Neural Network Basics - utkaln/machine-learning GitHub Wiki
Shortcut to Neural-Network-Advanced
Neural Network Basics
- Neural network can be simplified to understand as a multilayer prediction with each layer having a linear or log regression
- Input X to a layer for computation of f(X) is the output of the previous layer
Tensorflow
- Tensorflow provides libraries for Neural Network calculations
- It is important to understand the difference in syntax between Num Py and Tensorflow to use the concepts _ Important : NumPy handles 1D vectors using simple array representation, but Tensorflow handles everything as 2D matrix (row, column)
- Simple notation of calculating a layer in Tensorflow
Output is displayed as:# Define a neural net layer with 3 neurons, and function type as log regression layer_1 = Dense(units=3, activation='sigmoid') # Calculate prediction (output of layer 1) a1 by using input from previous layer x a1 = layer_1(x)
tf.Tensor([0.2 0.7 0.3](/utkaln/machine-learning/wiki/0.2-0.7-0.3), shape=(1, 3), dtype=float32)
Mathematical Representation | NumPy Format | Tensorflow Format |
---|---|---|
2x3 matrix: [1 2 3][4 5 6]] ](/utkaln/machine-learning/wiki/2D-vector:-np.array([[1,2,3],[4,5,6)) |
Tensor([1.0 2.0 3.0] [4.0 5.0 6.0](/utkaln/machine-learning/wiki/1.0-2.0-3.0]-[4.0-5.0-6.0), shape=(2, 3), dtype=float32) |
|
row vector aka 1x2 matrix: [1 2] |
2D vector: np.array([1,2]]) ](/utkaln/machine-learning/wiki/Tensor([[1.0-2.0), shape=(1, 2), dtype=float32) |
|
simple array 1 2 |
1D vector: np.array([1,2]) |
NA |
Computation using Tensorflow
Step 1: Data Setup
X = np.array([[185.32 12.69], [259.92 11.87] ...])
Y = np.array([1.],[0.](/utkaln/machine-learning/wiki/1.],[0.))
Step 2: Normalize Data
- Fitting weights to the data will work faster if data is normalized (similar to feature scaling)
Normalization
is done using Keras -- Next step after normalization is to let the model
Adapt
to the normalized data - REMEMBER to apply the same normalization to any new future data for prediction to work accurately
norm_1 = tf.keras.layers.Normalization(axis=-1)
norm_1.adapt(X)
Xn = norm_1(X)
Step 3: Replicate Data
- Replicate training data to bigger set, so that the optimization can be found early with less number of iterations
Xt = np.tile(Xn, (1000,1))
Yt = np.tile(Y, (1000,1))
Step 4: Build Tensorflow Model
model = Sequential(
[
tf.keras.Input(shape=(2,)),
Dense(3, activation='sigmoid', name='layer1')
Dense(1, activation='sigmoid', name='layer2')
]
)
model.summary()
Step 5: Apply Model to Compute Loss
model.compile(
loss = tf.keras.losses.BinaryCrossentropy(),
optimizer = tf.keras.optimizers.Adam(learning_rate=0.01),
)
Step 6: Fit to Model (Gradient Descent)
- Take the loss from the previous function and fit data into the model by finding Gradient Descent
model.fit(Xt, Yt, epochs=10,)