Improve search performance in .NET app with Vector Search - up1/training-courses GitHub Wiki
Course :: Improve search performance in .NET app with Vector Search
- 2 days
Software requirements
- .NET 8
- VS Code
- Docker
Outline
-
Introduction to Vector search
- Vector data types
- Distance algorithm (similarity search)
- Euclidean distance
- Cosign distance
- Embedding data (convert text to machine-readable code)
- Multilingual embedding
- Embedding models
-
Introduction to Vector Database
- Install Qdrant with Docker
- Working with Qdrant
- CRUD operation (Create/REad,Update/Delete)
- Search operations
- keyword
- vector/semantic
- hybrid
-
Working with Hybrid search
- Keyword search or Full-text search
- Vector search or Semantic search
-
Local LLM with Ollama
- Introduction to Ollama
- Install and configuration Ollama with Docker
- Install embedding model
- bge-m3
- Workshop with Ollama
- Create embedding data (vector) from text via REST API
-
Workshop with .NET 8 (Improve search data)
- Create Project with web-api project
- Create sample data into PostgreSQL database
- Generate embedding data from sample data with Ollama API
- Insert embedding data to Vector database (Qdrant) with Qdrant API
- Search data from Vector database (Qdrant) with Qdrant API
- keyword
- vector/semantic
- hybrid