Multifunctional CRS Encryption Scheme on Isogenies of Non‐Supersingular Edwards Curves - volodymyr-sokolov/publications GitHub Wiki
Conference Paper
Anatoly Bessalov ,
Serhii Abramov
,
Volodymyr Sokolov
,
Pavlo Skladannyi
,
Oleksii Zhyltsov
A multifunctional cryptosystem RCNIE on isogenies of non-supersingular Edwards curves is proposed, which solves the problems of Diffie-Hellman secret sharing, digital signature, and public key encryption. The problems of choosing the parameters of non-supersingular Edwards curves forming pairs of quadratic twist with orders
complete curve; Curve in generalized Edwards form; curve order; isogeny; isomorphism; non-supersingular curve; point order; quadratic curve; twisted curve
Quantum Cryptography; Elliptic Curve; Finite Field
2023 Classic, Quantum, and Post-Quantum Cryptography (CQPC)
1 August 2023 Kyiv, Ukraine
First Online: 13 October 2023
-
ISSN: 1613-0073
-
EID: 2-s2.0-85175724530
-
DBLP: conf/cqpc/BessalovASSZ23
-
KUBG: 46394
Bessalov, A., Abramov, S., Sokolov, V., Skladannyi, P., & Zhyltsov, O. (2023). Multifunctional CRS Encryption Scheme on Isogenies of Non-Supersingular Edwards Curves. In Classic, Quantum, and Post-Quantum Cryptography (Vol. 3504, pp. 12–25).
A. Bessalov, S. Abramov, V. Sokolov, P. Skladannyi, and O. Zhyltsov, “Multifunctional CRS Encryption Scheme on Isogenies of Non-Supersingular Edwards Curves,” Classic, Quantum, and Post-Quantum Cryptography, vol. 3504, pp. 12–25, 2023.
A. Bessalov, et al., Multifunctional CRS Encryption Scheme on Isogenies of Non-Supersingular Edwards Curves, in: Classic, Quantum, and Post-Quantum Cryptography, vol. 3504 (2023) 12–25.