1. Descriptive Statistics and Correlations - wmmurrah/lavaanFIML GitHub Wiki

In this first tutorial I start with the basics: how to get descriptive statistics using FIML. The data and Mplus code for this example can be found on the Book Examples page of the Applied Missing Data website. I also created a github repository with the data and R files with equivalent code in lavaan, which can be found here. Remember to replace the file path in the R code below with the file path to the folder in which you unzip the data files.

You will also want to read over the lavaan documentation and visit the very helpful lavaan website to take advantage of the tutorials there. With these resources at your disposal, you should be able to use replicate the examples in lavaan. Here, I walk through the major sections of the R code. This is the same code found in the github repository in the R file entitled FIMLdescriptivesCorrelations.R.

Header

I always include a header with basic information in my code files.

#***********************************************************************
# section 4.14 Summary Statistics --------------------------------------
# Author: William M. Murrah
# Description: This code replicates the section 4.14 example on the 
#              the appliedmissingdata.com website, which generates 
#              descriptive statistics and correlations,
# Version history ------------------------------------------------------
# 2014.05.30: code created
# 2014.06.01: rewrote heading
#***********************************************************************
# R packages used
library(lavaan)

Import and prepare data

First, import the data into R. MPlus uses .dat files which can only contain numbers. Variable names are not included in the .dat file, but instead are included in the Mplus .inp file. I use the read.table function to read the .dat file.

    employee <- read.table("data/employee.dat")

Next, I assign names to the variables in the new data frame.

    # Assign names to variables.
    names(employee) <- c("id", "age", "tenure", "female", "wbeing", 
                         "jobsat", "jobperf", "turnover", "iq")

The final step in preparing the data is to recode the data values -99, which are used as missing data values in the .dat file, to NA, which is the missing value indicator in R.

    # Replace all missing values (-99) with R missing value character 'NA'.
    employee[employee==-99] <- NA

Create Model Object

Now that the data are ready, I create a character string with the model using the lavaan syntax. For descriptives and correlations I model the mean, variances, and covariance/correlations.

    # Create descriptive model object
    model <- '
    # means
    age      ~ 1
    tenure   ~ 1
    female   ~ 1
    wbeing   ~ 1
    jobsat   ~ 1
    jobperf  ~ 1
    turnover ~ 1
    iq       ~ 1
    
    # variances
    age      ~~ age
    tenure   ~~ tenure
    female   ~~ female
    wbeing   ~~ wbeing
    jobsat   ~~ jobsat
    jobperf  ~~ jobperf
    turnover ~~ turnover
    iq       ~~ iq
    
    # covariances/correlations
    age      ~~ tenure + female + wbeing + jobsat + jobperf + turnover + iq
    tenure   ~~ female + wbeing + jobsat + jobperf + turnover + iq
    female   ~~ wbeing + jobsat + jobperf + turnover + iq
    wbeing   ~~ jobsat + jobperf + turnover + iq
    jobsat   ~~ jobperf + turnover + iq
    jobperf  ~~ turnover + iq
    turnover ~~ iq
    '

Fit the Model

To fit the model, I use the lavaan fit function. This function takes the first two argument model and data. The third argument is missing ='fiml', which tells lavaan to use FIML (the default is to use listwise deletion).

    fit <- sem(model, employee, missing='fiml')

Alternatively, you could leave the section of the model code under the # means section and use the meanstructure=TRUE argument in the fit function as follows, which give the same results:

    fit <- sem(model, employee, missing='fiml', meanstructure=TRUE)

Generate Output

To print the results to the console, use the summary function.

    summary(fit, fit.measures=TRUE, standardize=TRUE)

The fit.measures=TRUE calls fit statistics in the output. This should look familiar to those who have used Mplus.

lavaan (0.5-16) converged normally after 141 iterations

  Number of observations                           480

  Number of missing patterns                         3

  Estimator                                         ML
  Minimum Function Test Statistic                0.000
  Degrees of freedom                                 0
  P-value (Chi-square)                           1.000

Model test baseline model:

  Minimum Function Test Statistic              527.884
  Degrees of freedom                                28
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -6621.805
  Loglikelihood unrestricted model (H1)      -6621.805

  Number of free parameters                         44
  Akaike (AIC)                               13331.609
  Bayesian (BIC)                             13515.256
  Sample-size adjusted Bayesian (BIC)        13375.604

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent Confidence Interval          0.000  0.000
  P-value RMSEA <= 0.05                          1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.000

The standardize=TRUE argument includes columns with standardized output. the std.all column in lavaan output is the same as the STDYX section in Mplus.

Parameter estimates:

  Information                                 Observed
  Standard Errors                             Standard

                   Estimate  Std.err  Z-value  P(>|z|)   Std.lv  Std.all
Covariances:
  age ~~
    tenure            8.459    0.858    9.865    0.000    8.459    0.504
    female           -0.028    0.122   -0.229    0.819   -0.028   -0.010
    wbeing            1.148    0.334    3.433    0.001    1.148    0.182
    jobsat            0.861    0.340    2.531    0.011    0.861    0.136
    jobperf          -0.330    0.308   -1.072    0.284   -0.330   -0.049
    turnover         -0.377    0.116   -3.255    0.001   -0.377   -0.150
    iq                0.674    2.066    0.326    0.744    0.674    0.015
  tenure ~~
    female           -0.052    0.071   -0.736    0.462   -0.052   -0.034
    wbeing            0.569    0.195    2.916    0.004    0.569    0.155
    jobsat            0.565    0.200    2.822    0.005    0.565    0.154
    jobperf           0.061    0.178    0.344    0.731    0.061    0.016
    turnover          0.016    0.066    0.240    0.810    0.016    0.011
    iq                0.026    1.199    0.022    0.983    0.026    0.001
  female ~~
    wbeing            0.067    0.031    2.156    0.031    0.067    0.115
    jobsat            0.028    0.031    0.881    0.378    0.028    0.047
    jobperf          -0.009    0.029   -0.323    0.747   -0.009   -0.015
    turnover          0.001    0.011    0.114    0.909    0.001    0.005
    iq                0.284    0.192    1.481    0.139    0.284    0.068
  wbeing ~~
    jobsat            0.446    0.095    4.714    0.000    0.446    0.322
    jobperf           0.671    0.084    8.030    0.000    0.671    0.456
    turnover         -0.141    0.030   -4.768    0.000   -0.141   -0.257
    iq                2.876    0.530    5.430    0.000    2.876    0.291
  jobsat ~~
    jobperf           0.271    0.080    3.378    0.001    0.271    0.184
    turnover         -0.129    0.030   -4.248    0.000   -0.129   -0.234
    iq                4.074    0.566    7.195    0.000    4.074    0.411
  jobperf ~~
    turnover         -0.203    0.028   -7.168    0.000   -0.203   -0.346
    iq                4.496    0.523    8.588    0.000    4.496    0.426
  turnover ~~
    iq               -0.706    0.182   -3.872    0.000   -0.706   -0.180

Intercepts:
    age              37.948    0.245  154.633    0.000   37.948    7.058
    tenure           10.054    0.142   70.601    0.000   10.054    3.222
    female            0.542    0.023   23.817    0.000    0.542    1.087
    wbeing            6.288    0.062  100.701    0.000    6.288    5.349
    jobsat            5.950    0.063   94.052    0.000    5.950    5.053
    jobperf           6.021    0.057  105.262    0.000    6.021    4.805
    turnover          0.321    0.021   15.058    0.000    0.321    0.687
    iq              100.102    0.384  260.475    0.000  100.102   11.889

Variances:
    age              28.908    1.866                     28.908    1.000
    tenure            9.735    0.628                      9.735    1.000
    female            0.248    0.016                      0.248    1.000
    wbeing            1.382    0.107                      1.382    1.000
    jobsat            1.386    0.108                      1.386    1.000
    jobperf           1.570    0.101                      1.570    1.000
    turnover          0.218    0.014                      0.218    1.000
    iq               70.892    4.576                     70.892    1.000

Recall that correlations are standardized covariances, so correlations are found in the std.all column in the Covariances section. Also, intercepts are means, and can be interpreted as the FIML means for the variables.

Finally, to get the missing data patterns and covariance coverage output that can be included in Mplus output use the following code:

    # Get missing data patterns and covariance coverage similar
    # to that found in Mplus output.
    inspect(fit, 'patterns') 
    inspect(fit, 'coverage')

which leads to the following output:

Missing Data Patterns

    age tenure female wbeing jobsat jobprf turnvr iq
160   1      1      1      1      1      1      1  1
160   1      1      1      1      0      1      1  1
160   1      1      1      0      1      1      1  1

Covariance Coverage


         age   tenure female wbeing jobsat jobprf turnvr iq   
age      1.000                                                
tenure   1.000 1.000                                          
female   1.000 1.000  1.000                                   
wbeing   0.667 0.667  0.667  0.667                            
jobsat   0.667 0.667  0.667  0.333  0.667                     
jobperf  1.000 1.000  1.000  0.667  0.667  1.000              
turnover 1.000 1.000  1.000  0.667  0.667  1.000  1.000       
iq       1.000 1.000  1.000  0.667  0.667  1.000  1.000  1.000