

16

5, 17

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*84^q - 1) *

(m*84^q + 1)

odd n:

factor of 5

none - proven

1 (17)

14 (8)

11 (7)

8 (4)

12 (3)

15 (1)

13 (1)

10 (1)

7 (1)

6 (1)

k = 4 and 9 proven composite by partial algebraic factors.

85

173

2, 43

61 (8K)

169 (6939)

64 (1253)

105 (403)

112 (394)

97 (287)

109 (230)

16 (171)

27 (160)

93 (90)

145 (77)

86

28

3, 29

none - proven

23 (112)

14 (38)

18 (26)

27 (14)

1 (11)

2 (10)

25 (9)

11 (8)

22 (5)

19 (5)

87

21

2, 11

none - proven

19 (372)

9 (91)

16 (17)

18 (15)

5 (15)

13 (11)

11 (10)

1 (7)

7 (6)

12 (5)

88

571

3, 7, 13, 19

k = 400:

for even n let n=2*q; factors to:

(20*88^q - 1) *

(20*88^q + 1)

odd n:

covering set 3, 7, 13

46, 49, 79, 94, 235, 277, 346, 508, 541, 544 (all at n=1K)

464 (20648)

444 (19708)

380 (8712)

477 (5816)

212 (5511)

179 (4545)

68 (2477)

536 (1731)

89 (1704)

17 (1362)

89

4

3, 5

none - proven

2 (60)

3 (5)

1 (3)

90

27

7, 13

All k where k = m^2

and m = = 5 or 8 mod 13:

for even n let k = m^2

and let n = 2*q; factors to:

(m*90^q - 1) *

(m*90^q + 1)

odd n:

factor of 13

none - proven

6 (20)

11 (10)

10 (10)

13 (6)

15 (5)

12 (4)

7 (4)

24 (3)

1 (3)

20 (2)

k = 25 proven composite by partial algebraic factors.

91

45

2, 23

none - proven (with probable primes that have not been certified: k = 1 and 27)

27 (5048)

1 (4421)

37 (159)

15 (14)

43 (6)

39 (6)

31 (6)

24 (5)

20 (4)

36 (3)

92

32

3, 31

none - proven

1 (439)

29 (272)

28 (99)

13 (35)

14 (32)

18 (26)

22 (25)

20 (6)

6 (6)

17 (4)

93

189

2, 47

33, 69, 109, 113, 125, 149, 177 (all at n=8K)

97 (1179)

29 (496)

92 (476)

46 (434)

121 (271)

141 (262)

101 (142)

122 (126)

85 (86)

166 (66)

94

39

5, 19

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*94^q - 1) *

(m*94^q + 1)

odd n:

factor of 5

29 (1M)

16 (21951)

37 (254)

13 (163)

14 (154)

7 (95)

34 (54)

25 (41)

24 (12)

26 (9)

36 (7)

k = 4 and 9 proven composite by partial algebraic factors.

95

5

2, 3

none - proven

1 (7)

3 (2)

2 (2)

4 (1)

96

38995

7, 67, 97, 1303

(Condition 1):

All k where k = m^2

and m = = 22 or 75 mod 97:

for even n let k = m^2

and let n = 2*q; factors to:

(m*96^q - 1) *

(m*96^q + 1)

odd n:

factor of 97

(Condition 2):

All k where k = 6*m^2

and m = = 9 or 88 mod 97:

even n:

factor of 97

for odd n let k = 6*m^2

and let n=2*q-1; factors to:

[m*2(5q-1)*3q - 1] *

431, 486, 591, 701, 831, 872, 956, 1006, 1126, 1648, 1681, 1810, 2036, 2386, 2424, 2878, 3001, 3431, 3461, 3671, 3856, 3881, 3956, 3996, 4261, 4351, 4366, 4406, 4451, 4461, 5046, 5625, 5836, 5918, 6031, 6261, 6481, 6586, 6670, 6786, 7091, 7116, 7121, 7131, 7249, 7274, 7461, 7801, 8016, 8202, 8291, 8546, 8816, 9022, 9131, 9156, 9216, 9326, 9441, 9463, 9476, 9677, 9681, 9921, 10036, 10204, 10375, 10453, 10551, 10651, 10721, 11056, 11156, 11196, 11458, 11553, 11766, 11831, 12676, 12901, 13216, 13231, 13288, 13571, 14011, 14061, 14161, 14276, 14517, 14551, 14646, 15341, 15461, 15573, 15596, 16176, 16306, 16392, 16586, 16641, 16645, 17116, 17421, 17636, 17653, 17792, 18311, 19136, 19191, 19246, 19486, 19681, 20091, 20396, 20464, 20502, 20936, 21488, 21776, 22541, 22811, 22846, 22931, 23010, 23161, 23271, 23301, 23570, 23766, 24076, 24216, 24386, 24506, 24831, 24916, 24929, 25306, 25706, 25966, 26038, 26161, 26183, 26571, 26772, 26801, 26846, 27045, 27106, 27126, 27450, 27646, 27700, 27741, 28365, 28558, 28774, 28776, 28921, 29093, 29196, 29561, 29584, 29681, 30086, 30120, 30151, 30421, 30581, 30662, 31021, 31136, 31936, 32205, 32881, 33099, 33141, 33391, 33406, 33501, 33621, 33701, 33711, 33951, 33986, 34116, 34236, 34436, 34531, 34921, 35016, 35113, 35271, 35406, 35446, 35781, 35966, 36158, 36551, 36945, 36981, 37031, 37036, 37166, 37222, 37471, 37991, 38156, 38301, 38316, 38986 (k = 1 mod 5 and k = 1 mod 19 at n=1K, other k at n=100K)

3769 (92879)

28907 (89447)

13528 (86114)

19882 (82073)

37155 (76817)

9160 (71178)

5179 (66965)

32960 (60312)

7565 (59052)

4754 (56909)

k = 484, 5625, 14161, and 29584 proven composite by condition 1.

k = 486 proven composite by condition 2.

97

43

3, 5, 7, 37, 139

22 (35.8K)

8 (192335)

16 (1627)

4 (621)

28 (184)

1 (17)

34 (16)

32 (9)

27 (8)

37 (5)

31 (5)

98

10

3, 11

none - proven

1 (13)

5 (10)

7 (3)

4 (3)

8 (2)

2 (2)

9 (1)

6 (1)

3 (1)

99

9

2, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*99^q - 1) *

(m*99^q + 1)

odd n:

factor of 5

none - proven

5 (135)

3 (4)

1 (3)

7 (2)

8 (1)

6 (1)

2 (1)

k = 4 proven composite by partial algebraic factors.

100

211

7, 13, 37

All k = m^2 for all n;

factors to:

(m*10^n - 1) *

(m*10^n + 1)

none - proven (with probable primes that have not been certified: k = 133)

74 (44709)

133 (5496)

102 (209)

193 (155)

203 (133)

95 (96)

109 (68)

55 (56)

98 (45)

37 (36)

k = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, and 196 proven composite by full algebraic factors.

101

13

2, 3

none - proven

5 (350)

8 (112)

2 (42)

11 (24)

12 (11)

4 (3)

1 (3)

6 (2)

10 (1)

9 (1)

102

1635

7, 19, 79

191, 207, 1082, 1369 (all at n=500K)

1451 (188973)

1208 (178632)

653 (117255)

1607 (82644)

254 (58908)

1527 (49462)

1037 (43460)

32 (43302)

1296 (37715)

142 (22025)

103

25

2, 13

none - proven

19 (820)

22 (442)

23 (216)

14 (189)

16 (57)

11 (54)

24 (32)

15 (32)

1 (19)

20 (5)

104

4

3, 5

none - proven

1 (97)

2 (68)

3 (1)

105

297

2, 37, 149

All k where k = m^2

and m = = 3 or 5 mod 8:

for even n let k = m^2

and let n = 2*q; factors to:

(m*57^q - 1) *

(m*57^q + 1)

odd n:

factor of 2

73, 137 (both at n=8K)

148 (3645)

265 (1666)

162 (294)

255 (222)

154 (139)

145 (119)

80 (91)

68 (56)

66 (47)

223 (21)

k = 9, 25, 121, and 169 proven composite by partial algebraic factors.

106

13624

3, 19, 199

64, 81, 163, 332, 391, 400, 429, 511, 526, 582, 596, 643, 676, 841, 862, 897, 913, 1024, 1223, 1261, 1283, 1294, 1417, 1428, 1546, 1597, 1713, 1869, 2056, 2116, 2248, 2389, 2458, 2605, 2623, 2656, 2674, 2719, 2743, 2780, 2781, 2813, 2888, 2965, 3047, 3073, 3130, 3136, 3142, 3241, 3277, 3336, 3425, 3427, 3478, 3481, 3617, 3622, 3646, 3655, 3694, 3746, 3883, 4045, 4067, 4096, 4153, 4162, 4177, 4219, 4336, 4339, 4416, 4628, 4662, 4666, 4696, 4713, 4722, 4801, 5135, 5283, 5359, 5395, 5468, 5485, 5623, 5692, 5707, 5752, 5776, 5777, 5872, 5878, 5937, 5971, 5992, 5993, 6040, 6094, 6100, 6103, 6181, 6220, 6376, 6421, 6505, 6547, 6613, 6716, 6736, 6832, 6955, 7069, 7156, 7202, 7246, 7273, 7297, 7331, 7336, 7345, 7356, 7398, 7402, 7496, 7540, 7561, 7744, 7771, 7894, 7906, 7915, 8023, 8181, 8266, 8323, 8329, 8371, 8386, 8428, 8521, 8561, 8572, 8637, 8779, 8788, 8861, 8950, 8956, 8962, 8975, 9031, 9096, 9190, 9238, 9294, 9366, 9415, 9469, 9589, 9634, 9736, 9774, 9787, 9790, 9796, 9808, 9859, 9877, 9973, 9976, 10033, 10072, 10117, 10150, 10166, 10186, 10271, 10273, 10446, 10451, 10627, 10646, 10651, 10660, 10699, 10816, 10876, 10894, 11097, 11173, 11278, 11299, 11419, 11420, 11426, 11506, 11639, 11671, 11833, 11884, 11901, 12066, 12076, 12090, 12145, 12252, 12269, 12321, 12352, 12361, 12490, 12627, 12851, 12856, 12910, 12916, 12970, 12978, 12991, 13023, 13027, 13162, 13174, 13269, 13366, 13374, 13378, 13387, 13497, 13511, 13516, 13528, 13543, 13553, 13558, 13567 (all at n=1K)

8272 (998)

508 (998)

13417 (994)

4908 (970)

5179 (969)

3700 (968)

577 (947)

3583 (943)

9814 (935)

1321 (913)

107

5

2, 3

none - proven (with probable primes that have not been certified: k = 3)

2 (21910)

3 (4900)

4 (251)

1 (17)

108

13406

7, 13, 61, 109

(Condition 1):

All k where k = m^2

and m = = 33 or 76 mod 109:

for even n let k = m^2

and let n = 2*q; factors to:

(m*108^q - 1) *

(m*108^q + 1)

odd n:

factor of 109

(Condition 2):

All k where k = 3*m^2

and m = = 20 or 89 mod 109:

even n:

factor of 109

for odd n let k = 3*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*3(3q-1) - 1] *

137, 411, 437, 873, 1634, 1769, 1782, 1961, 2508, 2617, 2962, 2963, 3002, 3029, 3474, 3499, 3596, 3646, 4007, 4066, 4084, 4121, 4184, 4328, 4468, 4499, 4744, 4904, 5015, 5142, 5212, 5351, 5625, 5821, 5892, 5923, 5994, 6212, 6284, 6432, 6528, 6570, 6614, 6866, 7107, 7211, 7302, 7304, 7419, 7848, 8037, 8144, 8374, 8383, 8503, 8524, 8638, 8986, 9346, 9852, 10052, 10129, 10136, 10245, 10699, 10926, 11089, 11164, 11278, 11619, 11881, 11918, 12262, 12861, 12863, 13162, 13291, 13297 (k = 5351, 6528, and 13162 at n=2K, other k at n=100K)

10322 (88080)

1999 (85188)

7557 (84180)

11882 (81547)

3439 (79524)

4686 (79010)

1159 (77107)

3573 (76352)

1465 (75209)

2148 (75018)

k = 1089 and 5776 proven composite by condition 1.

k = 1200 proven composite by condition 2.

109

9

2, 5

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*109^q - 1) *

(m*109^q + 1)

odd n:

factor of 5

none - proven

8 (19)

1 (17)

5 (2)

2 (2)

7 (1)

6 (1)

3 (1)

k = 4 proven composite by partial algebraic factors.

110

38

3, 37

All k where k = m^2

and m = = 6 or 31 mod 37:

for even n let k = m^2

and let n = 2*q; factors to:

(m*110^q - 1) *

(m*110^q + 1)

odd n:

factor of 37

none - proven

23 (78120)

17 (2598)

37 (1689)

9 (77)

11 (42)

10 (17)

2 (16)

31 (9)

5 (6)

22 (5)

k = 36 proven composite by partial algebraic factors.

111

13

2, 7

none - proven

2 (24)

7 (6)

6 (4)

1 (3)

12 (2)

11 (2)

3 (2)

10 (1)

9 (1)

8 (1)

112

1357

5, 13, 113

All k where k = m^2

and m = = 15 or 98 mod 113:

for even n let k = m^2

and let n = 2*q; factors to:

(m*112^q - 1) *

(m*112^q + 1)

odd n:

factor of 113

31, 79, 310, 340, 421, 424, 451, 529, 703, 940, 1018, 1051, 1204 (all at n=7.5K)

948 (173968)

1268 (50536)

758 (35878)

1353 (7751)

187 (7524)

498 (6038)

9 (5717)

1024 (5681)

619 (5441)

981 (2858)

k = 225 proven composite by partial algebraic factors.

113

20

3, 19

none - proven

14 (308)

1 (23)

7 (15)

19 (11)

5 (8)

16 (5)

3 (5)

12 (3)

4 (3)

18 (2)

114

24

5, 23

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*114^q - 1) *

(m*114^q + 1)

odd n:

factor of 5

none - proven

3 (63)

1 (29)

11 (27)

18 (21)

22 (20)

20 (3)

19 (2)

17 (2)

14 (2)

10 (2)

k = 4 and 9 proven composite by partial algebraic factors.

115

57

2, 29

13, 43 (both at n=8K)

45 (5227)

4 (4223)

51 (2736)

23 (1116)

53 (165)

21 (127)

35 (50)

15 (38)

39 (28)

32 (28)

116

14

3, 13

none - proven

9 (249)

5 (156)

11 (118)

1 (59)

2 (32)

13 (15)

10 (11)

12 (2)

8 (2)

7 (1)

117

149

2, 5, 37

5, 17, 33, 141 (all at n=8K)

83 (442)

59 (352)

19 (336)

110 (232)

143 (222)

41 (209)

87 (177)

129 (165)

118 (136)

92 (129)

118

50

7, 17

43 (37K)

27 (860)

29 (599)

18 (393)

6 (210)

22 (191)

8 (85)

19 (72)

7 (52)

42 (30)

37 (27)

119

4

3, 5

none - proven

2 (28)

3 (6)

1 (3)

120

unknown

unknown

testing not started

121

100

3, 7, 37

All k = m^2 for all n;

factors to:

(m*11^n - 1) *

(m*11^n + 1)

none - proven

62 (13101)

79 (4545)

43 (68)

7 (60)

30 (24)

60 (12)

87 (11)

39 (11)

57 (10)

50 (10)

k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors.

122

14

3, 5, 13

none - proven

13 (43)

8 (26)

11 (10)

2 (6)

12 (5)

1 (5)

10 (3)

6 (2)

5 (2)

3 (2)

123

13

2, 5, 17

11 (8K)

1 (43)

3 (8)

2 (8)

12 (7)

6 (7)

9 (5)

7 (2)

10 (1)

8 (1)

5 (1)

124

92881

3, 5, 7, 5167

(Condition 1):

All k where k = m^2

and m = = 2 or 3 mod 5:

for even n let k = m^2

and let n = 2*q; factors to:

(m*124^q - 1) *

(m*124^q + 1)

odd n:

factor of 5

(Condition 2):

All k where k = 31*m^2

and m = = 1 or 4 mod 5:

even n:

factor of 5

for odd n let k = 31*m^2

and let n=2*q-1; factors to:

[m*2(2q-1)*31q - 1] *

testing not started

k = 2^2, 3^2, 7^2, 8^2, 12^2, 13^2, 17^2, 18^2 (etc. pattern repeating every 5m) proven composite by condition 1.

k = 31*1^2, 31*4^2, 31*6^2, 31*9^2, 31*11^2, 31*14^2, 31*16^2, 31*19^2 (etc. pattern repeating every 5m) proven composite by condition 2.

125

8

3, 7

All k = m^3 for all n;

factors to:

(m*5^n - 1) *

(m2*25n + m*5^n + 1)

none - proven

6 (24)

7 (5)

3 (3)

5 (2)

2 (2)

4 (1)

k = 1 proven composite by full algebraic factors.

126

480821

13, 19, 127, 829

testing not started

127

2593

2, 5, 17, 137

13, 17, 25, 27, 33, 35, 79, 83, 91, 113, 121, 139, 159, 179, 191, 231, 233, 235, 236, 237, 239, 250, 251, 264, 279, 288, 293, 333, 353, 361, 367, 379, 443, 451, 459, 471, 473, 511, 513, 517, 523, 531, 537, 551, 553, 557, 561, 597, 599, 604, 617, 631, 639, 649, 659, 679, 699, 715, 725, 731, 733, 737, 739, 747, 751, 755, 763, 773, 778, 783, 797, 809, 838, 848, 863, 871, 895, 919, 937, 939, 950, 953, 964, 982, 997, 999, 1013, 1019, 1025, 1031, 1037, 1039, 1043, 1051, 1106, 1107, 1117, 1119, 1127, 1157, 1173, 1185, 1196, 1199, 1211, 1231, 1232, 1233, 1245, 1253, 1259, 1279, 1288, 1291, 1313, 1327, 1333, 1335, 1337, 1347, 1353, 1359, 1371, 1377, 1401, 1407, 1417, 1421, 1429, 1432, 1439, 1473, 1481, 1491, 1513, 1525, 1539, 1549, 1551, 1573, 1577, 1579, 1589, 1593, 1595, 1597, 1599, 1611, 1612, 1618, 1631, 1639, 1641, 1661, 1677, 1693, 1699, 1709, 1711, 1731, 1732, 1737, 1751, 1771, 1792, 1793, 1803, 1837, 1839, 1903, 1911, 1921, 1928, 1933, 1936, 1939, 1943, 1951, 1957, 1959, 1999, 2013, 2017, 2032, 2039, 2045, 2072, 2073, 2079, 2092, 2097, 2099, 2129, 2155, 2168, 2179, 2191, 2197, 2215, 2231, 2247, 2253, 2273, 2279, 2303, 2313, 2339, 2367, 2377, 2389, 2411, 2427, 2431, 2433, 2479, 2501, 2543, 2548, 2559, 2565, 2573, 2583 (all at n=1K)

667 (1000)

1775 (994)

2497 (989)

2199 (972)

1759 (936)

2015 (910)

343 (904)

1113 (899)

1962 (893)

1543 (872)

128

44

3, 43

All k = m^7 for all n;

factors to:

(m*2^n - 1) *

(m6*64n + m5*32n + m4*16n + m3*8n + m2*4n + m*2^n + 1)

none - proven

29 (211192)

23 (2118)

26 (1442)

37 (699)

16 (459)

42 (246)

35 (98)

30 (66)

36 (59)

12 (46)

k = 1 proven composite by full algebraic factors.

256

100

3, 7, 13

All k = m^2 for all n;

factors to:

(m*16^n - 1) *

(m*16^n + 1)

none - proven

74 (319)

47 (228)

42 (224)

92 (143)

68 (87)

61 (54)

35 (28)

65 (24)

70 (18)

75 (17)

k = 1, 4, 9, 16, 25, 36, 49, 64, and 81 proven composite by full algebraic factors.

512

14

3, 5, 13

All k = m^3 for all n;

factors to:

(m*8^n - 1) *

(m2*64n + m*8^n + 1)

none - proven

4 (2215)

13 (2119)

9 (7)

11 (6)

6 (6)

5 (2)

3 (2)

2 (2)

12 (1)

10 (1)

k = 1 and 8 proven composite by full algebraic factors.

1024

81

5, 41

All k = m^2 for all n; factors to:

(m*32^n - 1) *

(m*32^n + 1)

-or-

All k = m^5 for all n;

factors to:

(m*4^n - 1) *

(m4*256n + m3*64n + m2*16n + m*4^n + 1)

29, 31, 56, 61 (k = 29 at n=1M, other k at n=3K)

74 (666084)

39 (4070)

43 (2290)

13 (1167)

78 (424)

65 (93)

69 (54)

3 (47)

71 (41)

44 (36)

k = 1, 4, 9, 16, 25, 32, 36, 49, and 64 proven composite by full algebraic factors.

⚠️ **GitHub.com Fallback** ⚠️