Auto Merger - wkpark/sd-webui-model-mixer GitHub Wiki

image

Overview

Please see auto-MBW and https://huggingface.co/Xynon/SD-Silicon

References

Image scoring classifiers

Select an image score classifier to score images

and you can test classifiers by upload or drop a image and click "Test Image Score classifier" button.

Optimizers

It uses Hyperactive optimizer image

image Please see https://github.com/SimonBlanke/Hyperactive?tab=readme-ov-file#overview

Options

image

  • Search Time Limit (min): Limit execution time in min. default: 10 min.
  • Variable Search Blocks: Perform optimize on selected blocks. .e.g) IN01, IN02, M00, OUT04, OUT05,... (default: all blocks)
  • Variable models: only selected models. e.g.) B. (default: all models)
  • Search Upper, Lower, Max Limit: Limit variables range. e.g.) 0.4 given variable -> -0.2 + 0.4 ~ 0.4 + 0.2. minimum 0.0, maximum 1.0
  • Warm Start, Early Stop are Hyperactive options

Interrupt, Reset

  • click Interrupt button to stop the current optimizer job.
  • click Reset Optimizer to remove the current optimizer's internal variables.

Notes

for old Model Mixer, AutoMeger only support MBW(Merge Block Weights) mode.

Optimizer Methods

Basics

Convex vs Non-Convex: https://nbviewer.org/github/SimonBlanke/hyperactive-tutorial/blob/main/notebooks/hyperactive_tutorial.ipynb#convex

Hill Climbing Optimizer

https://github.com/SimonBlanke/Hyperactive/blob/master/examples/optimization_techniques/hill_climbing.py

  • Local Optimizer to maximize score.

Repulsing Hill Climbing optimizer

https://github.com/SimonBlanke/Hyperactive/blob/master/examples/optimization_techniques/repulsing_hill_climbing.py

  • Local optimzer + "The repulsing hill climbing optimizer tries to improve how hill climbing solves non-convex objective functions."