Home - wom-ai/inference_results_v1.0 GitHub Wiki
closed/NVIDIA only
MLPerf5.0 for NVIDIA
- https://mlperf.org/inference-results/
- https://github.com/mlperf/inference_results_v1.0/tree/master/closed/NVIDIA
- Specification
- TRT7.2.3
- tensorflow==1.13.1
- DEVELOPER BLOG: Extending NVIDIA Performance Leadership with MLPerf Inference 1.0 Results
Manual
- set
stereroboy
branch$ git checkout stereoboy
Docker
- Base Docker Image
- Edit Makefile
- Build Docker
make build_docker
- Make directory for data
mkdir data
- Run Docker
docker run --gpus all --rm -it \ -v /home/wom/work:/work \ -v /home/wom/work/inference_results_v1.0/closed/NVIDIA/data:/home \ -w /work/inference_results_v1.0/closed/NVIDIA \ --name test --net=host mlperf-inference:wom-latest
docker run --gpus '"device=0"' --rm -it \ -v /home/rofox/work:/work \ -v /home/rofox/work/mlperf/inference_results_v1.0/closed/NVIDIA/data:/home \ -w /work/mlperf/inference_results_v1.0/closed/NVIDIA \ --name test --net=host mlperf-inference:rofox-latest
docker exec -it test /bin/bash
- In Docker
$ make build
$ make download_model # Downloads models and saves to $MLPERF_SCRATCH_PATH/models $ make download_data # Downloads datasets and saves to $MLPERF_SCRATCH_PATH/data $ make preprocess_data # Preprocess data and saves to $MLPERF_SCRATCH_PATH/preprocessed_data
- generate trt engine
make generate_engines RUN_ARGS="--benchmarks=ssd-mobilenet --scenarios=SingleStream"
- harness
make run_harness RUN_ARGS="--benchmarks=ssd-mobilenet --scenarios=SingleStream"
- generate trt engine
Scripts
- generate trt engine
$ bash generate_engines.sh
- harness
$ bash run_harness.sh
Platforms
-
Cuda compute capability Table
-
deviceQuery
command$ apt install cuda-samples-11-1 $ cd /usr/local/cuda/samples $ make $ ./bin/x86_64/linux/release/deviceQuery
-
Persistence Mode
wiki
NVIDIA Geforce RTX 3080 Laptop GPU/usr/local/cuda/samples# ./bin/x86_64/linux/release/deviceQuery
./bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce RTX 3080 Laptop GPU"
CUDA Driver Version / Runtime Version 11.4 / 11.1
CUDA Capability Major/Minor version number: 8.6
Total amount of global memory: 7982 MBytes (8370061312 bytes)
(48) Multiprocessors, (128) CUDA Cores/MP: 6144 CUDA Cores
GPU Max Clock rate: 1605 MHz (1.61 GHz)
Memory Clock rate: 7001 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 4194304 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 102400 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.1, NumDevs = 1
Result = PASS