Improve search performance in .NET app with Vector Search - up1/training-courses GitHub Wiki

Course :: Improve search performance in .NET app with Vector Search

  • 2 days

Software requirements

Outline

  • Introduction to Vector search

    • Vector data types
    • Distance algorithm (similarity search)
      • Euclidean distance
      • Cosign distance
    • Embedding data (convert text to machine-readable code)
      • Multilingual embedding
      • Embedding models
  • Introduction to Vector Database

    • Install Qdrant with Docker
    • Working with Qdrant
      • CRUD operation (Create/REad,Update/Delete)
      • Search operations
        • keyword
        • vector/semantic
        • hybrid
  • Working with Hybrid search

    • Keyword search or Full-text search
    • Vector search or Semantic search
  • Local LLM with Ollama

    • Introduction to Ollama
    • Install and configuration Ollama with Docker
    • Install embedding model
      • bge-m3
    • Workshop with Ollama
      • Create embedding data (vector) from text via REST API
  • Workshop with .NET 8 (Improve search data)

    • Create Project with web-api project
    • Create sample data into PostgreSQL database
    • Generate embedding data from sample data with Ollama API
    • Insert embedding data to Vector database (Qdrant) with Qdrant API
    • Search data from Vector database (Qdrant) with Qdrant API
      • keyword
      • vector/semantic
      • hybrid