RAG App Development - up1/training-courses GitHub Wiki
🧠 RAG App Development Course Outline
Target Audience: Developers, AI Engineers, Solution Architects
Duration: 1–2 Days (Adjustable)
Format: Theory + Demos + Hands-on Labs
🗓️ Day 1 – Introduction & Core Concepts
🔹 Module 1: Introduction to RAG
- What is Retrieval-Augmented Generation?
- Why RAG? Limitations of traditional LLMs
- RAG Architecture Overview
- Key Components: Query, Retriever, Vector DB, Generator
🔹 Module 2: Core Components Deep Dive
- Vector Embeddings: Converting text to vectors
- Providers: OpenAI, Cohere, HuggingFace
- Document Chunking & Preprocessing Techniques
- Vector Stores: FAISS, Pinecone, ChromaDB
- LLM Integrations: OpenAI, Claude, Ollama
🔹 Module 3: Building Blocks of a RAG App
- Step-by-step RAG pipeline:
- Data ingestion
- Indexing documents
- Query understanding
- Retrieval
- Generation
- Types of RAG:
- Retrieve-then-Generate
- Generate-then-Retrieve
🔹 Lab 1: Build a Basic RAG App
- Dataset: PDF/Text/Markdown
- Embeddings + FAISS + OpenAI GPT
- Simple frontend (Streamlit or Flask)
🗓️ Day 2 – Advanced Features & Productionizing
🔹 Module 4: Enhancing RAG Performance
- Prompt engineering for better generation
- Hybrid search (semantic + keyword)
- Metadata filtering
- Response re-ranking
- Caching strategies
🔹 Module 5: Evaluation & Metrics
- Groundedness & Faithfulness
- Evaluation methods: BLEU, ROUGE, LLM-as-a-judge
- Human-in-the-loop validation
🔹 Module 6: Scaling & Deployment
- Using LangChain, LlamaIndex, Ragas for modular RAG
- Integrating APIs (e.g., LangSmith)
- Security and privacy considerations
🛠️ Tools & Libraries
- Embeddings: OpenAI, Cohere, HuggingFace
- Vector DBs: FAISS, ChromaDB, Pinecone
- Frameworks: LangChain, LlamaIndex
- Deployment: Flask, Streamlit, Docker
- Evaluation: RAGAS, LLM-judge tools
✅ Outcomes
By the end of the workshop, participants will:
- Understand the RAG architecture
- Build and deploy a basic RAG-powered app
- Explore advanced optimization techniques
- Evaluate and improve RAG-based systems