B. References - ufarrell/sgp_phase2 GitHub Wiki
Published studies with data included in Phase 2
SGP reference_id | Reference work | Data Source(s) |
---|---|---|
329 | Abanda, P.A. & Hannigan, R.E. (2006). Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 230, 42-59. https://doi.org/10.1016/j.chemgeo.2005.11.011 | USGS-CMIBS |
328 | Abre, P., Cingolani, C.A., Zimmermann, U., Cairncross, B. & Chemale, F. (2011). Provenance of Ordovician clastic sequences of the San Rafael Block (Central Argentina), with emphasis on the Ponón Trehué Formation. Gondwana Research, 19, 275-290. https://doi.org/10.1016/j.gr.2010.05.013 | USGS-CMIBS |
720 | Absar, N., Raza, M., Roy, M., Naqvi, S.M. & Roy, A.K. (2009). Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9Ga Gwalior Group. Precambrian Research, 168, 313-329. https://doi.org/10.1016/j.precamres.2008.11.001 | DM-SED |
449 | Abshire, M.L., Riedinger, N., Clymer, J.M., Scott, C.T., Severmann, S., Romaniello, S.J. & Puckette, J.O. (2022). Reconstructing the paleoceanographic and redox conditions responsible for variations in uranium content in North American Devonian black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 587, 110763. https://doi.org/10.1016/j.palaeo.2021.110763 | SGP |
448 | Abshire, M.L., Romaniello, S.J., Kuzminov, A.M., Cofrancesco, J., Severmann, S. & Riedinger, N. (2020). Uranium isotopes as a proxy for primary depositional redox conditions in organic-rich marine systems. Earth and Planetary Science Letters, 529, 115878. https://doi.org/10.1016/j.epsl.2019.115878 | SGP |
330 | Adams, C.J., Cluzel, D. & Griffin, W.L. (2009). Detrital-zircon ages and geochemistry of sedimentary rocks in basement Mesozoic terranes and their cover rocks in New Caledonia, and provenances at the Eastern Gondwanaland margin∗. Australian Journal of Earth Sciences, 56, 1023-1047. https://doi.org/10.1080/08120090903246162 | USGS-CMIBS |
290 | Adeboye, O.O., Riedinger, N. & Quan, T.M. (2022). Geochemical Evaluation of Organic Matter Enrichment in the “Mississippian Limestone” Interval of the Anadarko Shelf of Oklahoma. Marine and Petroleum Geology, 135, 105422. https://doi.org/10.1016/j.marpetgeo.2021.105422 | SGP |
289 | Adeboye, O.O., Riedinger, N., Wu, T., Grammer, G. & Quan, T.M. (2020). Redox conditions on the Anadarko Shelf of Oklahoma during the deposition of the “Mississippian Limestone”. Marine and Petroleum Geology, 116, 104345. https://doi.org/10.1016/j.marpetgeo.2020.104345 | SGP |
93 | Ahm, A.C., Bjerrum, C.J. & Hammarlund, E.U. (2017). Disentangling the record of diagenesis, local redox conditinos, and global seawater chemistry during the latest Ordovician glaciation. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2016.09.049 | SGP |
331 | Alberdi-Genolet, M. & Tocco, R. (1999). Trace metals and organic geochemistry of the Machiques Member (Aptian–Albian) and La Luna Formation (Cenomanian–Campanian), Venezuela. Chemical Geology, 160, 19-38. https://doi.org/10.1016/S0009-2541(99)00044-3 | USGS-CMIBS |
691 | Alexander, B.W., Bau, M., Andersson, P. & Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378-394. https://doi.org/10.1016/j.gca.2007.10.028 | DM-SED |
444 | Alferes, C.L., Rodrigues, R. & Pereira, E. (2011). Geoquímica orgânica aplicada à Formação Irati, na área de São Mateus do Sul (PR), Brasil. Geochimica Brasiliensis, 25. | SGP |
280 | Algeo, T.J. & Maynard, J. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009 | SGP |
281 | Algeo, T.J., Rowe, H., Hower, J.C., Schwark, L., Herrmann, A.D. & Heckel, P. (2008). Changes in ocean denitrification during Late Carboniferous glacial–interglacial cycles. Nature Geoscience, 1, 709-714. https://doi.org/10.1038/ngeo307 | SGP |
506 | Algeo, T.J., Schwark, L. & Hower, J.C. (2004). High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology, 206, 259-288. https://doi.org/10.1016/j.chemgeo.2003.12.028 | SGP |
668 | Alibert, C. & McCulloch, M.T. (1993). Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, western Australia. Geochimica et Cosmochimica Acta, 57, 187-204. https://doi.org/10.1016/0016-7037(93)90478-F | DM-SED |
672 | Amajor, L.C. (1987). Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Sciences, 6, 633-641. https://doi.org/10.1016/0899-5362(87)90002-9 | DM-SED |
307 | Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C.T., Garvin, J. & Buick, R. (2007). A Whiff of Oxygen Before the Great Oxidation Event? Science, 317, 1903-1906. https://doi.org/10.1126/science.1140325 | SGP |
510 | Anderson, R.P., Tosca, N.J., Gaines, R.R., Mongiardino Koch, N. & Briggs, D.E. G. (2018). A mineralogical signature for Burgess Shale–type fossilization. Geology, 46, 347-350. https://doi.org/10.1130/G39941.1 | SGP |
431 | Anjos, C.W., Meunier, A., Guimarães, E.M. & el Albani, A. (2010). Saponite-rich black shales and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism (Paraná basin, Brazil). Clays and Clay Minerals, 58, 606-626. https://doi.org/10.1346/CCMN.2010.0580503 | USGS-CMIBS |
304 | Ansari, A.H., Ahmad, S., Govil, P., Agrawal, S. & Mathews, R.P. (2020). Mo-Ni and organic carbon isotope signatures of the mid-late Mesoproterozoic oxygenation. Journal of Asian Earth Sciences, 191, 104201. https://doi.org/10.1016/j.jseaes.2019.104201 | SGP |
305 | Ansari, A.H., Singh, V.K., Sharma, M. & Kumar, K. (2021). High authigenic Co enrichment in the non‐euxinic buff‐grey and black shale of the Chandarpur Group, Chhattisgarh Supergroup: Implication for the late Mesoproterozoic shallow marine redox condition. Terra Nova, 34, 72-82. https://doi.org/10.1111/ter.12564 | SGP |
686 | Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.Il, Balaram, V., Cruz-Martínez, A. & Avila-Ramírez, G. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus. Géoscience, 345, 185-202. https://doi.org/10.1016/j.crte.2013.03.004 | DM-SED |
652 | Armstrong, D.K. & Sergerie, P. (2003). Data for the Comparative Resource Evaluation of Selected Shale Units, Southern Ontario. Ontario Geological Survey Open File Report 6094. https://www.geologyontario.mines.gov.on.ca/publication/OFR6094 | USGS-CMIBS |
333 | Arnaboldi, M. & Meyers, P.A. (2007). Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 425-443. https://doi.org/10.1016/j.palaeo.2007.02.016 | USGS-CMIBS |
733 | Arthur, M.A. & Dean, W.E. (1998). Organic‐matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography, 13, 395-411. https://doi.org/10.1029/98PA01161 | DM-SED |
623 | Asiedu, D.K., Dampare, S.B., Sakyi, P., Banoeng-Yakubo, B., Osae, S., Nyarko, B.J. & Manu, J. (2004). Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamondiferous field, southern Ghana: Implications for provenance and crustal evolution at the Archean-Proterozoic boundary. Geochemical Journal, 38, 215-228. https://doi.org/10.2343/geochemj.38.215 | USGS-CMIBS |
622 | Asiedu, D.K., Suzuki, S., Nogami, K. & Shibata, T. (2000). Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: Constraints on provenance and tectonic environment. Geochemical Journal, 34, 155-173. https://doi.org/10.2343/geochemj.34.155 | USGS-CMIBS |
455 | Bachan, A., van de Schootbrugge, B., Fiebig, J., McRoberts, C.A., Ciarapica, G. & Payne, J.L. (2012). Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records: Constraints from paired δ13C records. Geochemistry, Geophysics, Geosystems, 13. https://doi.org/10.1029/2012GC004150 | SGP |
698 | Baioumy, H.M. & Lehmann, B. (2017). Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: Evidence for the late Cretaceous Tethys anoxia. Journal of African Earth Sciences, 133, 7-14. https://doi.org/10.1016/j.jafrearsci.2017.05.006 | DM-SED |
396 | Baioumy, H.M., Eglinton, L.B. & Peucker-Ehrenbrink, B. (2011). Rhenium–osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt. Chemical Geology, 285, 70-81. https://doi.org/10.1016/j.chemgeo.2011.02.026 | USGS-CMIBS |
683 | Baioumy, H.M., Ulfa, Y., Nawawi, M., Padmanabhan, E. & Anuar, M.N. (2016). Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: Implications for their origin and maturation. International Journal of Coal Geology, 165, 90-105. https://doi.org/10.1016/j.coal.2016.08.007 | DM-SED |
772 | Baker, T.L. (1995). Elemental geochemistry and micropaleontology of an Upper Pennsylvanian black shale: The Haskell-Cass Cycle (Douglas Group), Southern Kansas. [Master's thesis, Texas Tech University] http://hdl.handle.net/2346/12744 | DM-SED |
731 | Ball, T.T. & Farmer, G.L. (1998). Infilling history of a Neoproterozoic intracratonic basin: Nd isotope provenance studies of the Uinta Mountain Group, Western United States. Precambrian Research, 87, 1-18. https://doi.org/10.1016/S0301-9268(97)00051-X | DM-SED |
778 | Bangert, B. (2000). Tephrostratigraphy, petrography, geochemistry, age and fossil record of the Ganigobis Shale Member and associated glaciomarine deposits of the Dwyka Group, Late Carboniferous, southern Africa. [Doctoral thesis, Bayerischen Julius-Maximilians-Universität Würzburg] https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/files/179/bangert.pdf | DM-SED |
599 | Basson Smith, A.J. (2009). The Paleo-environmental significance of the iron-formations and iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan Basin, South Africa. [Master's thesis, University of Johannesburg] https://hdl.handle.net/10210/2440 | USGS-CMIBS |
480 | Bastos, L.P., Pereira, E., da Costa Cavalcante, D., Ferreira Alferes, C.L., Jorge de Menezes, C. & Rodrigues, R. (2020). Expression of Early Cretaceous global anoxic events in Northeastern Brazilian basins. Cretaceous Research, 110, 104390. https://doi.org/10.1016/j.cretres.2020.104390 | SGP |
443 | Bastos, L.P., Rodrigues, R., Pereira, E., Bergamaschi, S., Alferes, C.L., Augland, L.E., Domeier, M., Planke, S. & Svensen, H.H. (2021). The birth and demise of the vast epicontinental Permian Irati-Whitehill sea: Evidence from organic geochemistry, geochronology, and paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110103. https://doi.org/10.1016/j.palaeo.2020.110103 | SGP |
589 | Bauer, K.W., Bottini, C., Frei, R., Asael, D., Planavsky, N.J., Francois, R., McKenzie, N., Erba, E. & Crowe, S.A. (2021). Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology, 49, 1452-1456. https://doi.org/10.1130/G49065.1 | SGP |
590 | Bauer, K.W., Bottini, C., Katsev, S., Jellinek, M., Francois, R., Erba, E. & Crowe, S.A. (2022). Ferruginous oceans during OAE1a and collapse of the marine sulfate pool. Earth and Planetary Science Letters, 578, 117324. https://doi.org/10.1016/j.epsl.2021.117324 | SGP |
378 | Bavinton, O.A. & Taylor, S.R. (1980). Rare earth element geochemistry of Archean metasedimentary rocks from Kambalda, Western Australia. Geochimica et Cosmochimica Acta, 44, 639-648. https://doi.org/10.1016/0016-7037(80)90154-4 | USGS-CMIBS |
766 | Bernasconi, S.M. (1991). Geochemical and microbial controls on dolomite formation and organic matter production/preservation in anoxic environments: A case study from the Middle Triassic Grenzbitumenzone, Southern Alps (Ticino, Switzerland). [Doctoral thesis, ETH] https://doi.org/10.3929/ethz-a-000611458 | DM-SED |
379 | Bhatia, M.R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97-113. https://doi.org/10.1016/0037-0738(85)90025-9 | USGS-CMIBS |
296 | Birdwell, J.E. & French, K.L. (2019). Geochemistry data for the USGS Gulf Coast #1 West Woodway core - A thermally immature core of the Eagle Ford Group in central Texas. U.S. Geological Survey data release. https://doi.org/10.5066/P95QUX1H | SGP |
788 | Bisnett, A.J. (2001). Petrography and geochemistry of Pennsylvanian black shales in offshore and nearshore stratigraphic settings in Midcontinent and Illinois Basins. [Doctoral thesis, University of Iowa] | DM-SED |
452 | Bokanda, E., Fralick, P.W., Bisse, S., Ashukem, E., Belinga, B., Bokanda, F., Ligbwah, V., Chin, T. & Ekomane, E. (2022). Trace elements geochemistry, total organic carbon, palaeosalinity, and hydrothermal characteristics of the Cretaceous black shale in the Mamfe Basin (West Africa). Solid Earth Sciences, 7, 237-246. https://doi.org/10.1016/j.sesci.2022.07.001 | SGP |
453 | Bokanda, E., Fralick, P.W., Ekomane, E., Bisse, S., Tata, C., Ashukem, E. & Belinga, B. (2021). Geochemical constraints on the provenance, paleoweathering and maturity of the Mamfe black shales, West Africa. Journal of African Earth Sciences, 175, 104078. https://doi.org/10.1016/j.jafrearsci.2020.104078 | SGP |
693 | Bolhar, R., Hofmann, A., Siahi, M., Feng, Y. & Delvigne, C. (2015). A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ∼3.0 Ga Pongola Supergroup, Kaapvaal Craton. Geochimica et Cosmochimica Acta, 158, 57-78. https://doi.org/10.1016/j.gca.2015.02.026 | DM-SED |
414 | Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J. & Collerson, K.D. (2005). Chemical characterization of earth’s most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochimica et Cosmochimica Acta, 69, 1555-1573. https://doi.org/10.1016/j.gca.2004.09.023 | USGS-CMIBS |
561 | Bowman, C.N., Them, T.R., Knight, M.D., Kaljo, D., Eriksson, M.E., Hints, O., Martma, T., Owens, J.D. & Young, S.A. (2021). A multi-proxy approach to constrain reducing conditions in the Baltic Basin during the late Silurian Lau carbon isotope excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, 581, 110624. https://doi.org/10.1016/j.palaeo.2021.110624 | SGP |
562 | Bowman, C.N., Young, S.A., Kaljo, D., Eriksson, M.E., Them, T.R., Hints, O., Martma, T. & Owens, J.D. (2019). Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology, 47, 968-972. https://doi.org/10.1130/G46571.1 | SGP |
509 | Bowyer, F.T., Krause, A.J., Song, Y., Huang, K., Fu, Y., Shen, B., Li, J., Zhu, X., Kipp, M.A., Van Maldegem, L.M., Brocks, J.J., Shields, G.A., Le Hir, G., Mills, B.J.W. & Poulton, S.W. (2023). Biological diversification linked to environmental stabilization following the Sturtian Snowball glaciation. Science Advances, 9, eadf9999. https://doi.org/10.1126/sciadv.adf9999 | SGP |
238 | Bowyer, F.T., Shore, A.J., Wood, R.A., Alcott, L.J., Thomas, A.L., Butler, I.B., Curtis, A., Hainanan, S., Curtis-Walcott, S., Penny, A.M. & Poulton, S.W. (2020). Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia. Nature: Scientific Reports, 10, Article2240. https://doi.org/10.1038/s41598-020-59335-2 | SGP |
239 | Bowyer, F.T., Wood, R.A. & Poulton, S.W. (2017). Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 15, 516-551. https://doi.org/10.1111/gbi.12232 | SGP |
21 | Boyer, D.L., Owens, J.D., Lyons, T.W. & Droser, M.L. (2011). Joining forces: Combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 306, 134-146. https://doi.org/10.1016/j.palaeo.2011.04.012 | SGP |
445 | Browne, T.N., Hofmann, M.H., Malkowski, M.A., Wei, J. & Sperling, E.A. (2020). Redox and paleoenvironmental conditions of the Devonian-Carboniferous Sappington Formation, southwestern Montana, and comparison to the Bakken Formation, Williston Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110025. https://doi.org/10.1016/j.palaeo.2020.110025 | SGP |
661 | Brumsack, H. (1989). Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851-882. https://doi.org/10.1007/BF01829327 | DM-SED |
210 | Brumsack, H. (1991). Inorganic geochemistry of the German 'Posidonia Shale':palaeoenvironmental consequences. Geological Society Special Publications, 58, 353-362. https://doi.org/10.1144/GSL.SP.1991.058.01.22 | SGP |
450 | Busch, J.F., Boag, T.H., Sperling, E.A., Rooney, A.D., Feng, X., Moynihan, D.P. & Strauss, J.V. (2023). Integrated litho-, chemo- and sequence stratigraphy of the Ediacaran Gametrail Formation across a shelf-slope transect in the Wernecke Mountains, Yukon, Canada. American Journal of Science, 323, 4. https://doi.org/10.2475/001c.74874 | SGP |
446 | Busch, J.F., Hodgin, E.B., Ahm, A.C., Husson, J.M., Macdonald, F.A., Bergmann, K.D., Higgins, J.A. & Strauss, J.V. (2022). Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth and Planetary Science Letters, 579, 117368. https://doi.org/10.1016/j.epsl.2022.117368 | SGP |
680 | Cabral, A.R., Creaser, R.A., Nägler, T., Lehmann, B., Voegelin, A.R., Belyatsky, B., Pašava, J., Seabra Gomes, A.A., Galbiatti, H., Böttcher, M.E. & Escher, P. (2013). Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chemical Geology, 362, 91-104. https://doi.org/10.1016/j.chemgeo.2013.08.041 | DM-SED |
624 | Cai, G., Guo, F., Liu, X., Sui, S., Li, C. & Zhao, L. (2008). Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Journal, 42, 381-402. https://doi.org/10.2343/geochemj.42.381 | USGS-CMIBS |
28 | Calvert, S.E. & Karlin, R.E. (1991). Relationships between sulphur, organic carbon and iron in the modern sediments of the Black Sea. Geochimica et Cosmochimica Acta, 55, 2483-2490. https://doi.org/10.1016/0016-7037(91)90367-E | SGP |
390 | Cameron, E.M. & Baumann, A. (1972). Carbonate sedimentation during the Archean. Chemical Geology, 10, 17-30. https://doi.org/10.1016/0009-2541(72)90074-5 | USGS-CMIBS |
409 | Cameron, E.M. & Garrels, R.M. (1980). Geochemical compositions of some Precambrian shales from the Canadian Shield. Chemical Geology, 28, 181-197. https://doi.org/10.1016/0009-2541(80)90046-7 | USGS-CMIBS |
332 | Cameron, E.M. & Jonasson, I.R. (1972). Mercury in precambrian shales of the Canadian Shield. Geochimica et Cosmochimica Acta, 36, 985-1005. https://doi.org/10.1016/0016-7037(72)90017-8 | USGS-CMIBS |
631 | Camiré, G., La Fleche, M.R. & Malo, M. (1993). Géochimie des roches volcaniques cambro-ordoviciennes du Groupe de Shickshock: incidences sur la stratigraphie et le contexte géotectonique de la Gaspésie septentrionale. Recherches en cours, Partie E. Comm. Geol. Can., Etude 93-1E. | USGS-CMIBS |
398 | Campos Alvarez, N.O. & Roser, B.P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23, 271-289. https://doi.org/10.1016/j.jsames.2007.02.003 | USGS-CMIBS |
245 | Canfield, D.E., Knoll, A.H., Poulton, S.W., Narbonne, G.M. & Dunning, G.R. (2020). Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. American Journal of Science, 320, 97-124. https://doi.org/10.2475/02.2020.01 | SGP |
59 | Canfield, D.E., Poulton, S.W. & Narbonne, G.M. (2007). Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315, 92-95. https://doi.org/10.1126/science.1135013 | SGP |
51 | Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T. & Strauss, H. (2008). Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321, 949-952. https://doi.org/10.1126/science.1154499 | SGP |
168 | Canfield, D.E., Zhang, S., Frank, A.B., Wang, X., Wang, H., Su, J., Ye, Y. & Frei, R. (2018). Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9, 2871. https://doi.org/10.1038/s41467-018-05263-9 | SGP |
557 | Canfield, D.E., Zhang, S., Wang, H. & Wang, X. (2024). Xiamaling Data base. Mendeley Data, 1. https://doi.org/10.17632/BWNDGT89WP.1 | SGP |
633 | Caplan, M.L. (1997). Factors influencing the formation of organic-rich sedimentary facies: Examples from the Devonian-carboniferous Exshaw formation, Alberta, Canada. [Doctoral thesis, University of British Columbia] https://doi.org/10.14288/1.0053323 | USGS-CMIBS |
729 | Caplan, M.L. & Bustin, R.M. (1999). Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production. Organic Geochemistry, 30, 161-188. https://doi.org/10.1016/S0146-6380(98)00202-2 | DM-SED |
695 | Carmichael, S.K., Waters, J.A., Batchelor, C.J., Coleman, D.M., Suttner, T.J., Kido, E., Moore, L.M. & Chadimová, L. (2016). Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt. Gondwana Research, 32, 213-231. https://doi.org/10.1016/j.gr.2015.02.009 | DM-SED |
803 | Carter, J.E. (1998). Structure, stratigraphy, and geochemistry of the Upper Ordovician Lawrence Harbour formation, Exploits Subzone, Newfoundland. [Master's thesis, Memorial University of Newfoundland] http://research.library.mun.ca/id/eprint/10728 | DM-SED |
523 | Caxito, F.A., Sperling, E.A., Fazio, G., Rodrigues Adorno, R., Denezine, M., do Carmo, D.A., Giorgioni, M., Uhlein, G.J. & Sial, A.N. (2024). A shift in redox conditions near the Ediacaran/Cambrian transition and its possible influence on early animal evolution, Corumbá Group, Brazil. Geoscience Frontiers, 15, 101810. https://doi.org/10.1016/j.gsf.2024.101810 | SGP |
334 | Chakrabarti, R., Abanda, P.A., Hannigan, R.E. & Basu, A.R. (2007). Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies. Chemical Geology, 244, 221-231. https://doi.org/10.1016/j.chemgeo.2007.06.017 | USGS-CMIBS |
204 | Challands, T.J., Armstrong, H.A., Maloney, D.P., Davies, J.R., Wilson, D.J. H. & Owen, A.W. (2009). Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): A case study from the Welsh Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 395-410. https://doi.org/10.1016/j.palaeo.2008.10.004 | SGP |
513 | Chang, C., Hu, W., Huang, K., Wang, Z. & Zhang, X. (2023). Mass Extinction Coincided With Expanded Continental Margin Euxinia During the Cambrian Age 4. Geophysical Research Letters, 50, e2023GL105560. https://doi.org/10.1029/2023GL105560 | SGP |
512 | Chang, C., Hu, W., Wang, X., Huang, K., Yang, A. & Zhang, X. (2019). Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4. Geochimica et Cosmochimica Acta, 257, 49-67. https://doi.org/10.1016/j.gca.2019.04.021 | SGP |
91 | Chang, H., Chu, X., Feng, L. & Huang, J. (2010). Iron speciation in cherts from the Laobao Formation, South China: implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55, 3189-3196. https://doi.org/10.1007/s11434-010-4006-6 | SGP |
92 | Chang, H., Chu, X., Feng, L. & Huang, J. (2012). Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322, 80-87. https://doi.org/10.1016/j.palaeo.2012.01.019 | SGP |
704 | Chen, C., Mu, C., Zhou, K., Liang, W., Ge, X., Wang, X., Wang, Q. & Zheng, B. (2016). The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76, 159-175. https://doi.org/10.1016/j.marpetgeo.2016.04.022 | DM-SED |
274 | Chen, K., Rudnick, R.L., Wang, Z., Tang, M., Gaschnig, R., Zou, Z., He, T., Hu, Z. & Liu, Y. (2020). How mafic was the Archean upper continental crust? Insights from Cu and Ag in ancient glacial diamictites. Geochimica et Cosmochimica Acta, 278, 16-29. https://doi.org/10.1016/j.gca.2019.08.002 | SGP |
270 | Chen, K., Walker, R.J., Rudnick, R.L., Gao, S., Gaschnig, R., Puchtel, I.S., Tang, M. & Hu, Z. (2016). Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: Evidence from glacial diamictites. Geochimica et Cosmochimica Acta, 191, 1-16. https://doi.org/10.1016/j.gca.2016.07.004 | SGP |
699 | Chen, L., Jenkyns, H.C., Xu, G., Mattioli, E., Da, X., Yi, H., Xia, M., Zhu, Z. & Huang, Z. (2016). Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet. Journal of Asian Earth Sciences, 115, 257-267. https://doi.org/10.1016/j.jseaes.2015.10.004 | DM-SED |
710 | Chen, R. & Sharma, S. (2016). Role of alternating redox conditions in the formation of organic-rich interval in the Middle Devonian Marcellus Shale, Appalachian Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 446, 85-97. https://doi.org/10.1016/j.palaeo.2016.01.016 | DM-SED |
267 | Chen, X., Li, M., Sperling, E.A., Zhang, T., Zong, K., Liu, Y. & Shen, Y. (2020). Mesoproterozoic paleo-redox changes during 1500–1400 Ma in the Yanshan Basin, North China. Precambrian Research, 347, 105835. https://doi.org/10.1016/j.precamres.2020.105835 | SGP |
42 | Chen, X., Ling, H., Vance, D., Shields-Zhou, G.A., Zhu, M., Poulton, S.W., Och, L.M., Jiang, S., Li, D., Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6, 1-7. https://doi.org/10.1038/ncomms8142 | SGP |
656 | Cheng, K., Elrick, M. & Romaniello, S.J. (2020). Early Mississippian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: Evidence from uranium isotopes recorded in marine limestone. Geology, 48, 363-367. https://doi.org/10.1130/G46950.1 | SGP |
157 | Cheng, M., Li, C., Chen, X., Zhou, L., Algeo, T.J., Ling, H., Feng, L. & Jin, C. (2018). Delayed Neoproterozoic oceanic oxygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation. Precambrian Research. https://doi.org/10.1016/j.precamres.2017.12.007 | SGP |
469 | Cheng, M., Li, C., Jin, C., Wang, H., Algeo, T.J., Lyons, T.W., Zhang, F. & Anbar, A.D. (2020). Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287, 125-140. https://doi.org/10.1016/j.gca.2020.01.050 | SGP |
83 | Cheng, M., Li, C., Zhou, L., Algeo, T.J., Zhang, F., Romaniello, S.J., Jin, C., Lei, L., Feng, L. & Jiang, S. (2016). Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: A case study of the lower Cambrian Niutitang shales, South China. Geochimica et Cosmochimica Acta, 183, 79-93. https://doi.org/10.1016/j.gca.2016.03.035 | SGP |
142 | Cheng, M., Li, C., Zhou, L., Feng, L., Algeo, T.J., Zhang, F., Romaniello, S.J., Jin, C., Ling, H. & Jiang, S. (2017). Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China. Geochimica et Cosmochimica Acta, 210, 42-58. https://doi.org/10.1016/j.gca.2017.04.032 | SGP |
496 | Cherry, L.B., Gilleaudeau, G.J., Grazhdankin, D.V., Romaniello, S.J., Martin, A.J. & Kaufman, A.J. (2022). A diverse Ediacara assemblage survived under low-oxygen conditions. Nature Communications, 13, 7306. https://doi.org/10.1038/s41467-022-35012-y | SGP |
341 | Cingolani, C.A., Manassero, M.J. & Abre, P. (2003). Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: Southern extension of the Precordillera crustal fragment, Argentina. Journal of South American Earth Sciences, 16, 91-106. https://doi.org/10.1016/S0895-9811(03)00021-X | USGS-CMIBS |
397 | Clarke, D.B. & Halliday, A.N. (1980). Strontium isotope geology of the South Mountain batholith, Nova Scotia. Geochimica et Cosmochimica Acta, 44, 1045-1058. https://doi.org/10.1016/0016-7037(80)90058-7 | USGS-CMIBS |
478 | Clarkson, M.O., Lenton, T.M., Andersen, M.B., Bagard, M., Dickson, A.J. & Vance, D. (2021). Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes. Nature Communications, 12, 399. https://doi.org/10.1038/s41467-020-20486-5 | SGP |
477 | Clarkson, M.O., Stirling, C.H., Jenkyns, H.C., Dickson, A.J., Porcelli, D., Moy, C.M., Pogge von Strandmann, P.A., Cooke, I.R. & Lenton, T.M. (2018). Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 115, 2918-2923. https://doi.org/10.1073/pnas.1715278115 | SGP |
116 | Clarkson, M.O., Wood, R.A., Poulton, S.W., Richoz, S., Newton, R.J., Kasemann, S.A., Bowyer, F.T. & Krystyn, L. (2016). Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7, Article12236. https://doi.org/10.1038/ncomms12236 | SGP |
252 | Cole, D.B., Planavsky, N.J., Longley, M., Böning, P., Wilkes, D., Wang, X., Swanner, E.D., Wittkop, C., Loydell, D.K., Busigny, V., Knudsen, A.C. & Sperling, E.A. (2020). Uranium Isotope Fractionation in Non‐sulfidic Anoxic Settings and the Global Uranium Isotope Mass Balance. Global Biogeochemical Cycles, 34, Articlee2020GB006649. https://doi.org/10.1029/2020GB006649 | SGP |
749 | Condie, K.C., Noll, P.D. & Conway, C.M. (1992). Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 77, 51-76. https://doi.org/10.1016/0037-0738(92)90103-X | DM-SED |
584 | Cordie, D.R., Dornbos, S.Q. & Marenco, P.J. (2019). Increase in carbonate contribution from framework-building metazoans through early Cambrian reefs of the Western Basin and Range, USA. PALAIOS, 34, 159-174. https://doi.org/10.2110/palo.2018.085 | SGP |
585 | Cordie, D.R., Dornbos, S.Q. & Marenco, P.J. (2020). Evidence for a local reef eclipse in a shallow marine carbonate environment following the regional extinction of archaeocyaths in Laurentia (Stage 4, Cambrian). Facies, 66, 5. https://doi.org/10.1007/s10347-019-0589-9 | SGP |
586 | Cordie, D.R., Dornbos, S.Q., Marenco, P.J., Oji, T. & Gonchigdorj, S. (2019). Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 206-221. https://doi.org/10.1016/j.palaeo.2018.10.027 | SGP |
386 | Coveney, R.M. & Glascock, M.D. (1989). A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Applied Geochemistry, 4, 347-367. https://doi.org/10.1016/0883-2927(89)90012-7 | USGS-CMIBS |
391 | Coveney, R.M. & Martin, S.P. (1983). Molybdenum and other heavy metals of the Mecca Quarry and Logan Quarry shales. Economic Geology, 78, 132-149. https://doi.org/10.2113/gsecongeo.78.1.132 | USGS-CMIBS |
395 | Coveney, R.M., Leventhal, J.S., Glascock, M.D. & Hatch, J.R. (1987). Origins of metals and organic matter in the Mecca Quarry Shale Member and stratigraphically equivalent beds across the Midwest. Economic Geology, 82, 915-933. https://doi.org/10.2113/gsecongeo.82.4.915 | USGS-CMIBS |
358 | Coveney, R.M., Murowchick, J.B., Grauch, R.I., Glascock, M.D. & Denison, J.R. (1992). Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99, 101-114. https://doi.org/10.1016/0009-2541(92)90033-2 | USGS-CMIBS |
181 | Cox, G.M., Jarrett, A., Edwards, D., Crockford, P.W., Halverson, G.P., Collins, A.S., Poirier, A. & Li, Z. (2016). Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440, 101-114. https://doi.org/10.1016/j.chemgeo.2016.06.025 | SGP |
288 | Cox, G.M., Sansjofre, P., Blades, M.L., Farkas, J. & Collins, A.S. (2019). Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Nature: Scientific Reports, 9, 5200. https://doi.org/10.1038/s41598-019-40783-4 | SGP |
389 | Cox, R., Armstrong, R.A. & Ashwal, L.D. (1998). Sedimentology, geochronology and provenance of the Proterozoic Itremo Group, central Madagascar, and implications for pre-Gondwana palaeogeography. Journal of the Geological Society, 155, 1009-1024. https://doi.org/10.1144/gsjgs.155.6.1009 | USGS-CMIBS |
380 | Cox, R., Lowe, D.R. & Cullers, R.L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 | USGS-CMIBS |
74 | Creveling, J.R., Johnston, D.T., Poulton, S.W., Kotrc, B., März, C., Schrag, D.P. & Knoll, A.H. (2014). Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin, 126, 145-163. https://doi.org/10.1130/B30819.1 | SGP |
526 | Crockford, P.W., Kunzmann, M., Blättler, C.L., Kalderon-Asael, B., Murphy, J.G., Ahm, A.C., Sharoni, S., Halverson, G.P., Planavsky, N.J., Halevy, I. & Higgins, J.A. (2021). Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite. Geology, 49, 442-446. https://doi.org/10.1130/G48213.1 | SGP |
363 | Cruse, A.M. & Lyons, T.W. (2004). Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology, 206, 319-345. https://doi.org/10.1016/j.chemgeo.2003.12.010 | USGS-CMIBS |
600 | Cubitt, J.M. (1979). The geochemistry, mineralogy and petrology of Upper Paleozoic shales of Kansas. Kansas Geological Survey Bulletin, 217, 117. | USGS-CMIBS |
188 | Cui, H., Grazhdankin, D.V., Xiao, S., Peek, S., Rogov, V.I., Bykova, N.V., Sievers, N.E., Liu, X. & Kaufman, A.J. (2016). Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 122-139. https://doi.org/10.1016/j.palaeo.2016.08.015 | SGP |
189 | Cui, H., Kaufman, A.J., Peng, Y., Liu, X., Plummer, R.E. & Lee, E.I. (2018). The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications. Precambrian Research, 313, 242-262. https://doi.org/10.1016/j.precamres.2018.05.024 | SGP |
191 | Cui, H., Kaufman, A.J., Xiao, S., Peek, S., Cao, H., Min, X., Cai, Y., Siegel, Z., Liu, X., Peng, Y., Schiffbauer, J.D. & Martin, A.J. (2016). Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14, 344-363. https://doi.org/10.1111/gbi.12178 | SGP |
190 | Cui, H., Kaufman, A.J., Xiao, S., Zhou, C. & Liu, X. (2017). Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450, 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010 | SGP |
460 | Cui, H., Xiao, S., Cai, Y., Peek, S., Plummer, R.E. & Kaufman, A.J. (2019). Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, 156, 1924-1948. https://doi.org/10.1017/S0016756819000293 | SGP |
400 | Cullers, R.L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8 | USGS-CMIBS |
214 | Cullers, R.L. & Podkovyrov, V.N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77-93. https://doi.org/10.1016/S0301-9268(00)00090-5 | SGP |
730 | Cullers, R.L. & Podkovyrov, V.N. (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157-183. https://doi.org/10.1016/S0301-9268(02)00079-7 | DM-SED |
46 | Dahl, T.W., Hammarlund, E.U., Anbar, A.D., Bond, D.P. G., Gill, B.C., Gordon, G.W., Knoll, A.H., Nielsen, A.T., Schovsbo, N.H. & Canfield, D.E. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107, 17911-17915. https://doi.org/10.1073/pnas.1011287107 | SGP |
297 | Dang, D., Wang, W., Gibson, T.M., Kunzmann, M., Andersen, M.B., Halverson, G.P. & Evans, R. (2022). Authigenic uranium isotopes of late Proterozoic black shale. Chemical Geology, 588, 120644. https://doi.org/10.1016/j.chemgeo.2021.120644 | SGP |
65 | Darroch, S.A. F., Sperling, E.A., Boag, T.H., Racicot, R.A., Mason, S.J., Morgan, A.S., Tweedt, S., Myrow, P., Johnston, D.T., Erwin, D.H. & Laflamme, M. (2015). Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society B, 282. https://doi.org/10.1098/rspb.2015.1003 | SGP |
801 | Davis, C., Pratt, L.M., Sliter, W.V., Mompart, L. & Murat, B. (1999). Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In: Barrera, E. & Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System (pp. 203-230). Geological Society of America. https://doi.org/10.1130/0-8137-2332-9.203 | DM-SED |
786 | de la Rue, S.R. (2010). Implications for an Anoxia-Related Control on Green Algal Distributions in the Late Devonian Frasnian/Famennian Boundary. [Doctoral thesis, University of Idaho] https://www.proquest.com/docview/608923045 | DM-SED |
581 | Dehler, C.M., Elrick, M., Bloch, J.D., Crossey, L.J., Karlstrom, K.E. & Des Marais, D.J. (2005). High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: Implications for mid-Neoproterozoic climate change. Geological Society of America Bulletin, 117, 32. https://doi.org/10.1130/B25471.1 | SGP |
634 | Derkey, P.D., Abercrombie, F.N., Vuke, S.M. & Daniel, J.A. (1985). Geology and oil shale resources of the Heath Formation, Fergus County, Montana. Montana Bureau of Mines and Geology, Memoir 57. https://www.mtmemory.org/nodes/view/3743 | USGS-CMIBS |
427 | Deru, X., Xuexiang, G., Pengchun, L., Guanghao, C., Bin, X., Bachlinski, R., Zhuanli, H. & Gonggu, F. (2007). Mesoproterozoic–Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 29, 637-650. https://doi.org/10.1016/j.jseaes.2006.04.006 | USGS-CMIBS |
636 | Desborough, G.A., Poole, F.G. & Green, G.N. (1981). Metalliferous oil shales in central Montana and northeastern Nevada. U.S. Geological Survey Open File Report 81-121. https://doi.org/10.3133/ofr81121 | USGS-CMIBS |
635 | Desborough, G.A., Poole, F.G., Hose, R.K. & Radtke, A.S. (1979). Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada. U.S. Geological Survey Open File Report 79-530. https://doi.org/10.3133/ofr79530 | USGS-CMIBS |
727 | Di Leo, P., Dinelli, E., Mongelli, G. & Schiattarella, M. (2002). Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150, 229-246. https://doi.org/10.1016/S0037-0738(01)00181-6 | DM-SED |
767 | Dong, T. (2016). Geochemical, petrophysical and geomechanical properties of stratigraphic sequences in Horn River Shale, Middle and Upper Devonian, Northeastern British Columbia, Canada. [Doctoral thesis, University of Alberta] https://doi.org/10.7939/R3CZ32G43 | DM-SED |
192 | Doyle, K.A., Poulton, S.W., Newton, R.J., Podkovyrov, V.N. & Bekker, A. (2018). Shallow water anoxia in the Mesoproterozoic ocean: Evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Research, 317, 196-210. https://doi.org/10.1016/j.precamres.2018.09.001 | SGP |
637 | Doyon, J. (2004). Comparaison de la composition des roches métasédimentaires archéennes dans six bassins de la province du Supérieur: une étude géochimique et statistique. [Master's thesis, Université du Québec à Chicoutimi] https://doi.org/10.1522/18186288 | USGS-CMIBS |
287 | Drabon, N., Galić, A., Mason, P.R.D. & Lowe, D.R. (2019). Provenance and tectonic implications of the 3.28–3.23 Ga Fig Tree Group, central Barberton greenstone belt, South Africa. Precambrian Research, 325, 1-19. https://doi.org/10.1016/j.precamres.2019.02.010 | SGP |
310 | Duan, Y., Anbar, A.D., Arnold, G.L., Lyons, T.W., Gordon, G.W. & Kendall, B. (2010). Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochimica et Cosmochimica Acta, 74, 6655-6668. https://doi.org/10.1016/j.gca.2010.08.035 | SGP |
75 | Duan, Y., Severmann, S., Anbar, A.D., Lyons, T.W., Gordon, G.W. & Sageman, B.B. (2010). Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin. Earth and Planetary Science Letters, 290, 244-253. https://doi.org/10.1016/j.epsl.2009.11.052 | SGP |
166 | Dumoulin, J.A., Johnson, C.A., Kelley, K.D., Jarboe, P.J., Hackley, P.C., Scott, C.T. & Slack, J.F. (2017). Transgressive-regressive cycles in the metalliferous, oil shale-bearing Heath Formation (UpperMississippian), central Montana. Stratigraphy, 14, 97-122. https://doi.org/10.29041/strat.14.1-4.97-122 | SGP |
141 | Dumoulin, J.A., Slack, J.F., Whalen, M.T. & Harris, A.G. (2011). Depositional Setting and Geochemistry of Phosphorites and Metalliferous Black Shales in the Carboniferous-Permian Lisburne Group, Northern Alaska. USGS Professional Paper 1776-C. https://doi.org/10.3133/pp1776C | SGP |
461 | Dumoulin, J.A., Whidden, K.J., Rouse, W.A., Lease, R.O., Boehlke, A. & O’Sullivan, P. (2022). Biosiliceous, organic-rich, and phosphatic facies of Triassic strata of northwest Alaska: Transect across a high-latitude, low-angle continental margin. In: Aiello, I.W., Barron, J.A. & Ravelo, A. (Eds.), Understanding the Monterey Formation and Similar Biosiliceous Units across Space and Time (pp. 243-271). Geological Society of America. https://doi.org/10.1130/2022.2556(11) | SGP |
750 | Dypvik, H. & Zakharov, V. (2012). Fine-grained epicontinental Arctic sedimentation – mineralogy and geochemistry of shales from the Late Jurassic-Early Cretaceous transition Henning Dypvik & Victor Zakharov. Norwegian Journal of Geology, 92, 65-87. | DM-SED |
568 | Edwards, C.T. & Saltzman, M.R. (2016). Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 102-117. https://doi.org/10.1016/j.palaeo.2015.08.005 | SGP |
567 | Edwards, C.T., Fike, D.A., Saltzman, M.R., Lu, W. & Lu, Z. (2018). Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. Earth and Planetary Science Letters, 481, 125-135. https://doi.org/10.1016/j.epsl.2017.10.002 | SGP |
475 | Ejeh, O. (2021). Geochemistry of rocks (Late Cretaceous) in the Anambra Basin, SE Nigeria: insights into provenance, tectonic setting, and other palaeo-conditions. Heliyon, 7, e08110. https://doi.org/10.1016/j.heliyon.2021.e08110 | SGP |
484 | Ejeh, O., Akpoborie, I. & Etobro, A. (2015). Heavy Minerals and Geochemical Characteristics of Sandstones as Indices of Provenance and Source Area Tectonics of the Ogwashi-Asaba Formation, Niger Delta Basin. Open Journal of Geology, 05, 562-576. https://doi.org/10.4236/ojg.2015.58051 | SGP |
655 | Elrick, M., Gilleaudeau, G.J., Romaniello, S.J., Algeo, T.J., Morford, J.L., Sabbatino, M., Goepfert, T.J., Cleal, C., Cascales-Miñana, B. & Chernyavskiy, P. (2022). Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones. Earth and Planetary Science Letters, 581, 117410. https://doi.org/10.1016/j.epsl.2022.117410 | SGP |
219 | Emmings, J.F. (2018). Controls on UK Lower Namurian Shale Gas Prospectivity: Understanding the Spatial and Temporal Distribution of Organic Matter in Siliciclastic Mudstones. [Doctoral thesis, University of Leicester] | SGP |
216 | Emmings, J.F., Davies, S.J., Vane, C.H., Leng, M.J., Moss-Hayes, V., Stephenson, M.H. & Jenkin, G.R. T. (2017). Stream and slope weathering effects on organic-rich mudstone geochemistry and implications for hydrocarbon source rock assessment: A Bowland Shale case study. Chemical Geology, 471, 74-91. https://doi.org/10.1016/j.chemgeo.2017.09.012 | SGP |
217 | Emmings, J.F., Davies, S.J., Vane, C.H., Moss-Hayes, V. & Stephenson, M.H. (2019). From marine bands to hybrid flows: Sedimentology of a Mississippian black shale. Sedimentology. https://doi.org/10.1111/sed.12642 | SGP |
218 | Emmings, J.F., Hennissen, J.A., Stephenson, M.H., Poulton, S.W., Vane, C.H., Davies, S.J., Leng, M.J., Lamb, A. & Moss-Hayes, V. (2019). Controls on amorphous organic matter type and sulphurization in a Mississippian black shale. Review of Palaeobotany and Palynology, 268, 1-18. https://doi.org/10.1016/j.revpalbo.2019.04.004 | SGP |
569 | Emmings, J.F., Hennissen, J.A., Vane, C.H., Damaschke, M., Marvin, L., Moss-Hayes, V., Lamb, A., Lacey, J., Leng, M.J. & Riley, N.J. (2024). The Bowland Shale Formation in the Blacon Basin: syngenetic processes, stacking patterns and heat productivity. Geological Society Special Publications, 534, 61-90. https://doi.org/10.1144/SP534-2022-262 | SGP |
233 | Emmings, J.F., Poulton, S.W., Vane, C.H., Davies, S.J., Jenkin, G.R. T., Stephenson, M.H., Leng, M.J., Lamb, A. & Moss-Hayes, V. (2020). A Mississippian black shale record of redox oscillation in the Craven Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, Article109423. https://doi.org/10.1016/j.palaeo.2019.109423 | SGP |
399 | Eriksson, K.A., Taylor, S.R. & Korsch, R. (1992). Geochemistry of 1.8-1.67 Ga mudstones and siltstones from the Mount Isa Inlier, Queensland Australia: Provenance and tectonic implications. Geochimica et Cosmochimica Acta, 56, 899-909. https://doi.org/10.1016/0016-7037(92)90035-H | USGS-CMIBS |
416 | Eriksson, P.G., Reczko, B.F.F., Merkle, R.K.W., Schreiber, U.M., Engelbrecht, J.P., Res, M. & Snyman, C.P. (1994). Early proterozoic black shales of the Timeball Hill Formation, South Africa: volcanogenic and palaeoenvironmental influences. Journal of African Earth Sciences, 18, 325-337. https://doi.org/10.1016/0899-5362(94)90071-X | USGS-CMIBS |
722 | Eroglu, S., Schoenberg, R., Wille, M., Beukes, N.J. & Taubald, H. (2015). Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Research, 266, 27-46. https://doi.org/10.1016/j.precamres.2015.04.014 | DM-SED |
418 | Ewers, G.R. & Higgins, N.C. (1985). Geochemistry of the early proterozoic metasedimentary rocks of the alligator rivers region, Northern Territory, Australia. Precambrian Research, 29, 331-357. https://doi.org/10.1016/0301-9268(85)90042-7 | USGS-CMIBS |
87 | Fan, H., Zhu, X., Wen, H., Yan, B., Li, J. & Feng, L. (2014). Oxygenation of Ediacaran Ocean recorded by iron isotopes. Geochimica et Cosmochimica Acta, 140, 80-94. https://doi.org/10.1016/j.gca.2014.05.029 | SGP |
470 | Fang, H., Tang, D., Shi, X., Lechte, M., Shang, M., Zhou, X. & Yu, W. (2020). Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559, 109966. https://doi.org/10.1016/j.palaeo.2020.109966 | SGP |
16 | Farrell, U.C., Briggs, D.E. G., Hammarlund, E.U., Sperling, E.A. & Gaines, R.R. (2013). Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York. American Journal of Science, 313, 452-489. https://doi.org/10.2475/05.2013.02 | SGP |
403 | Fatimah, . & Ward, C.R. (2009). Mineralogy and organic petrology of oil shales in the Sangkarewang Formation, Ombilin Basin, West Sumatra, Indonesia. International Journal of Coal Geology, 77, 424-435. https://doi.org/10.1016/j.coal.2008.04.005 | USGS-CMIBS |
337 | Faure, K., Armstrong, R.A., Harris, C. & Willis, J.P. (1996). Provenance of mudstones in the Karoo Supergroup of the Ellisras basin, South Africa: Geochemical evidence. Journal of African Earth Sciences, 23, 189-204. https://doi.org/10.1016/S0899-5362(96)00061-9 | USGS-CMIBS |
638 | Fedikow, M.A.F., Bezys, R.K., Bamburak, J.D., Conley, G.G. & Garret, R.G. (1998). Geochemical database for Phanerozoic black shales in Manitoba. Manitoba Energy and Mines, Geological Services, Open File Report OF98-2. https://geochem.nrcan.gc.ca/cdogs/content/pub/pub03295_e.htm | USGS-CMIBS |
404 | Fedo, C.M. (1997). Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research, 84, 17-36. https://doi.org/10.1016/S0301-9268(96)00058-7 | USGS-CMIBS |
387 | Fedo, C.M., Eriksson, K.A. & Krogstad, E.J. (1996). Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751-1763. https://doi.org/10.1016/0016-7037(96)00058-0 | USGS-CMIBS |
381 | Fedo, C.M., Young, G.M. & Nesbitt, H.W. (1997). Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Research, 86, 201-223. https://doi.org/10.1016/S0301-9268(97)00049-1 | USGS-CMIBS |
85 | Feng, L., Chu, X., Huang, J., Zhang, Q. & Chang, H. (2010). Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18, 632-637. https://doi.org/10.1016/j.gr.2010.02.011 | SGP |
34 | Feng, L., Li, C., Huang, J., Chang, H. & Chu, X. (2014). A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China. Precambrian Research, 246, 123-133. https://doi.org/10.1016/j.precamres.2014.03.002 | SGP |
335 | Feng, R. & Kerrich, R. (1990). Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061-1081. https://doi.org/10.1016/0016-7037(90)90439-R | USGS-CMIBS |
810 | Fernandes, H.A., Boggiani, P.C., Frederiksen, J.A., de Campos, M., Cardoso-Lucas, V., Freitas, B.T. & Frei, R. (2025). Rapid bioproductivity recovery following the Marinoan glaciation: Evidence from Sr-Cr-Cd isotopes and trace elements in the Morraria do Sul cap dolostone, Brazil. Chemical Geology, 673, 122548. https://doi.org/10.1016/j.chemgeo.2024.122548 | SGP |
639 | Ferri, F. & Boddy, M. (2005). Geochemistry of Early to Middle Jurassic organic-rich shales, Intermontane Basins, British Columbia. Summary of Activities 2005, BC Ministry of Energy and Mines http://webmap.em.gov.bc.ca/mapplace/minpot/Publications_Summary.asp?key=3658 | USGS-CMIBS |
706 | Fleurance, S., Cuney, M., Malartre, F. & Reyx, J. (2013). Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219. https://doi.org/10.1016/j.palaeo.2012.10.020 | DM-SED |
3 | Formolo, M.J., Riedinger, N. & Gill, B.C. (2014). Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 146-154. https://doi.org/10.1016/j.palaeo.2014.08.024 | SGP |
226 | Foscolos, A.E., Embry, A.F., Snowdon, L.R. & Podruski, J.A. (1988). Mass Transfer of Elements in Middle Triassic Shale/Sandstone Sequences, Sverdrup Basin, Arctic Islands. Part 1: Mineralogy, composition, SEM character and Rock-Eval/TOC results, East Drake L-06 and Skybattle Bay M-11 cores. Geological Survey of Canada, Open File, 1812. https://doi.org/10.4095/130494 | SGP |
382 | Fralick, P.W. & Kronberg, B.I. (1997). Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113, 111-124. https://doi.org/10.1016/S0037-0738(97)00049-3 | USGS-CMIBS |
802 | Fraser, K.H. (2005). The sedimentology and geochemistry of the Second White Specks Formation, north/central Alberta, Canada. [Master's thesis, University of Alberta] https://doi.org/10.7939/r3-cadd-zv88 | DM-SED |
155 | Fraser, T.A. & Hutchinson, M.P. (2017). Lithogeochemical characterization of the Middle–Upper Devonian Road River Group and Canol and Imperial formations on Trail River, east Richardson Mountains, Yukon: age constraints and a depositional model for fine-grained strata in the Lower Paleozoic Richardson trough. Canadian Journal of Earth Sciences, 451, 731-765. https://doi.org/10.1139/cjes-2016-0216 | SGP |
247 | Fraser, T.A. & Reinhardt, L. (2014). Stratigraphy, geochemistry and source rock potential of the Boundary Creek Formation, North Slope, Yukon and a description of its burning shale locality. In: MacFarlane, K.E., Nordling, M.G. & Sack, P.J. (Eds.), Yukon Exploration and Geology 2014 (pp. 45-71). Yukon Geological Survey. | SGP |
266 | Fraser, T.A., Milton, J. & Gouwy, S. (2021). New geochemistry from old drill holes at the Tom property, Macmillan Pass, Yukon. In: Smith, J.B. (Ed.), Yukon Exploration and Geology 2020 (pp. 19-46). Yukon Geological Survey. | SGP |
301 | Freitas, B.T., Rudnitzki, I.D., Morais, L., de Campos, M., Almeida, R.P., Warren, L.V., Boggiani, P.C., Caetano-Filho, S., Bedoya-Rueda, C., Babinski, M., Fairchild, T.R. & Trindade, R.I.F. (2021). Cryogenian glaciostatic and eustatic fluctuations and massive Marinoan-related deposition of Fe and Mn in the Urucum District, Brazil. Geology, 49, 1478-1483. https://doi.org/10.1130/G49134.1 | SGP |
458 | French, K.L., Birdwell, J.E. & Lewan, M.D. (2020). Trends in thermal maturity indicators for the organic sulfur-rich Eagle Ford Shale. Marine and Petroleum Geology, 118, 104459. https://doi.org/10.1016/j.marpetgeo.2020.104459 | SGP |
489 | French, K.L., Birdwell, J.E. & Lillis, P.G. (2022). Geochemistry of the Cretaceous Mowry Shale in the Wind River Basin, Wyoming. Geological Society of America Bulletin, 135, 1899-1922. https://doi.org/10.1130/B36382.1 | SGP |
696 | Frimmel, H.E., Tack, L., Basei, M.S., Nutman, A.P. & Boven, A. (2006). Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. Journal of African Earth Sciences, 46, 221-239. https://doi.org/10.1016/j.jafrearsci.2006.04.010 | DM-SED |
383 | Fritz, W.J. & Vanko, D.A. (1992). Geochemistry and origin of a black mudstone in a volcaniclastic environment, Ordovician Lower Rhyolitic Tuff Formation, North Wales, UK. Sedimentology, 39, 663-674. https://doi.org/10.1111/j.1365-3091.1992.tb02143.x | USGS-CMIBS |
640 | Frost, J.K., Zierath, D.L. & Shimp, N.F. (1985). Chemical composition and geochemistry of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Illinois State Geological Survey Contract/grant report 1985-04. https://resources.isgs.illinois.edu/publications/cg1985-04 | USGS-CMIBS |
735 | Fu, X., Tan, F., Feng, X., Wang, D., Chen, W., Song, C. & Zeng, S. (2014). Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys. International Geology Review, 56, 1450-1465. https://doi.org/10.1080/00206814.2014.945103 | DM-SED |
712 | Fujisaki, W., Sawaki, Y., Yamamoto, S., Sato, T., Nishizawa, M., Windley, B.F. & Maruyama, S. (2016). Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 397-420. https://doi.org/10.1016/j.palaeo.2016.01.039 | DM-SED |
410 | Fyffe, L.R. & Pickerill, R.K. (1993). Geochemistry of Upper Cambrian-Lower Ordovician black shale along a northeastern Appalachian transect. Geological Society of America Bulletin, 105, 897-910. https://doi.org/10.1130/0016-7606(1993)105%3C0897:GOUCLO%3E2.3.CO;2 | USGS-CMIBS |
751 | Gao, L., Zhou, W., Zhang, Y., Leng, C., Zhang, Z., Jiming, Y., Cui, Y. & Wan, X. (2017). Geochemical characteristics of marine strata and the evolution of paleoceanographic environment from Late Jurassic to Early Cretaceous in Gonggar, Southern Tibet. Earth Science Frontiers, 24, 195-204. https://doi.org/10.13745/j.esf.2017.01.012 | DM-SED |
713 | Gao, P., Liu, G., Jia, C., Young, A., Wang, Z., Wang, T., Zhang, P. & Wang, D. (2016). Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran–Early Cambrian: Constraints from petrology and geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 450, 91-110. https://doi.org/10.1016/j.palaeo.2016.02.058 | DM-SED |
308 | Garvin, J., Buick, R., Anbar, A.D., Arnold, G.L. & Kaufman, A.J. (2009). Isotopic Evidence for an Aerobic Nitrogen Cycle in the Latest Archean. Science, 323, 1045-1048. https://doi.org/10.1126/science.1165675 | SGP |
268 | Gaschnig, R., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Hu, Z. & Gao, S. (2014). Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth and Planetary Science Letters, 408, 87-99. https://doi.org/10.1016/j.epsl.2014.10.002 | SGP |
269 | Gaschnig, R., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Valley, J.W., Hu, Z., Gao, S. & Beck, M.L. (2016). Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochimica et Cosmochimica Acta, 186, 316-343. https://doi.org/10.1016/j.gca.2016.03.020 | SGP |
224 | Gavrilov, Y.O., Shchepetova, E.V., Baraboshkin, E.Y. & Shcherbinina, E.A. (2002). The Early Cretaceous Anoxic Basin of the Russian Plate: Sedimentology and Geochemistry. Lithology and Mineral Resources, 37, 310-329. https://doi.org/10.1023/A:101994330 | SGP |
340 | Gavshin, V.M. & Zakharov, V.A. (1996). Geochemistry of the Upper Jurassic-Lower Cretaceous Bazhenov Formation, West Siberia. Economic Geology, 91, 122-133. https://doi.org/10.2113/gsecongeo.91.1.122 | USGS-CMIBS |
100 | Geboy, N.J., Kaufman, A.J., Walker, R.J., Misi, A., de Oliviera, T., Miller, K.E., Azmy, K., Kendall, B. & Poulton, S.W. (2013). Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. Precambrian Research, 238, 199-213. https://doi.org/10.1016/j.precamres.2013.10.010 | SGP |
799 | Genger, D. & Sethi, P.S. (1998). A geochemical and sedimentological investigation of high-resolution environmental changes within the Late Pennsylvanian (Missourian) Eudora core black shale of the Mid-Continent region, U.S.A.. In: Schieber, J., Zimmerle, W. & Sethi, P.S. (Eds.), Shales and Mudstones I and II (pp. 271-293). E. Schweizerbart’sche Verlagsbuchhandlung. | DM-SED |
692 | Georgiev, S.V., Stein, H.J., Hannah, J.L., Henderson, C.M. & Algeo, T.J. (2015). Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada. Geochimica et Cosmochimica Acta, 150, 192-210. https://doi.org/10.1016/j.gca.2014.11.019 | DM-SED |
676 | Georgiev, S.V., Stein, H.J., Hannah, J.L., Weiss, H.M., Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali, M. & Piasecki, S. (2012). Chemical signals for oxidative weathering predict Re–Os isochroneity in black shales, East Greenland. Chemical Geology, 324-325, 108-121. https://doi.org/10.1016/j.chemgeo.2012.01.003 | DM-SED |
405 | Gibbs, A.K., Montgomery, C.W., O'Day, P.A. & Erslev, E.A. (1986). The Archean-Proterozoic transition: Evidence from the geochemistry of metasedimentary rocks of Guyana and Montana. Geochimica et Cosmochimica Acta, 50, 2125-2141. https://doi.org/10.1016/0016-7037(86)90067-0 | USGS-CMIBS |
232 | Gibson, T.M., Kunzmann, M., Poirier, A., Schumann, D., Tosca, N.J. & Halverson, G.P. (2020). Geochemical signatures of transgressive shale intervals from the 811 Ma Fifteenmile Group in Yukon, Canada: Disentangling sedimentary redox cycling from weathering alteration. Geochimica et Cosmochimica Acta, 280, 161-184. https://doi.org/10.1016/j.gca.2020.04.013 | SGP |
300 | Gibson, T.M., Millikin, A.E.G., Anderson, R.P., Myrow, P., Rooney, A.D. & Strauss, J.V. (2021). Tonian deltaic and storm-influenced marine sedimentation on the edge of Laurentia: The Veteranen Group of northeastern Spitsbergen, Svalbard. Sedimentary Geology, 426, 106011. https://doi.org/10.1016/j.sedgeo.2021.106011 | SGP |
298 | Gibson, T.M., Wörndle, S., Crockford, P.W., Bui, T., Creaser, R.A. & Halverson, G.P. (2019). Radiogenic isotope chemostratigraphy reveals marine and nonmarine depositional environments in the late Mesoproterozoic Borden Basin, Arctic Canada. , 131, 1965-1978. https://doi.org/10.1130/B35060.1 | SGP |
72 | Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. & Saltzman, M.R. (2011). Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 81-83. https://doi.org/10.1038/nature09700 | SGP |
401 | Gill, J.B., Hiscott, R.N. & Vidal, P. (1994). Turbidite geochemistry and evolution of the Izu-Bonin arc and continents. Lithos, 33, 135-168. https://doi.org/10.1016/0024-4937(94)90058-2 | USGS-CMIBS |
130 | Gilleaudeau, G.J. & Kah, L.C. (2013). Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chemical Geology, 356, 21-37. https://doi.org/10.1016/j.chemgeo.2013.07.004 | SGP |
131 | Gilleaudeau, G.J. & Kah, L.C. (2015). Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships. Precambrian Research, 257, 94-108. https://doi.org/10.1016/j.precamres.2014.11.030 | SGP |
326 | Gilleaudeau, G.J., Algeo, T.J., Lyons, T.W., Bates, S.M. & Anbar, A.D. (2021). Novel watermass reconstruction in the Early Mississippian Appalachian Seaway based on integrated proxy records of redox and salinity. Earth and Planetary Science Letters, 558, 116746. https://doi.org/10.1016/j.epsl.2021.116746 | SGP |
817 | Gilleaudeau, G.J., Kah, L.C., Junium, C.K. & Anbar, A.D. (2025). Aerobic nitrogen cycling in a molybdenum-limited, redox-stratified Mesoproterozoic epeiric sea. Earth and Planetary Science Letters, 661, 119369. https://doi.org/10.1016/j.epsl.2025.119369 | SGP |
236 | Gilleaudeau, G.J., Sahoo, S.K., Ostrander, C.M., Owens, J.D., Poulton, S.W., Lyons, T.W. & Anbar, A.D. (2020). Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India. Precambrian Research, 343, Article105718. https://doi.org/10.1016/j.precamres.2020.105718 | SGP |
531 | Gilleaudeau, G.J., Wei, W., Remírez, M.N., Song, Y., Lyons, T.W., Bates, S.M., Anbar, A.D. & Algeo, T.J. (2023). Geochemical and Hydrographic Evolution of the Late Devonian Appalachian Seaway: Linking Sedimentation, Redox, and Salinity Across Time and Space. Geochemistry, Geophysics, Geosystems, 24, e2023GC010973. https://doi.org/10.1029/2023GC010973 | SGP |
348 | Glasmacher, U.A., Zentilli, M. & Ryan, R. (2003). Nitrogen distribution in Lower Palaeozoic slates/phyllites of the Meguma Supergroup, Nova Scotia, Canada: implications for Au and Zn–Pb mineralisation and exploration. Chemical Geology, 194, 297-329. https://doi.org/10.1016/S0009-2541(02)00322-4 | USGS-CMIBS |
402 | Glikson, M., Chappell, B.W., Freeman, R.S. & Webber, E. (1985). Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chemical Geology, 53, 155-174. https://doi.org/10.1016/0009-2541(85)90028-2 | USGS-CMIBS |
99 | Goldberg, K. & Humayun, M. (2016). Geochemical paleoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil. Brazilian Journal of Geology, 46, 377-393. https://doi.org/10.1590/2317-4889201620160001 | SGP |
185 | Goldberg, K., Menezes, J.O. & Gonzalez, M.B. (2017). Geochemistry and Organic Petrography of Aptian-Albian Source Rocks in the Araripe Basin, Northeastern Brazil. AAPG Search and Discovery Article #10972. https://doi.org/10.2113/gscpgbull.54.4.337 | SGP |
39 | Goldberg, T., Strauss, H., Guo, Q. & Liu, C. (2007). Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 175-193. https://doi.org/10.1016/j.palaeo.2007.03.015 | SGP |
481 | Gong, Z., Wei, G., Fakhraee, M., Alcott, L.J., Jiang, L., Zhao, M. & Planavsky, N.J. (2023). Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion. Geobiology, gbi.12547. https://doi.org/10.1111/gbi.12547 | SGP |
375 | Goodfellow, W.D., Peter, J.M., Winchester, J.A. & Staal, C.R. (2003). Ambient Marine Environment and Sediment Provenance during Formation of Massive Sulfide Deposits in the Bathurst Mining Camp: Importance of Reduced Bottom Waters to Sulfide Precipitation and Preservation. In: Goodfellow, W.D., McCutcheon, S.R. & Peter, J.M. (Eds.), Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Economic Geology Monograph 11. Society of Economic Geologists. https://doi.org/10.5382/Mono.11.08 | USGS-CMIBS |
66 | Gordon, G.W., Lyons, T.W., Arnold, G.L., Roe, J., Sageman, B.B. & Anbar, A.D. (2009). When do black shales tell molybdenum isotope tales? Geology, 37, 535-538. https://doi.org/10.1130/G25186A.1 | SGP |
689 | Goren, O. (2015). Distribution and mineralogical residence of trace elements in the Israeli carbonate oil shales. Fuel, 143, 118-130. https://doi.org/10.1016/j.fuel.2014.11.024 | DM-SED |
748 | Grasby, S.E., Beauchamp, B. & Knies, J. (2016). Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology, 44, 779-782. https://doi.org/10.1130/G38141.1 | DM-SED |
339 | Graves, M.C. & Zentilli, M. (1988). Geochemical Characterization of the Goldenville Formation - Halifax Formation Transition Zone of the Meguma Group, Nova Scotia. Geological Survey of Canada, Open File, 1829. https://doi.org/10.4095/130427 | USGS-CMIBS |
275 | Greaney, A.T., Rudnick, R.L., Romaniello, S.J., Johnson, A.C., Gaschnig, R. & Anbar, A.D. (2020). Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust. Earth and Planetary Science Letters, 534, 116083. https://doi.org/10.1016/j.epsl.2020.116083 | SGP |
373 | Gromet, L., Haskin, L.A., Korotev, R.L. & Dymek, R.F. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9 | USGS-CMIBS |
344 | Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X. & Qi, L. (2002). Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72, 393-407. https://doi.org/10.1306/081601720393 | USGS-CMIBS |
173 | Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8, 466-471. https://doi.org/10.1038/NGEO2434 | SGP |
243 | Guilbaud, R., Poulton, S.W., Thompson, J., Husband, K.F., Zhu, M., Zhou, Y., Shields, G.A. & Lenton, T.M. (2020). Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nature Geoscience, 13, 296-301. https://doi.org/10.1038/s41561-020-0548-7 | SGP |
174 | Guilbaud, R., Slater, B., Poulton, S.W., Harvey, T.H.P., Brocks, J.J., Nettersheim, B.J. & Butterfield, N.J. (2018). Oxygen minimum zones in the early Cambrian ocean. Geochemical Perspectives Letters, 6, 33-38. https://doi.org/10.7185/geochemlet.1806 | SGP |
37 | Guo, Q., Shields, G.A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T. & Yang, X. (2007). Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016 | SGP |
55 | Guo, Q., Strauss, H., Liu, C., Goldberg, T., Zhu, M., Pi, D., Heubeck, C., Vernhet, E., Yang, X. & Fu, P. (2007). Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 140-157. https://doi.org/10.1016/j.palaeo.2007.03.014 | SGP |
808 | Hagen, A.P.I., Gill, B.C., Vayda, P.J. & Pruss, S.B. (2024). Reconstructing the redox environment of the Cambrian Harkless Formation, Nevada, USA: Navigating the effects of iron-rich clay minerals on the iron speciation redox proxy. Chemical Geology, 670, 122453. https://doi.org/10.1016/j.chemgeo.2024.122453 | SGP |
462 | Hagen, A.P.I., Jones, D.S., Tosca, N.J., Fike, D.A. & Pruss, S.B. (2022). Sedimentary mercury as a proxy for redox oscillations during the Cambrian SPICE event in western Newfoundland. Canadian Journal of Earth Sciences, 59, 504-520. https://doi.org/10.1139/cjes-2021-0108 | SGP |
684 | Hakimi, M.H., Abdullah, W.H., Alqudah, M., Makeen, Y.M. & Mustapha, K.A. (2016). Reducing marine and warm climate conditions during the Late Cretaceous, and their influence on organic matter enrichment in the oil shale deposits of North Jordan. International Journal of Coal Geology, 165, 173-189. https://doi.org/10.1016/j.coal.2016.08.015 | DM-SED |
697 | Hakimi, M.H., Abdullah, W.H., Makeen, Y.M., Saeed, S.A., Al-Hakame, H., Al-Moliki, T., Al-Sharabi, K.Q. & Hatem, B.A. (2017). Geochemical characterization of the Jurassic Amran deposits from Sharab area (SW Yemen): Origin of organic matter, paleoenvironmental and paleoclimate conditions during deposition. Journal of African Earth Sciences, 129, 579-595. https://doi.org/10.1016/j.jafrearsci.2017.01.009 | DM-SED |
527 | Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C. & Rice, A.Hugh (2005). Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117, 1181. https://doi.org/10.1130/B25630.1 | SGP |
528 | Halverson, G.P., Maloof, A.C., Schrag, D.P., Dudás, F.Ö. & Hurtgen, M. (2007). Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. Chemical Geology, 237, 5-27. https://doi.org/10.1016/j.chemgeo.2006.06.013 | SGP |
71 | Hammarlund, E.U., Dahl, T.W., Harper, D.A. T., Bond, D.P. G., Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A. & Canfield, D.E. (2012). A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331-332, 128-129. https://doi.org/10.1016/j.epsl.2012.02.024 | SGP |
150 | Hammarlund, E.U., Gaines, R.R., Prokopenko, M.G., Qi, C., Hou, X. & Canfield, D.E. (2017). Early Cambrian oxygen minimum zone-like conditions at Chengjiang. Earth and Planetary Science Letters, 475, 160-168. https://doi.org/10.1016/j.epsl.2017.06.054 | SGP |
171 | Hammarlund, E.U., Smith, M., Rasmussen, J.A., Nielsen, A.T., Canfield, D.E. & Harper, D.A. T. (2018). The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems. Geobiology, 17, 12-26. https://doi.org/10.1111/gbi.12315 | SGP |
163 | Hansen, J., Nielsen, J.K. & Hanken, N. (2009). The relationships between Late Ordovician sea-level changes and faunal turnover in western Baltica: Geochemical evidence of oxic and dysoxic bottom-water conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 268-278. https://doi.org/10.1016/j.palaeo.2008.10.022 | SGP |
180 | Hantsoo, K.G., Kaufman, A.J., Cui, H., Plummer, R.E. & Narbonne, G.M. (2018). Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada. Canadian Journal of Earth Sciences, 55, 1240-1252. https://doi.org/10.1139/cjes-2017-0274 | SGP |
151 | Harris, N.B., Mnich, C.A., Selby, D. & Korn, D. (2013). Minor and trace element and Re–Os chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas: Insights into metal abundance and basin processes. Chemical Geology, 356, 76-93. https://doi.org/10.1016/j.chemgeo.2013.07.018 | SGP |
284 | Hartwell, W.J. (1998). Geochemical and petrographic analysis of the Upper Devonian-Lower Mississippian Bakken black shales from the Williston Basin, North Dakota. [Master's thesis, University of Cincinnati] | SGP |
408 | Hassan, S., Ishiga, H., Roser, B.P., Dozen, K. & Naka, T. (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chemical Geology, 158, 293-314. https://doi.org/10.1016/S0009-2541(99)00057-1 | USGS-CMIBS |
666 | Hatch, J.R. & Leventhal, J.S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99, 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y | DM-SED |
725 | Hatch, J.R. & Leventhal, J.S. (1997). Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA. Chemical Geology, 134, 215-235. https://doi.org/10.1016/S0009-2541(96)00006-X | DM-SED |
246 | Hattori, K., Desrochers, A. & Pedro, J. (2019). Provenance and depositional environment of organic-rich calcareous black shale of the Late Ordovician Macasty Formation, western Anticosti Basin, eastern Canada. Canadian Journal of Earth Sciences, 56, 321-334. https://doi.org/10.1139/cjes-2018-0095 | SGP |
642 | Haus, M. & Paulk, T. (1993). PETROCH lithogeochemical data. Ontario Geological Survey Open File Report 5855. | USGS-CMIBS |
522 | Haxen, E.R., Schovsbo, N.H., Nielsen, A.T., Richoz, S., Loydell, D.K., Posth, N.R., Canfield, D.E. & Hammarlund, E.U. (2023). “Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world. Earth and Planetary Science Letters, 622, 118416. https://doi.org/10.1016/j.epsl.2023.118416 | SGP |
412 | Hayashi, K., Fujisawa, H., Holland, H.D. & Ohmoto, H. (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7 | USGS-CMIBS |
658 | He, R., Elrick, M., Day, J., Lu, W. & Lu, Z. (2022). Devonian upper ocean redox trends across Laurussia: Testing potential influences of marine carbonate lithology on bulk rock I/Ca signals. Frontiers in Marine Science, 9, 874759. https://doi.org/10.3389/fmars.2022.874759 | SGP |
550 | Heard, A.W., Wang, Y., Ostrander, C.M., Auro, M., Canfield, D.E., Zhang, S., Wang, H., Wang, X. & Nielsen, S.G. (2023). Coupled vanadium and thallium isotope constraints on Mesoproterozoic ocean oxygenation around 1.38-1.39 Ga. Earth and Planetary Science Letters, 610, 118127. https://doi.org/10.1016/j.epsl.2023.118127 | SGP |
811 | Hein, J.R., McIntyre, B., Perkins, R.B., Piper, D.Z. & Evans, J.G. (2002). Composition of the Rex Chert and associated rocks of the Permian Phosphoria Formation: Soda Springs area, SE Idaho. U.S. Geological Survey Open File Report 2002-345. https://doi.org/10.3133/ofr02345 | DM-SED |
601 | Hemming, S.R., McLennan, S.M. & Hanson, G.N. (1995). Geochemical and Nd/Pb Isotopic Evidence for the Provenance of the Early Proterozoic Virginia Formation, Minnesota. Implications for the Tectonic Setting of the Animikie Basin. The Journal of Geology, 103, 147-168. https://doi.org/10.1086/629733 | USGS-CMIBS |
194 | Henderson, M.A., Serra, F., Feltes, N., Albanesi, G.L. & Kah, L.C. (2018). Paired isotope records of carbonate and organic matter from the Middle Ordovician of Argentina: Intrabasinal variation and effects of the marine chemocline. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 107-130. https://doi.org/10.1016/j.palaeo.2017.10.018 | SGP |
384 | Hennessy, J.F. & Mossman, D.J. (1996). Geochemistry of Ordovician black shales at Meductic, southern Miramichi Highlands, New Brunswick. Atlantic Geology, 32. https://doi.org/10.4138/2089 | USGS-CMIBS |
345 | Hetzel, A., Böttcher, M.E., Wortmann, U.G. & Brumsack, H. (2009). Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302-328. https://doi.org/10.1016/j.palaeo.2008.11.005 | USGS-CMIBS |
447 | Hippertt, J., Caxito, F.A., Uhlein, G.J., Nalini, H.A., Sial, A.N., Abreu, A.T. & Nogueira, L.B. (2019). The fate of a Neoproterozoic intracratonic marine basin: Trace elements, TOC and IRON speciation geochemistry of the Bambuí Basin, Brazil. Precambrian Research, 330, 101-120. https://doi.org/10.1016/j.precamres.2019.05.001 | SGP |
797 | Hirst, D.M. (1974). Geochemistry of Sediments from Eleven Black Sea Cores. In: Degens, E.T. & Ross, D.A. (Eds.), The Black Sea--Geology, Chemistry, and Biology (pp. 430-455). American Association of Petroleum Geologists. https://doi.org/10.1306/M20377C10 | DM-SED |
543 | Hodgin, E.B., Nelson, L.L., Wall, C.J., Barrón-Díaz, A.J., Webb, L.C., Schmitz, M.D., Fike, D.A., Hagadorn, J.W. & Smith, E.F. (2021). A link between rift-related volcanism and end-Ediacaran extinction? Integrated chemostratigraphy, biostratigraphy, and U-Pb geochronology from Sonora, Mexico. Geology, 49, 115-119. https://doi.org/10.1130/G47972.1 | SGP |
228 | Hodgskiss, M.S. W. & Sperling, E.A. (2020). Stratigraphy and shale geochemistry of the Belcher Group, Belcher Islands, southern Nunavut. Summary of Activities 2019, Canada-Nunavut Geoscience Office https://cngo.ca/summary-of-activities/2019/ | SGP |
293 | Hodgskiss, M.S. W., Dagnaud, O.M. J., Frost, J.L., Halverson, G.P., Schmitz, M.D., Swanson-Hysell, N.L. & Sperling, E.A. (2019). New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth and Planetary Science Letters, 520, 141-152. https://doi.org/10.1016/j.epsl.2019.05.023 | SGP |
292 | Hodgskiss, M.S. W., Lalonde, S.V., Crockford, P.W. & Hutchings, A.M. (2021). A carbonate molybdenum isotope and cerium anomaly record across the end-GOE: Local records of global oxygenation. Geochimica et Cosmochimica Acta, 313, 313-339. https://doi.org/10.1016/j.gca.2021.08.013 | SGP |
294 | Hodgskiss, M.S. W., Lamothe, K., Halverson, G.P. & Sperling, E.A. (2020). Extending the record of the Lomagundi–Jatuli carbon isotope excursion in the Labrador Trough, Canada. Canadian Journal of Earth Sciences, 57, 1089-1102. https://doi.org/10.1139/cjes-2019-0198 | SGP |
249 | Hodgskiss, M.S. W., Sansjofre, P., Kunzmann, M., Sperling, E.A., Cole, D.B., Crockford, P.W., Gibson, T.M. & Halverson, G.P. (2020). A high-TOC shale in a low productivity world: The late Mesoproterozoic Arctic Bay Formation, Nunavut. Earth and Planetary Science Letters, 544, Article116384. https://doi.org/10.1016/j.epsl.2020.116384 | SGP |
411 | Hofmann, A. (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143, 23-49. https://doi.org/10.1016/j.precamres.2005.09.005 | USGS-CMIBS |
338 | Hofmann, A., Bolhar, R., Dirks, P. & Jelsma, H. (2003). The geochemistry of Archaean shales derived from a Mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine versus subaerial weathering. Geochimica et Cosmochimica Acta, 67, 421-440. https://doi.org/10.1016/S0016-7037(02)01086-4 | USGS-CMIBS |
537 | Holmden, C., Panchuk, K. & Finney, S.C. (2012). Tightly coupled records of Ca and C isotope changes during the Hirnantian glaciation event in an epeiric sea setting. Geochimica et Cosmochimica Acta, 98, 94-106. https://doi.org/10.1016/j.gca.2012.09.017 | SGP |
660 | Hu, J., Li, Q., Li, J., Huang, J. & Ge, D. (2016). Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet. Geological Journal, 51, 560-571. https://doi.org/10.1002/gj.2653 | DM-SED |
736 | Huang, J., Chu, X., Lyons, T.W., Planavsky, N.J. & Wen, H. (2013). A new look at saponite formation and its implications for early animal records in the Ediacaran of South China. Geobiology, 11, 3-14. https://doi.org/10.1111/gbi.12018 | DM-SED |
812 | Issacs, C.M., Bird, K.J., Medrano, M.D., Keller, M.A., Piper, D.Z. & Gautier, D.L. (1995). Preliminary report on major and minor elements in cores from the Triassic Shublik Formation, Jurassic and Cretaceous Kingak Shale, and Cretaceous pebble shale unit, Hue Shale, and Torok Formation, North Slope, Alaska. U.S. Geological Survey Open File Report 95-236. https://doi.org/10.3133/ofr95236 | DM-SED |
789 | Jaminski, J. (1997). Geochemical and petrographic patterns of cyclicity in the Devonian-Mississippian black shales of the central Appalachian Basin. [Doctoral thesis, University of Cincinnati] | DM-SED |
193 | Jarrett, A. (2015). Biogeochemical evolution in the Neoproterozoic Amadeus Basin, central Australia. [Doctoral thesis, Australian National University] https://doi.org/10.25911/5d7637d1ca2a1 | SGP |
212 | Jenkyns, H.C., Gröcke, D.R. & Hesselbo, S.P. (2001). Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography and Paleoclimatology, 16, 593-603. https://doi.org/10.1029/2000PA000558 | SGP |
33 | Jin, C., Li, C., Algeo, T.J., Planavsky, N.J., Cui, H., Yang, X., Zhao, Y., Zhang, X. & Xie, S. (2016). A highly redox-heterogenous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441, 38-51. https://doi.org/10.1016/j.epsl.2016.02.019 | SGP |
483 | Johnson, B.W., Mettam, C. & Poulton, S.W. (2022). Combining Nitrogen Isotopes and Redox Proxies Strengthens Paleoenvironmental Interpretations: Examples From Neoproterozoic Snowball Earth Sediments. Frontiers in Earth Science, 10, 745830. https://doi.org/10.3389/feart.2022.745830 | SGP |
176 | Johnson, B.W., Poulton, S.W. & Goldblatt, C. (2017). Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth. Nature Communications, 1-10. https://doi.org/10.1038/s41467-017-01453-z | SGP |
491 | Johnston, D.T., Macdonald, F.A., Gill, B.C., Hoffman, P.F. & Schrag, D.P. (2012). Uncovering the Neoproterozoic carbon cycle. Nature, 483, 320-323. https://doi.org/10.1038/nature10854 | SGP |
195 | Johnston, D.T., Poulton, S.W., Dehler, C.M., Porter, S.M., Husson, J.M., Canfield, D.E. & Knoll, A.H. (2010). An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290, 64-73. https://doi.org/10.1016/j.epsl.2009.11.059 | SGP |
167 | Johnston, D.T., Poulton, S.W., Tosca, N.J., O'Brien, T., Halverson, G.P., Schrag, D.P. & Macdonald, F.A. (2013). Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada. Chemical Geology, 362, 273-286. https://doi.org/10.1016/j.chemgeo.2013.08.046 | SGP |
457 | Jost, A.B., Bachan, A., van de Schootbrugge, B., Brown, S.T., DePaolo, D.J. & Payne, J.L. (2017). Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochemistry, Geophysics, Geosystems, 18, 113-124. https://doi.org/10.1002/2016GC006724 | SGP |
454 | Jost, A.B., Bachan, A., van de Schootbrugge, B., Lau, K.V., Weaver, K.L., Maher, K. & Payne, J.L. (2017). Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction. Geochemistry, Geophysics, Geosystems, 18, 3093-3108. https://doi.org/10.1002/2017GC006941 | SGP |
149 | Kabanov, P. (2017). Geological and geochemical data from Mackenzie Corridor. Part VII: new geochemical, Rock-Eval 6, and field data from the Ramparts and Canol formations of northern Mackenzie Valley, Northwest Territories. Geological Survey of Canada, Open File, 8341. https://doi.org/10.4095/306299 | SGP |
134 | Kabanov, P. & Dewing, K. (2015). Geological and geochemical data from the Canadian Arctic Islands. Part XIII: new bulk geochemical and Rock-Eval data from Upper Paleozoic cores and preliminary results for basinal shales. Geological Survey of Canada, Open File 7848. https://doi.org/10.4095/296803 | SGP |
133 | Kabanov, P., Gouwy, S., Lawrence, P.A., Weleschuk, D.J. & Chan, W.C. (2016). Geological and geochemical data from Mackenzie Corridor. Part III: New data on lithofacies, micropaleontology, lithogeochemistry, and Rock-EvalTM pyrolysis from the Devonian Horn River Group in the Mackenzie Plain and Norman Range, Northwest Territories. Geological Survey of Canada, Open File 7951. https://doi.org/10.4095/297832 | SGP |
132 | Kabanov, P., Saad, S., Weleschuk, D.J. & Sanei, H. (2015). Geological and geochemical data from Mackenzie Corridor. Part II: Lithogeochemistry and Rock-Eval data for the black shale cored section of Little Bear N-09 well (Mackenzie Plain, Horn River Group, Devonian). Geological Survey of Canada, Open File 7948. https://doi.org/10.4095/297427 | SGP |
336 | Kalsbeek, F. & Frei, R. (2010). Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana. Precambrian Research, 176, 65-76. https://doi.org/10.1016/j.precamres.2009.10.004 | USGS-CMIBS |
415 | Kamber, B.S., Greig, A. & Collerson, K.D. (2005). A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta, 69, 1041-1058. https://doi.org/10.1016/j.gca.2004.08.020 | USGS-CMIBS |
486 | Kang, J., Gill, B.C., Reid, R., Zhang, F. & Xiao, S. (2023). Nitrate limitation in early Neoproterozoic oceans delayed the ecological rise of eukaryotes. Science Advances, 9, eade9647. https://doi.org/10.1126/sciadv.ade9647 | SGP |
760 | Karma, R. (1991). Geology and Geochemistry of the Bakken Formation (Devonian-Mississippian) in Saskatchewan. [Master's thesis, University of Regina] https://pubsaskdev.blob.core.windows.net/pubsask-prod/88032/88032-Karma-Parslow_1989_MiscRep89-4.pdf | DM-SED |
429 | Kasanzu, C., Maboko, M.A.H. & Manya, S. (2008). Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Research, 164, 201-213. https://doi.org/10.1016/j.precamres.2008.04.007 | USGS-CMIBS |
139 | Kasprak, A.H., Sepúlveda, J., Price-Waldman, R., Williford, K.H., Schoepfer, S.D., Haggart, J.W., Ward, P.D., Summons, R.E. & Whiteside, J.H. (2015). Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology, 43, 307-310. https://doi.org/10.1130/G36371.1 | SGP |
602 | Ke, L., Gao, S., Pan, Y. & Hu, Z. (2008). Geochemistry and provenance of the Early Cretaceous lacustrine castic sedimentary rocks of yixian formation from the Sihetun section, West Liaoning. Earth Science-Journal of China University of Geosciences, 33, 504-514. | USGS-CMIBS |
313 | Kendall, B., Brennecka, G.A., Weyer, S. & Anbar, A.D. (2013). Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chemical Geology, 362, 105-114. https://doi.org/10.1016/j.chemgeo.2013.08.010 | SGP |
323 | Kendall, B., Creaser, R.A., Gordon, G.W. & Anbar, A.D. (2009). Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta, 73, 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013 | SGP |
314 | Kendall, B., Creaser, R.A., Reinhard, C.T., Lyons, T.W. & Anbar, A.D. (2015). Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Science Advances, 1, e1500777. https://doi.org/10.1126/sciadv.1500777 | SGP |
311 | Kendall, B., Reinhard, C.T., Lyons, T.W., Kaufman, A.J., Poulton, S.W. & Anbar, A.D. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3, 647-652. https://doi.org/10.1038/ngeo942 | SGP |
136 | Kimmig, J. & Pratt, B. (2016). Taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstatte, Rockslide Formation, Mackenzie Mountains, Northwest Territories, Canada. Lethaia, 49, 150-169. https://doi.org/10.1111/let.12135 | SGP |
536 | Kimmig, S.R. & Holmden, C. (2017). Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf ‘calcite sea’ during the Hirnantian glaciation. Geochimica et Cosmochimica Acta, 206, 254-272. https://doi.org/10.1016/j.gca.2017.03.010 | SGP |
538 | Kimmig, S.R., Nadeau, M.D., Swart, P.K. & Holmden, C. (2021). Mg and Sr isotopic evidence for basin wide alteration of early diagenetic dolomite in the Williston Basin by ascending crustal fluids. Geochimica et Cosmochimica Acta, 311, 198-225. https://doi.org/10.1016/j.gca.2021.06.006 | SGP |
406 | Kimura, S., Shikazono, N., Kashiwagi, H. & Nohara, M. (2004). Middle Miocene–early Pliocene paleo-oceanic environment of Japan Sea deduced from geochemical features of sedimentary rocks. Sedimentary Geology, 164, 105-129. https://doi.org/10.1016/j.sedgeo.2003.08.003 | USGS-CMIBS |
278 | Kipp, M.A., Algeo, T.J., Stüeken, E.E. & Buick, R. (2020). Basinal hydrographic and redox controls on selenium enrichment and isotopic composition in Paleozoic black shales. Geochimica et Cosmochimica Acta, 287, 229-250. https://doi.org/10.1016/j.gca.2019.12.016 | SGP |
279 | Kipp, M.A., Lepland, A. & Buick, R. (2020). Redox fluctuations, trace metal enrichment and phosphogenesis in the ~2.0 Ga Zaonega Formation. Precambrian Research, 343, 105716. https://doi.org/10.1016/j.precamres.2020.105716 | SGP |
276 | Kipp, M.A., Stüeken, E.E., Bekker, A. & Buick, R. (2017). Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114, 875-880. https://doi.org/10.1073/pnas.1615867114 | SGP |
277 | Kipp, M.A., Stüeken, E.E., Yun, M., Bekker, A. & Buick, R. (2018). Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters, 500, 117-126. https://doi.org/10.1016/j.epsl.2018.08.007 | SGP |
502 | Kirschbaum, M.A., Finn, T.M., Schenk, C.J. & Hawkins, S.J. (2019). Lithologic Descriptions, Geophysical Logs, and Source-Rock Geochemistry of the U.S. Geological Survey Alcova Reservoir AR–1–13 Core Hole, Natrona County, Wyoming. U.S. Geological Survey Scientific Investigations Report 2019-5123. https://doi.org/10.3133/sir20195123 | SGP |
669 | Klein, C. & Beukes, N.J. (1993). Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada. Economic Geology, 88, 542-565. https://doi.org/10.2113/gsecongeo.88.3.542 | DM-SED |
183 | Kloss, T.J., Dornbos, S.Q., Chen, J., McHenry, L.J. & Marenco, P.J. (2015). High-resolution geochemical evidence for oxic bottom waters in three Cambrian Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 90-95. https://doi.org/10.1016/j.palaeo.2015.08.048 | SGP |
317 | Koehler, M.C., Buick, R., Kipp, M.A., Stüeken, E.E. & Zaloumis, J. (2018). Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences, 115, 7711-7716. https://doi.org/10.1073/pnas.1720820115 | SGP |
420 | Komuro, K. & Kajiwara, Y. (2003). Paleoceanography and Heavy Metal Enrichment of Mudstones in the Green Tuff Region, Northeastern Japan. Resource Geology, 53, 37-49. https://doi.org/10.1111/j.1751-3928.2003.tb00156.x | USGS-CMIBS |
540 | Kozik, N.P., Young, S.A., Ahlberg, P., Lindskog, A. & Owens, J.D. (2023). Progressive marine oxygenation and climatic cooling at the height of the Great Ordovician Biodiversification Event. Global and Planetary Change, 227, 104183. https://doi.org/10.1016/j.gloplacha.2023.104183 | SGP |
539 | Kozik, N.P., Young, S.A., Lindskog, A., Ahlberg, P. & Owens, J.D. (2023). Protracted oxygenation across the Cambrian–Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event? Geobiology, 21, 323-340. https://doi.org/10.1111/gbi.12545 | SGP |
580 | Kozik, N.P., Young, S.A., Newby, S.M., Liu, M., Chen, D., Hammarlund, E.U., Bond, D.P. G., Them, T.R. & Owens, J.D. (2022). Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction. Science Advances, 8, eabn8345. https://doi.org/10.1126/sciadv.abn8345 | SGP |
258 | Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A.R., Sepp, H., Romashkin, A.E., Rychanchik, D.V. & Kirsimäe, K. (2019). Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals. Chemical Geology, 512, 43-57. https://doi.org/10.1016/j.chemgeo.2019.03.002 | SGP |
259 | Kreitsmann, T., Lepland, A., Bau, M., Prave, A.R., Paiste, K., Mänd, K., Sepp, H., Martma, T., Romashkin, A.E. & Kirsimäe, K. (2020). Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: The carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia. Precambrian Research, 347, 105855. https://doi.org/10.1016/j.precamres.2020.105855 | SGP |
549 | Kunert, A. & Kendall, B. (2023). Global ocean redox changes before and during the Toarcian Oceanic Anoxic Event. Nature Communications, 14, 815. https://doi.org/10.1038/s41467-023-36516-x | SGP |
114 | Kunzmann, M., Bui, T., Crockford, P.W., Halverson, G.P., Scott, C.T., Lyons, T.W. & Wing, B.A. (2017). Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology. https://doi.org/10.1130/G38602.1 | SGP |
143 | Kunzmann, M., Gibson, T.M., Halverson, G.P., Hodgskiss, M.S. W., Bui, T., Carozza, D.A., Sperling, E.A., Poirier, A., Cox, G.M. & Wing, B.A. (2017). Iron isotope biogeochemistry of Neoproterozoic marine shales. Geochimica et Cosmochimica Acta, 209, 85-105. https://doi.org/10.1016/j.gca.2017.04.003 | SGP |
78 | Kunzmann, M., Halverson, G.P., Scott, C.T., Minarik, W.G. & Wing, B.A. (2015). Geochemistry of Neoproterozoic black shales from Svalbard: Implications for oceanic redox conditions spanning Cryogenian glaciations. Chemical Geology, 417, 383-393. https://doi.org/10.1016/j.chemgeo.2015.10.022 | SGP |
109 | Kurzweil, F., Drost, K., Pašava, J., Wille, M., Taubald, H., Schoeckle, D. & Schoenberg, R. (2015). Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochimica et Cosmochimica Acta, 171, 121-142. https://doi.org/10.1016/j.gca.2015.08.022 | SGP |
110 | Kurzweil, F., Wille, M., Gantert, N., Beukes, N.J. & Schoenberg, R. (2016). Manganese oxide shuttling in pre-GOE oceans – evidence from molybdenum and iron isotopes. Earth and Planetary Science Letters, 452, 69-78. https://doi.org/10.1016/j.epsl.2016.07.013 | SGP |
250 | Laakso, T.A., Sperling, E.A., Johnston, D.T. & Knoll, A.H. (2020). Ediacaran reorganization of the marine phosphorus cycle. Proceedings of the National Academy of Sciences, 117, 11961-11967. https://doi.org/10.1073/pnas.1916738117 | SGP |
388 | Lacassie, J.P., Hervé, F. & Roser, B.P. (2006). Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Complex, Chile. Revista geológica de Chile, 33. https://doi.org/10.4067/S0716-02082006000200001 | USGS-CMIBS |
186 | Lang, X., Shen, B., Peng, Y., Xiao, S., Zhou, C., Bao, H., Kaufman, A.J., Huang, K., Crockford, P.W., Liu, Y., Tang, W. & Ma, H. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 8. https://doi.org/10.1038/s41467-018-05423-x | SGP |
535 | LaPorte, D.F., Holmden, C., Patterson, W.P., Loxton, J.D., Melchin, M.J., Mitchell, C.E., Finney, S.C. & Sheets, H. (2009). Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 182-195. https://doi.org/10.1016/j.palaeo.2009.03.009 | SGP |
485 | Lau, K.V., Macdonald, F.A., Maher, K. & Payne, J.L. (2017). Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 458, 282-292. https://doi.org/10.1016/j.epsl.2016.10.043 | SGP |
790 | Lazar, O.R. (2007). Redefinition of the New Albany Shale of the Illinois Basin: An Integrated, Stratigraphic, Sedimentologic, and Geochemical Study. [Doctoral thesis, Indiana University] | DM-SED |
201 | Le Boudec, A., Ineson, J.R., Rosing, M., Døssing, L., Martineau, F., Lécuyer, C. & Albarède, F. (2014). Geochemistry of the Cambrian Sirius Passet Lagerstatte, Northern Greenland. Geochemistry, Geophysics, Geosystems, 15, 886-904. https://doi.org/10.1002/2013GC005068 | SGP |
587 | Lease, R.O., Whidden, K.J., Dumoulin, J.A., Houseknecht, D.W., Botterell, P.J., Dreier, M.F., Griffis, N.P., Mundil, R., Kylander-Clark, A.R.C., Sanders, M.M., Counts, J.W., Self-Trail, J.M., Gooley, J.T., Rouse, W.A., Smith, R.A. & DeVera, C.A. (2024). Arctic Alaska deepwater organic carbon burial and environmental changes during the late Albian–early Campanian (103–82 Ma). Earth and Planetary Science Letters, 646, 118948. https://doi.org/10.1016/j.epsl.2024.118948 | SGP |
407 | Lee, Y.Il (2002). Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149, 219-235. https://doi.org/10.1016/S0037-0738(01)00174-9 | USGS-CMIBS |
376 | Legault, M.I. & Hattori, K. (1994). Late Archaean geological development recorded in the Timiskaming Group sedimentary rocks, Kirkland Lake area, Abitibi greenstone belt, Canada. Precambrian Research, 68, 23-42. https://doi.org/10.1016/0301-9268(94)90063-9 | USGS-CMIBS |
762 | Legg, J.A. (2014). Assessment of the petroleum generation potential of the Neal Shale in the Black Warrior Basin, Alabama. [Doctoral thesis, University of Alabama] | DM-SED |
205 | LeRoy, M.A. & Gill, B.C. (2019). Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America. Geobiology, 1-20. https://doi.org/10.1111/gbi.12334 | SGP |
793 | Lev, S.M. (1998). Integrated petrographic and geochemical characterization of rare earth element and uranium mobility in Llandeilo-Caradoc Formation black shales, Wales, U.K.. [Doctoral thesis, State University of New York at Stony Brook] | DM-SED |
342 | Lev, S.M. & Filer, J.K. (2004). Assessing the impact of black shale processes on REE and the U–Pb isotope system in the southern Appalachian Basin. Chemical Geology, 206, 393-406. https://doi.org/10.1016/j.chemgeo.2003.12.012 | USGS-CMIBS |
643 | Leventhal, J.S. (1980). Comparative geochemistry of Devonian shale cores from the Appalachian Basin, Mason, Monongalia, and Upshur counties, West Virginia; Illinois Basin, Tazwell County, Illinois, and Clark County, Indiana; and Michigan Basin, Sanilac County, Michigan. U.S. Geological Survey Open File Report 80-938. https://doi.org/10.3133/ofr80938 | USGS-CMIBS |
813 | Leventhal, J.S. (1989). Geochemistry of minor and trace elements of 22 core samples from the Monterey Formation and related rocks in the Santa Maria Basin, California. Studies of uranium content and geochemistry of the Monterey Formation, California, U.S. Geological Survey Bulletin 1581-B. https://doi.org/10.3133/b1581B | DM-SED |
603 | Leventhal, J.S. (1991). Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States. Mineralium Deposita, 26. https://doi.org/10.1007/BF00195256 | USGS-CMIBS |
626 | Leventhal, J.S., Crock, J.G. & Malcolm, M.J. (1981). Geochemistry of trace elements and uranium in Devonian shales of the Appalachian Basin. U.S. Geological Survey Open File Report 81-778. https://doi.org/10.3133/ofr81778 | USGS-CMIBS |
604 | Levitan, M.A., Alekseev, A.S., Badulina, N.V., Girin, Y.P., Kopaevich, L.F., Kubrakova, I.V., Tyutyunnik, O.A. & Chudetsky, M.Yu. (2010). Geochemistry of Cenomanian/Turonian boundary sediments in the mountainous part of Crimea and the northwestern Caucasus. Geochemistry International, 48, 534-554. https://doi.org/10.1134/S0016702910060029 | USGS-CMIBS |
605 | Lewis, S.E., Henderson, R.A., Dickens, G.R., Shields, G.A. & Coxhell, S. (2010). The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia). Mineralium Deposita, 45, 599-620. https://doi.org/10.1007/s00126-010-0287-6 | USGS-CMIBS |
679 | Lézin, C., Andreu, B., Pellenard, P., Bouchez, J., Emmanuel, L., Fauré, P. & Landrein, P. (2013). Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe. Chemical Geology, 341, 1-15. https://doi.org/10.1016/j.chemgeo.2013.01.003 | DM-SED |
148 | Li, C., Jin, C., Planavsky, N.J., Algeo, T.J., Cheng, M., Yang, X., Zhao, Y. & Xie, S. (2017). Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian? Geology, 45. https://doi.org/10.1130/G39208.1 | SGP |
35 | Li, C., Love, G.D., Lyons, T.W., Fike, D.A., Sessions, A.L. & Chu, X. (2010). A stratified redox model for the Ediacaran Ocean. Science, 328, 80-83. https://doi.org/10.1126/science.1182369 | SGP |
24 | Li, C., Love, G.D., Lyons, T.W., Scott, C.T., Feng, L., Huang, J., Chang, H., Zhang, Q. & Chu, X. (2012). Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331-332, 246-256. https://doi.org/10.1016/j.epsl.2012.03.018 | SGP |
31 | Li, C., Planavsky, N.J., Love, G.D., Reinhard, C.T., Hardisty, D.S., Feng, L., Bates, S.M., Huang, J., Zhang, Q., Chu, X. & Lyons, T.W. (2015). Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochimica et Cosmochimica Acta, 150, 90-105. https://doi.org/10.1016/j.gca.2014.12.005 | SGP |
32 | Li, C., Planavsky, N.J., Shi, W., Zhang, Z., Zhou, C., Cheng, M., Tarhan, L.G., Luo, G. & Xie, S. (2015). Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Nature: Scientific Reports, 5, 1-8. https://doi.org/10.1038/srep17097 | SGP |
498 | Li, N., Li, C., Algeo, T.J., Cheng, M., Jin, C., Zhu, G., Fan, J. & Sun, Z. (2021). Redox changes in the outer Yangtze Sea (South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212, 103443. https://doi.org/10.1016/j.earscirev.2020.103443 | SGP |
595 | Li, Q., Liu, S., Han, B., Zhang, J. & Chu, Z. (2005). Geochemistry of metasedimentary rocks of the Proterozoic Xingxingxia complex: implications for provenance and tectonic setting of the eastern segment of the Central Tianshan Tectonic Zone, northwestern China. Canadian Journal of Earth Sciences, 42, 287-306. https://doi.org/10.1139/e05-011 | USGS-CMIBS |
271 | Li, S., Gaschnig, R. & Rudnick, R.L. (2016). Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176, 96-117. https://doi.org/10.1016/j.gca.2015.12.012 | SGP |
571 | Li, S., Wignall, P.B., Xiong, Y. & Poulton, S.W. (2024). Calibration of redox thresholds in black shale: Insight from a stratified Mississippian basin with warm saline bottom waters. Geological Society of America Bulletin, 136, 1266-1286. https://doi.org/10.1130/B36915.1 | SGP |
715 | Li, Y., Zhang, T., Ellis, G.S. & Shao, D. (2017). Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 252-264. https://doi.org/10.1016/j.palaeo.2016.11.037 | DM-SED |
325 | Li, Z., Cole, D.B., Newby, S.M., Owens, J.D., Kendall, B. & Reinhard, C.T. (2021). New constraints on mid-Proterozoic ocean redox from stable thallium isotope systematics of black shales. Geochimica et Cosmochimica Acta, 315, 185-206. https://doi.org/10.1016/j.gca.2021.09.006 | SGP |
343 | Lipinski, M., Warning, B. & Brumsack, H. (2003). Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 459-475. https://doi.org/10.1016/S0031-0182(02)00619-3 | USGS-CMIBS |
593 | Liu, Y., Bowyer, F.T., Zhu, M., Xiong, Y., He, T., Han, M., Tang, X., Zhang, J. & Poulton, S.W. (2024). Marine redox and nutrient dynamics linked to the Cambrian radiation of animals. Geology, 52, 729-734. https://doi.org/10.1130/G52220.1 | SGP |
115 | Liu, Y., Li, C., Algeo, T.J., Fan, J. & Peng, P. (2016). Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 463, 180-191. https://doi.org/10.1016/j.palaeo.2016.10.006 | SGP |
499 | Liu, Y., Li, Y., Hou, M., Shen, J., Algeo, T.J., Fan, J., Zhou, X., Chen, Q., Sun, Z. & Li, C. (2023). Terrestrial rather than volcanic mercury inputs to the Yangtze Platform (South China) during the Ordovician-Silurian transition. Global and Planetary Change, 220, 104023. https://doi.org/10.1016/j.gloplacha.2022.104023 | SGP |
728 | Lo Mónaco, S., López, L., Rojas, H., Garcia, D., Premovic, P. & Briceño, H. (2002). Distribution of major and trace elements in La Luna Formation, Southwestern Venezuelan Basin. Organic Geochemistry, 33, 1593-1608. https://doi.org/10.1016/S0146-6380(02)00122-5 | DM-SED |
792 | Locklair, R.E. (2007). Causes and Consequences of Marine Carbon Burial: Examples from the Cretaceous Niobrara Formation and the Permian Brushy Canyon Formation. [Doctoral thesis, Northwestern University] | DM-SED |
694 | Long, J. & Luo, K. (2017). Trace element distribution and enrichment patterns of Ediacaran-early Cambrian, Ziyang selenosis area, Central China: Constraints for the origin of Selenium. Journal of Geochemical Exploration, 172, 211-230. https://doi.org/10.1016/j.gexplo.2016.11.010 | DM-SED |
468 | Lopez, P.G., Weiss, J.A., Rokosh, C.D. & Pawlowicz, J.G. (2019). Inorganic Geochemistry of Bulk Samples from Selected Alberta Geological Units (tabular data, tab-delimited format) 2019-0021. AER/AGS Digital Data. | AGS |
745 | Loukola-Ruskeeniemi, K. & Heino, T. (1996). Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Economic Geology, 91, 80-110. https://doi.org/10.2113/gsecongeo.91.1.80 | DM-SED |
118 | Loydell, D.K., Butcher, A. & Frýda, J. (2013). The middle Rhuddanian (lower Silurian) ‘hot’ shale of North Africa and Arabia: An atypical hydrocarbon source rock. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 233-256. https://doi.org/10.1016/j.palaeo.2013.05.027 | SGP |
529 | Lu, W., Wörndle, S., Halverson, G.P., Zhou, X., Bekker, A., Rainbird, R.H., Hardisty, D.S., Lyons, T.W. & Lu, Z. (2017). Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 53-57. https://doi.org/10.7185/geochemlet.1746 | SGP |
242 | Lu, X., Dahl, T.W., Zheng, W., Wang, S. & Kendall, B. (2020). Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks. Geochimica et Cosmochimica Acta, 290, 76-103. https://doi.org/10.1016/j.gca.2020.08.032 | SGP |
566 | Lu, X., Edwards, C.T. & Kendall, B. (2023). No evidence for expansion of global ocean euxinia during the base Stairsian mass extinction event (Tremadocian, Early Ordovician). Geochimica et Cosmochimica Acta, 341, 116-131. https://doi.org/10.1016/j.gca.2022.11.028 | SGP |
563 | Lu, X., Gilleaudeau, G.J. & Kendall, B. (2024). Uranium isotopes in non-euxinic shale and carbonate reveal dynamic Katian marine redox conditions accompanying a decrease in biodiversity prior to the Late Ordovician Mass Extinction. Geochimica et Cosmochimica Acta, 364, 22-43. https://doi.org/10.1016/j.gca.2023.10.034 | SGP |
105 | Lüning, S., Loydell, D.K., Sutcliffe, O., Ait Salem, A., Zanella, E., Craig, J. & Harper, D.A. T. (2000). Silurian - Lower Devonian black shales in Morocco: which are the organically richest horizons. Journal of Petroleum Geology, 293-311, 23. https://doi.org/10.1111/j.1747-5457.2000.tb01021.x | SGP |
265 | Luo, J., Long, X., Bowyer, F.T., Mills, B.J.W., Li, J., Xiong, Y., Zhu, X., Zhang, K. & Poulton, S.W. (2021). Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean. Earth and Planetary Science Letters, 559, 116754. https://doi.org/10.1016/j.epsl.2021.116754 | SGP |
664 | Luo, Q., Zhong, N., Zhu, L., Wang, Y., Qin, J., Qi, L., Zhang, Y. & Ma, Y. (2013). Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chinese Science Bulletin, 58, 1299-1309. https://doi.org/10.1007/s11434-012-5534-z | DM-SED |
641 | Lydon, J.W., Höy, T., Slack, J.F. & Knapp, M.E. (2000). The geological environment of the Sullivan deposit, British Columbia. Geological Association of Canada, Mineral Deposits Division, Special Publication, 1. https://ostrnrcan-dostrncan.canada.ca/handle/1845/180901 | USGS-CMIBS |
124 | Lyons, T.W., Luepke, J.J., Schrieber, M.E. & Zieg, G.A. (2000). Sulfur geochemical constraints on mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochimica et Cosmochimica Acta, 64, 427-437. https://doi.org/10.1016/S0016-7037(99)00323-3 | SGP |
120 | Lyu, X., Kendall, B., Stein, H.J., Li, C., Hannah, J.L., Gordon, G.W. & Ebbestad, J.R. (2017). Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district, central Sweden. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.03.015 | SGP |
717 | Ma, K., Hu, S., Wang, T., Zhang, B., Qin, S., Shi, S., Wang, K. & Qingyu, H. (2017). Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 176-187. https://doi.org/10.1016/j.palaeo.2017.02.038 | DM-SED |
169 | Macdonald, F.A., Strauss, J.V., Sperling, E.A., Halverson, G.P., Narbonne, G.M., Johnston, D.T., Kunzmann, M., Schrag, D.P. & Higgins, J.A. (2013). The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, 362, 250-272. https://doi.org/10.1016/j.chemgeo.2013.05.032 | SGP |
752 | Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., González-León, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G. & Grijalva-Noriega, F.J. (2016). Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista mexicana de ciencias geológicas, 33, 34-48. | DM-SED |
178 | Magnall, J.M., Gleeson, S.A. & Paradis, S. (2015). The Importance of Siliceous Radiolarian-Bearing Mudstones in the Formation of Sediment-Hosted Zn-Pb ± Ba Mineralization in the Selwyn Basin, Yukon, Canada. Economic Geology, 110, 2139-2146. https://doi.org/10.2113/econgeo.110.8.2139 | SGP |
177 | Magnall, J.M., Gleeson, S.A., Poulton, S.W., Gordon, G.W. & Paradis, S. (2018). Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits — Fe speciation and Mo isotope constraints from Late Devonian mudstones. Chemical Geology, 490, 45-60. https://doi.org/10.1016/j.chemgeo.2018.05.005 | SGP |
179 | Magnall, J.M., Gleeson, S.A., Stern, R.A., Newton, R.J., Poulton, S.W. & Paradis, S. (2016). Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180, 146-163. https://doi.org/10.1016/j.gca.2016.02.015 | SGP |
546 | Maloney, K.M., Halverson, G.P., Lechte, M., Gibson, T.M., Bui, T., Schiffbauer, J.D. & Laflamme, M. (2024). The paleoredox context of early eukaryotic evolution: insights from the Tonian Mackenzie Mountains Supergroup, Canada. Geobiology, 22, e12598. https://doi.org/10.1111/gbi.12598 | SGP |
437 | Manassero, M.J., Cingolani, C.A. & Abre, P. (2009). A Silurian-Devonian marine platform-deltaic system in the San Rafael Block, Argentine Precordillera-Cuyania terrane: lithofacies and provenance. Geological Society Special Publications, 314, 215-240. https://doi.org/10.1144/SP314.12 | USGS-CMIBS |
260 | Mänd, K., Lalonde, S.V., Robbins, L.J., Thoby, M., Paiste, K., Kreitsmann, T., Paiste, P., Reinhard, C.T., Romashkin, A.E., Planavsky, N.J., Kirsimäe, K., Lepland, A. & Konhauser, K.O. (2020). Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience, 13, 302-306. https://doi.org/10.1038/s41561-020-0558-5 | SGP |
442 | Mänd, K., Planavsky, N.J., Porter, S.M., Robbins, L.J., Wang, C., Kreitsmann, T., Paiste, K., Paiste, P., Romashkin, A.E., Deines, Y.E., Kirsimäe, K., Lepland, A. & Konhauser, K.O. (2022). Chromium evidence for protracted oxygenation during the Paleoproterozoic. Earth and Planetary Science Letters, 584, 117501. https://doi.org/10.1016/j.epsl.2022.117501 | SGP |
644 | Manheim, F.T. & Siems, D.E. (1974). Chemical analyses of Red Sea sediments. In: Whitmarsh, R.B., Weser, O.E. & Ross, D.A.Deep Sea Drilling Project Initial Reports Volume 23. https://doi.org/10.2973/dsdp.proc.23.129.1974 | USGS-CMIBS |
393 | Manikyamba, C. & Kerrich, R. (2006). Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: First cycle volcanogenic sedimentary rocks in an intraoceanic arc–trench complex. Geochimica et Cosmochimica Acta, 70, 4663-4679. https://doi.org/10.1016/j.gca.2006.07.015 | USGS-CMIBS |
377 | Manikyamba, C., Kerrich, R., González-Álvarez, I., Mathur, R. & Khanna, T.C. (2008). Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity. Precambrian Research, 162, 424-440. https://doi.org/10.1016/j.precamres.2007.10.003 | USGS-CMIBS |
705 | Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S. & Pearce, T.J. (2012). Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347, 66-86. https://doi.org/10.1016/j.palaeo.2012.05.020 | DM-SED |
606 | Maslov, A., Ronkin, Y., Krupenin, M.T., Petrov, G., Kornilova, A., Lepikhina, O. & Popova, O. (2006). Systematics of rare earth elements, Th, Hf, Sc, Co, Cr, and Ni in the vendian pelitic rocks of the Serebryanka and Sylvitsa groups from the western slope of the Central Urals: A tool for monitoring provenance composition. Geochemistry International, 44, 559-580. https://doi.org/10.1134/S0016702906060036 | USGS-CMIBS |
347 | Maslov, A.V., Isherskaya, M.V., Krupenin, M.T., Petrishcheva, V.G., Gulyaeva, T.Ya. & Gorbunova, N.P. (2010). Lithogeochemical features of Riphean fine-grained terrigenous rocks in the Kama-Belaya aulacogen and their formation conditions. Lithology and Mineral Resources, 45, 172-200. https://doi.org/10.1134/S0024490210020069 | USGS-CMIBS |
671 | Matthäi, S.K. & Henley, R.W. (1996). Geochemistry and depositional environment of the gold-mineralized Proterozoic Koolpin Formation, Pine Creek Inlier, Northern Australia: a comparison with modern shale sequences. Precambrian Research, 78, 211-235. https://doi.org/10.1016/0301-9268(95)00057-7 | DM-SED |
285 | McGuire, D.Joseph (1988). Stratigraphy, depositional history, and hydrocarbon source-rock potential of the Upper Cretaceous-Lower Tertiary Moreno Formation, central San Joaquin Basin, California. [Doctoral thesis, Stanford University] | SGP |
202 | McKirdy, D.M., Hall, P.A., Nedin, C., Halverson, G.P., Michaelsen, B., Jago, J.B., Gehling, J.G. & Jenkins, R.J. F. (2011). Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences, 58, 259-272. https://doi.org/10.1080/08120099.2011.557439 | SGP |
346 | McLennan, S.M., Taylor, S.R. & Eriksson, K.A. (1983). Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47, 1211-1222. https://doi.org/10.1016/0016-7037(83)90063-7 | USGS-CMIBS |
372 | McLennan, S.M., Taylor, S.R. & McGregor, V.R. (1984). Geochemistry of Archean metasedimentary rocks from West Greenland. Geochimica et Cosmochimica Acta, 48, 1-13. https://doi.org/10.1016/0016-7037(84)90345-4 | USGS-CMIBS |
421 | McLennan, S.M., Taylor, S.R., McCulloch, M.T. & Maynard, J. (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050. https://doi.org/10.1016/0016-7037(90)90269-Q | USGS-CMIBS |
349 | McPherson, J.G. (1980). Genesis of variegated redbeds in the fluvial Aztec Siltstone (late devonian), southern victoria land, Antarctica. Sedimentary Geology, 27, 119-142. https://doi.org/10.1016/0037-0738(80)90033-0 | USGS-CMIBS |
645 | Medrano, M.D. & Piper, D.Z. (1995). Partitioning of minor elements and major-element oxides between rock components and calculation of the marine derived fraction of the minor elements in rocks of the Phosphoria Formation, Idaho and Wyoming. U.S. Geological Survey Open File Report 95-270. https://doi.org/10.3133/ofr95270 | USGS-CMIBS |
739 | Melchin, M.J., Mitchell, C.E., Holmden, C. & Storch, P. (2013). Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes. Geological Society of America Bulletin, 125, 1635-1670. https://doi.org/10.1130/B30812.1 | DM-SED |
726 | Melezhik, V.A., Fallick, A.E., Filippov, M.M. & Larsen, O. (1999). Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth-Science Reviews, 47, 1-40. https://doi.org/10.1016/S0012-8252(99)00027-6 | DM-SED |
369 | Meyer, F.M. & Robb, L.J. (1996). The geochemistry of black shales from the Chuniespoort Group, Transvaal Sequence, eastern Transvaal, South Africa. Economic Geology, 91, 111-121. https://doi.org/10.2113/gsecongeo.91.1.111 | USGS-CMIBS |
137 | Miller, A.J., Strauss, J.V., Halverson, G.P., Macdonald, F.A., Johnston, D.T. & Sperling, E.A. (2017). Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial strata in NW Canada. Chemical Geology, 457, 24-37. https://doi.org/10.1016/j.chemgeo.2017.03.010 | SGP |
816 | Millikin, A.E.G., Gibson, T.M., Strauss, J.V., Bergmann, K.D., Tosca, N.J., Anderson, R.P., Halverson, G.P., Zhang, T. & Rooney, A.D. (2025). Geochemistry and mineralogy of Neoproterozoic strata in northeastern Svalbard: revaluating the prevalence of basalt weathering during the early Neoproterozoic. Geological Society of America Bulletin. https://doi.org/10.1130/B38195.1 | SGP |
175 | Mills, N. (2015). Paleoceanographic Conditions that Resulted in the Accumulation of Organic Matter in the Middle Pennsylvanian Hermosa Group, Southwestern Shelf, Paradox Basin, Utah. [Master's thesis, Baylor University] https://baylor-ir.tdl.org/handle/2104/9563 | SGP |
607 | Mishra, M. & Sen, S. (2010). Geochemical signatures of Mesoproterozoic siliciclastic rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. Chinese Journal of Geochemistry, 29, 21-32. https://doi.org/10.1007/s11631-010-0021-1 | USGS-CMIBS |
433 | Moisan, A. (1992). Petrochimie des gres de la formation de Bordeleau Chibougamau Quebec. [Master's thesis, Université du Québec à Chicoutimi] https://doi.org/10.1522/1473201 | USGS-CMIBS |
670 | Mongenot, T., Tribovillard, N., Desprairies, A., Lallier-Vergès, E. & Laggoun-Defarge, F. (1996). Trace elements as palaeoenvironmental markers in strongly mature hydrocarbon source rocks: the Cretaceous La Luna Formation of Venezuela. Sedimentary Geology, 103, 23-37. https://doi.org/10.1016/0037-0738(95)00078-X | DM-SED |
708 | Montero-Serrano, J., Föllmi, K.B., Adatte, T., Spangenberg, J.E., Tribovillard, N., Fantasia, A. & Suan, G. (2015). Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 83-99. https://doi.org/10.1016/j.palaeo.2015.03.043 | DM-SED |
419 | Mossman, D.J., Gauthierlafaye, F. & Jackson, S. (2005). Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Research, 137, 253-272. https://doi.org/10.1016/j.precamres.2005.03.005 | USGS-CMIBS |
565 | Motomura, K., Bekker, A., Bleeker, W., Ikehara, M., Sano, T., Guilmette, C., Lin, Y. & Kiyokawa, S. (2024). Nitrogen isotope gradient on continental margins during the late Paleoproterozoic. Geochimica et Cosmochimica Acta, 371, 144-161. https://doi.org/10.1016/j.gca.2024.02.022 | SGP |
303 | Motomura, K., Kiyokawa, S., Ikehara, M., Sano, T., Bleeker, W., Tanaka, K., Miki, T. & Sano, Y. (2021). Redox fluctuation and δ13Corg-δ34S perturbations recorded in the 1.9 Ga Nuvilik Formation of the Cape Smith belt, Canada. Precambrian Research, 359, 106191. https://doi.org/10.1016/j.precamres.2021.106191 | SGP |
187 | Mouro, L.D., Rakociński, M., Marynowski, L., Pisarzowska, A., Musabelliu, S., Zatoń, M., Carvalho, M.A., Fernandes, A.C.S. & Waichel, B.L. (2017). Benthic anoxia, intermittent photic zone euxinia and elevated productivity during deposition of the Lower Permian, post-glacial fossiliferous black shales of the Paraná Basin, Brazil. Global and Planetary Change, 158, 155-172. https://doi.org/10.1016/j.gloplacha.2017.09.017 | SGP |
273 | Mundl, A., Walker, R.J., Reimink, J.R., Rudnick, R.L. & Gaschnig, R. (2018). Tungsten-182 in the upper continental crust: Evidence from glacial diamictites. Chemical Geology, 494, 144-152. https://doi.org/10.1016/j.chemgeo.2018.07.036 | SGP |
608 | Nagarajan, R., Armstrong-Altrin, J.S., Nagendra, R., Madhavaraju, J. & Moutte, J. (2007). Petrography and Geochemistry of Terrigenous Sedimentary Rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: Implications for Paleoweathering Conditions, Provenance and Source Rock Composition. Journal of the Geological Society of India, 70, 297-312. | USGS-CMIBS |
613 | Nagarajan, R., Madhavaraju, J., Nagendra, R., Amstrong-Altrin, J. & Moutte, J. (2007). Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: Implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 24, 150-160. | USGS-CMIBS |
152 | Nance, W.B. & Taylor, S.R. (1976). Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40, 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4 | SGP |
667 | Nance, W.B. & Taylor, S.R. (1977). Rare earth element patterns and crustal evolution—II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochimica et Cosmochimica Acta, 41, 225-231. https://doi.org/10.1016/0016-7037(77)90229-0 | DM-SED |
203 | Nedin, C. (1995). The palaeontology and palaeoenvironment of the Early Cambrian Emu Bay Shale, Kangaroo Island, South Australia. [Doctoral thesis, University of Adelaide] https://digital.library.adelaide.edu.au/dspace/bitstream/2440/18603/2/02whole.pdf | SGP |
544 | Nelson, L.L., Ahm, A.C., Macdonald, F.A., Higgins, J.A. & Smith, E.F. (2021). Fingerprinting local controls on the Neoproterozoic carbon cycle with the isotopic record of Cryogenian carbonates in the Panamint Range, California. Earth and Planetary Science Letters, 566, 116956. https://doi.org/10.1016/j.epsl.2021.116956 | SGP |
542 | Nelson, L.L., Ramezani, J., Almond, J.E., Darroch, S.A. F., Taylor, W.L., Brenner, D.C., Furey, R.P., Turner, M. & Smith, E.F. (2022). Pushing the boundary: A calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa. Earth and Planetary Science Letters, 580, 117396. https://doi.org/10.1016/j.epsl.2022.117396 | SGP |
774 | Newport, L.P. (2016). Petrographic and Geochemical Analysis of the Carboniferous (Namurian) Holywell Shale of Northeast Wales. [Doctoral thesis, Durham University] http://etheses.dur.ac.uk/11467/ | DM-SED |
703 | Newport, L.P., Aplin, A.C., Gluyas, J.G., Greenwell, H.C. & Gröcke, D.R. (2016). Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. Marine and Petroleum Geology, 71, 198-210. https://doi.org/10.1016/j.marpetgeo.2015.11.026 | DM-SED |
182 | Nguyen, K., Love, G.D., Zumberge, J.A., Kelly, A.E., Owens, J.D., Rohrssen, M.K., Bates, S.M., Cai, C. & Lyons, T.W. (2019). Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology. https://doi.org/10.1111/gbi.12329 | SGP |
327 | Nieminski, N., Grove, M. & Lowe, D.R. (2019). Provenance of the Neoproterozoic deep-water Zerrissene Group of the Damara Orogen, Namibia, and paleogeographic implications for the closing of the Adamastor Ocean and assembly of the Gondwana supercontinent. Geological Society of America Bulletin, 131, 355-371. https://doi.org/10.1130/B32032.1 | SGP |
184 | Novek, J.M., Dornbos, S.Q. & McHenry, L.J. (2016). Palaeoredox geochemistry and bioturbation levels of the exceptionally preserved early Cambrian Indian Springs biota, Nevada, USA. Lethaia, 49, 604-616. https://doi.org/10.1111/let.12169 | SGP |
711 | Núñez-Useche, F., Canet, C., Barragán, R. & Alfonso, P. (2016). Bioevents and redox conditions around the Cenomanian–Turonian anoxic event in Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 205-226. https://doi.org/10.1016/j.palaeo.2016.01.035 | DM-SED |
439 | O'Brien, B.H. (1988). A study of the Meguma Terrane in Lunenburg County, Nova Scotia. Geological Survey of Canada, Open File, 1823. https://doi.org/10.4095/130496 | USGS-CMIBS |
494 | O'Sullivan, E.M., Nägler, T.F., Turner, E.C., Kamber, B.S., Babechuk, M.G. & O'Hare, S.P. (2022). Mo isotope composition of the 0.85 Ga ocean from coupled carbonate and shale archives: Some implications for pre-Cryogenian oxygenation. Precambrian Research, 378, 106760. https://doi.org/10.1016/j.precamres.2022.106760 | SGP |
97 | Och, L.M. (2011). Biogeochemical cycling through the Neoproterozoic-Cambrian transition in China: an integrated study of redox-sensitive elements. [Doctoral thesis, University College London] https://discovery.ucl.ac.uk/1331900/1/1331900.pdf | SGP |
53 | Och, L.M., Cremonese, L., Shields-Zhou, G.A., Poulton, S.W., Struck, U., Ling, H., Li, D., Chen, X., Manning, C., Thirlwall, M.F., Strauss, H. & Zhu, M. (2016). Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology, 63, 378-410. https://doi.org/10.1111/sed.12220 | SGP |
40 | Och, L.M., Shields-Zhou, G.A., Poulton, S.W., Manning, C., Thirlwall, M.F., Li, D., Chen, X., Ling, H., Osborn, T. & Cremonese, L. (2013). Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225, 166-189. https://doi.org/10.1016/j.precamres.2011.10.005 | SGP |
548 | Okubo, J., Kaufman, A.J., Warren, L.V., Evans, M.N., Marroquín, S.M., Varni, M.A., Misi, A., Bahniuk, A.M. & Xiao, S. (2022). The sulfur isotopic consequence of seawater sulfate distillation preserved in the Neoproterozoic Sete Lagoas post-glacial carbonate, eastern Brazil. Journal of the Geological Society, 179, jgs2021-091. https://doi.org/10.1144/jgs2021-091 | SGP |
318 | Olson, S.L., Ostrander, C.M., Gregory, D.D., Roy, M., Anbar, A.D. & Lyons, T.W. (2019). Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth and Planetary Science Letters, 506, 417-427. https://doi.org/10.1016/j.epsl.2018.11.015 | SGP |
518 | Ossa Ossa, F., Bekker, A., Hofmann, A., Poulton, S.W., Ballouard, C. & Schoenberg, R. (2021). Limited expression of the Paleoproterozoic Oklo natural nuclear reactor phenomenon in the aftermath of a widespread deoxygenation event ~2.11–2.06 billion years ago. Chemical Geology, 578, 120315. https://doi.org/10.1016/j.chemgeo.2021.120315 | SGP |
519 | Ossa Ossa, F., Eickmann, B., Hofmann, A., Planavsky, N.J., Asael, D., Pambo, F. & Bekker, A. (2018). Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth and Planetary Science Letters, 486, 70-83. https://doi.org/10.1016/j.epsl.2018.01.009 | SGP |
257 | Ossa Ossa, F., Hofmann, A., Spangenberg, J.E., Poulton, S.W., Stüeken, E.E., Schoenberg, R., Eickmann, B., Wille, M., Butler, M. & Bekker, A. (2019). Limited oxygen production in the Mesoarchean ocean. Proceedings of the National Academy of Sciences, 116, 6647-6652. https://doi.org/10.1073/pnas.1818762116 | SGP |
255 | Ossa Ossa, F., Hofmann, A., Vidal, O., Kramers, J.D., Belyanin, G. & Cavalazzi, B. (2016). Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambrian Research, 281, 414-433. https://doi.org/10.1016/j.precamres.2016.06.009 | SGP |
256 | Ossa Ossa, F., Hofmann, A., Wille, M., Spangenberg, J.E., Bekker, A., Poulton, S.W., Eickmann, B. & Schoenberg, R. (2018). Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth and Planetary Science Letters, 500, 28-40. https://doi.org/10.1016/j.epsl.2018.07.044 | SGP |
517 | Ossa Ossa, F., Spangenberg, J.E., Bekker, A., König, S., Stüeken, E.E., Hofmann, A., Poulton, S.W., Yierpan, A., Varas-Reus, M.I., Eickmann, B., Andersen, M.B. & Schoenberg, R. (2022). Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event. Earth and Planetary Science Letters, 594, 117716. https://doi.org/10.1016/j.epsl.2022.117716 | SGP |
322 | Ostrander, C.M., Kendall, B., Gordon, G.W., Nielsen, S.G., Zheng, W. & Anbar, A.D. (2022). Shale Heavy Metal Isotope Records of Low Environmental O2 Between Two Archean Oxidation Events. Frontiers in Earth Science, 10, 833609. https://doi.org/10.3389/feart.2022.833609 | SGP |
320 | Ostrander, C.M., Kendall, B., Olson, S.L., Lyons, T.W., Gordon, G.W., Romaniello, S.J., Zheng, W., Reinhard, C.T., Roy, M. & Anbar, A.D. (2020). An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chemical Geology, 532, 119391. https://doi.org/10.1016/j.chemgeo.2019.119391 | SGP |
319 | Ostrander, C.M., Nielsen, S.G., Owens, J.D., Kendall, B., Gordon, G.W., Romaniello, S.J. & Anbar, A.D. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12, 186-191. https://doi.org/10.1038/s41561-019-0309-7 | SGP |
241 | Ostrander, C.M., Owens, J.D., Nielsen, S.G., Lyons, T.W., Shu, Y., Chen, X., Sperling, E.A., Jiang, G., Johnston, D.T., Sahoo, S.K. & Anbar, A.D. (2020). Thallium isotope ratios in shales from South China and northwestern Canada suggest widespread O2 accumulation in marine bottom waters was an uncommon occurrence during the Ediacaran Period. Chemical Geology, 557, Article119856. https://doi.org/10.1016/j.chemgeo.2020.119856 | SGP |
223 | Ostrander, C.M., Sahoo, S.K., Kendall, B., Jiang, G., Planavsky, N.J., Lyons, T.W., Nielsen, S.G., Owens, J.D., Gordon, G.W., Romaniello, S.J. & Anbar, A.D. (2019). Multiple negative molybdenum isotope excursions in the Doushantuo Formation (South China) fingerprint complex redox-related processes in the Ediacaran Nanhua Basin. Geochimica et Cosmochimica Acta, 261, 191-209. https://doi.org/10.1016/j.gca.2019.07.016 | SGP |
321 | Ostrander, C.M., Severmann, S., Gordon, G.W., Kendall, B., Lyons, T.W., Zheng, W., Roy, M. & Anbar, A.D. (2022). Significance of 56Fe depletions in late-Archean shales and pyrite. Geochimica et Cosmochimica Acta, 316, 87-104. https://doi.org/10.1016/j.gca.2021.10.013 | SGP |
104 | Pagès, A. & Schmid, S. (2016). Euxinia linked to the Cambrian Drumian carbon isotope excursion (DICE) in Australia: Geochemical and chemostratigraphic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 65-76, 461. https://doi.org/10.1016/j.palaeo.2016.08.008 | SGP |
362 | Paikaray, S., Banerjee, S. & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32, 34-48. https://doi.org/10.1016/j.jseaes.2007.10.002 | USGS-CMIBS |
261 | Paiste, K., Lepland, A., Zerkle, A.L., Kirsimäe, K., Izon, G., Patel, N.K., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A.E., Rychanchik, D.V. & Prave, A.R. (2018). Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia. Chemical Geology, 499, 151-164. https://doi.org/10.1016/j.chemgeo.2018.09.025 | SGP |
262 | Paiste, K., Lepland, A., Zerkle, A.L., Kirsimäe, K., Kreitsmann, T., Mänd, K., Romashkin, A.E., Rychanchik, D.V. & Prave, A.R. (2020). Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records. Earth-Science Reviews, 207, 103230. https://doi.org/10.1016/j.earscirev.2020.103230 | SGP |
263 | Paiste, K., Pellerin, A., Zerkle, A.L., Kirsimäe, K., Prave, A.R., Romashkin, A.E. & Lepland, A. (2020). The pyrite multiple sulfur isotope record of the 1.98 Ga Zaonega Formation: Evidence for biogeochemical sulfur cycling in a semi-restricted basin. Earth and Planetary Science Letters, 534, 116092. https://doi.org/10.1016/j.epsl.2020.116092 | SGP |
235 | Partin, C.A., Bekker, A., Planavsky, N.J. & Lyons, T.W. (2015). Euxinic conditions recorded in the ca. 1.93 Ga Bravo Lake Formation, Nunavut (Canada): Implications for oceanic redox evolution. Chemical Geology, 417, 148-162. https://doi.org/10.1016/j.chemgeo.2015.09.004 | SGP |
609 | Pašava, J., Barnes, S. & Vymazalová, A. (2003). The use of mantle normalization and metal ratios in the identification of the sources of platinum-group elements in various metal-rich black shales. Mineralium Deposita, 38, 775-783. https://doi.org/10.1007/s00126-003-0366-z | USGS-CMIBS |
352 | Pasava, J., Hladikova, J. & Dobes, P. (1996). Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Economic Geology, 91, 63-79. https://doi.org/10.2113/gsecongeo.91.1.63 | USGS-CMIBS |
610 | Pašava, J., Oszczepalski, S. & Du, A. (2010). Re–Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Mineralium Deposita, 45, 189-199. https://doi.org/10.1007/s00126-009-0269-8 | USGS-CMIBS |
413 | Patočka, F. & Štorch, P. (2004). Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá-Barrandian Unit, Bohemian Massif, Czech Republic). International Journal of Earth Sciences, 93, 728-741. https://doi.org/10.1007/s00531-004-0415-6 | USGS-CMIBS |
374 | Patterson, J.H., Ramsden, A.R., Dale, L.S. & Fardy, J.J. (1986). Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 55, 1-16. https://doi.org/10.1016/0009-2541(86)90123-3 | USGS-CMIBS |
505 | Peek, S. (2012). Geochemical and Radiometric Constraints on the Redox History of Late Ediacaran Oceans. [Doctoral thesis, University of Maryland] http://hdl.handle.net/1903/13272 | SGP |
248 | Peng, J., Fu, Q., Larson, T.E. & Janson, X. (2020). Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age. Geological Society of America Bulletin, 133, 57-73. https://doi.org/10.1130/B35336.1 | SGP |
350 | Perkins, R.B., Piper, D.Z. & Mason, C.E. (2008). Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 14-29. https://doi.org/10.1016/j.palaeo.2008.04.012 | USGS-CMIBS |
796 | Pevear, D.R. & Grabowski, G.J. (1985). Geology and geochemistry of the Toolebuc Formation, an organic-rich chalk from the Lower Cretaceous of Queensland, Australia. In: Crevello, P.D. & Harris, P.M. (Eds.), Deep-Water Carbonates, SEPM Core Workshop 6 (pp. 303-341). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/cor.85.06.0303 | DM-SED |
225 | Phelps, A.S., Hofmann, M.H. & Hart, B.S. (2018). Facies and stratigraphic architecture of the Upper Devonian–Lower Mississippian Sappington Formation, southwestern Montana: A potential outcrop analog for the Bakken Formation. AAPG Bulletin, 102, 793-815. https://doi.org/10.1306/0627171614817020 | SGP |
86 | Pi, D., Liu, C., Shields-Zhou, G.A. & Jiang, S. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225, 218-229. https://doi.org/10.1016/j.precamres.2011.07.004 | SGP |
646 | Piper, D.Z. (1999). Trace elements and major-element oxides in the Phosphoria Formation at Enoch Valley, Idaho; Permian sources and current reactivities. U.S. Geological Survey Open File Report 99-163. https://doi.org/10.3133/ofr99163 | USGS-CMIBS |
784 | Pitcher, L.L. (2011). The Upper Pennsylvanian Hushpuckney “Core” Black Shale Member from the Swope Formation in Kansas: Rhenium – Osmium Isotope Systematics, and the Highly Siderophile Elements. [Master's thesis, Stony Brook University] | DM-SED |
36 | Planavsky, N.J., McGoldrick, P., Scott, C.T., Li, C., Reinhard, C.T., Kelly, A.E., Chu, X., Bekker, A., Love, G.D. & Lyons, T.W. (2011). Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477, 448-451. https://doi.org/10.1038/nature10327 | SGP |
237 | Planavsky, N.J., Slack, J.F., Cannon, W.F., O'Connell, B., Isson, T.T., Asael, D., Jackson, J.C., Hardisty, D.S., Lyons, T.W. & Bekker, A. (2018). Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chemical Geology, 483, 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028 | SGP |
302 | Playter, T., Corlett, H., Konhauser, K.O., Robbins, L.J., Rohais, S., Crombez, V., Maccormack, K., Rokosh, D., Prenoslo, D., Furlong, C.M., Pawlowicz, J., Gingras, M., Lalonde, S.V., Lyster, S. & Zonneveld, J. (2018). Clinoform identification and correlation in fine-grained sediments: A case study using the Triassic Montney Formation. Sedimentology, 65, 263-302. https://doi.org/10.1111/sed.12403 | SGP |
215 | Podkovyrov, V.N. (2009). Mesoproterozoic Lakhanda Lagerstätte, Siberia: Paleoecology and taphonomy of the microbiota. Precambrian Research, 173, 146-153. https://doi.org/10.1016/j.precamres.2009.04.006 | SGP |
800 | Podkovyrov, V.N., Cullers, R.L. & Kovach, V.P. (2007). The provenance and weathering conditions of Riphean (Mesoproterozoic and Neoproterozoic) shales, siltstones, and sandstones with time, southeastern Russia (Siberia). In: Link, P.K. & Lewis, R.S. (Eds.), Proterozoic Geology of Western North America and Siberia (pp. 227-253). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.07.86.0227 | DM-SED |
611 | Podkovyrov, V.N., Kovach, V.P. & Kotova, L.N. (2002). Mudrocks from the Siberian Hypostratotype of the Riphean and Vendian: Chemistry, Sm–Nd Isotope Systematics of Sources, and Formation Stages. Lithology and Mineral Resources, 37, 344-364. https://doi.org/10.1023/A:1019947406585 | USGS-CMIBS |
479 | Pogge von Strandmann, P.A., Jenkyns, H.C. & Woodfine, R.G. (2013). Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668-672. https://doi.org/10.1038/ngeo1875 | SGP |
572 | Pogge von Strandmann, P.A., Jones, M.T., West, A.Joshua, Murphy, M.J., Stokke, E.W., Tarbuck, G., Wilson, D.J. H., Pearce, C.R. & Schmidt, D.N. (2021). Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum. Science Advances, 7, eabh4224. https://doi.org/10.1126/sciadv.abh4224 | SGP |
367 | Polat, A. & Kerrich, R. (2000). Archean greenstone belt magmatism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Science Letters, 175, 41-54. https://doi.org/10.1016/S0012-821X(99)00283-6 | USGS-CMIBS |
371 | Polat, A., Kerrich, R. & Wyman, D.A. (1998). The late Archean Schreiber–Hemlo and White River–Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction–accretion complexes. Tectonophysics, 289, 295-326. https://doi.org/10.1016/S0040-1951(98)00002-X | USGS-CMIBS |
714 | Polgári, M., Hein, J.R., Bíró, L., Gyollai, I., Németh, T., Sajgó, C., Fekete, J., Schwark, L., Pál-Molnár, E., Hámor-Vidó, M. & Vigh, T. (2016). Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 99-120. https://doi.org/10.1016/j.palaeo.2016.06.030 | DM-SED |
742 | Polufuntikova, L.I. & Fridovsky, V.Yu. (2016). Lithological features, reconstruction of redox setting, and composition of the provenances of the Upper Triassic Kular–Nera shale belt. Russian Journal of Pacific Geology, 10, 218-229. https://doi.org/10.1134/S1819714016030052 | DM-SED |
612 | Poole, F.G. & Claypool, G.E. (1984). Petroleum Source Rock Potential and Crude Oil Correlation in Great Basin. In: Woodward, J., Meissner, F.F. & Clayton, J.L. (Eds.), Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (pp. 179-229). Rocky Mountain Association of Geologists. | USGS-CMIBS |
154 | Porębska, E. & Sawłowicz, Z. (1997). Palaeoceanographic linkage of geochemical and graptolite events across the Silurian–Devonian boundary in Bardzkie Mountains (Southwest Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 343-354. https://doi.org/10.1016/S0031-0182(97)00048-5 | SGP |
740 | Poulton, S.W., Henkel, S., März, C., Urquhart, H., Flögel, S., Kasten, S., Sinninghe Damsté, J.S. & Wagner, T. (2015). A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43, 963-966. https://doi.org/10.1130/G36837.1 | DM-SED |
614 | Prior, G.J., Pawlowicz, J.G. & Hathaway, B. (2006). Geochemical data for mudstones, shales and other Cretaceous rocks of northwestern Alberta 2006-0021. AER/AGS Digital Data. | USGS-CMIBS |
230 | Pruss, S.B., Jones, D.S., Fike, D.A., Tosca, N.J. & Wignall, P.B. (2019). Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland. Geology, 47, 475-478. https://doi.org/10.1130/G45871.1 | SGP |
702 | Pundaree, N., Krishna, A.K., Subramanyam, K.S.V., Sawant, S.S., Kavitha, S., Kalpana, M.S., Patil, D.J. & Dayal, A.M. (2015). Early Eocene carbonaceous shales of Tadkeshwar Formation, Cambay basin, Gujarat, India: Geochemical implications, petrogenesis and tectonics. Marine and Petroleum Geology, 68, 258-268. https://doi.org/10.1016/j.marpetgeo.2015.08.028 | DM-SED |
578 | Qiu, Z., Zou, C., Mills, B.J.W., Xiong, Y., Tao, H., Lu, B., Liu, H., Xiao, W. & Poulton, S.W. (2022). A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Communications Earth & Environment, 3, 82. https://doi.org/10.1038/s43247-022-00412-x | SGP |
156 | Quinby-Hunt, M.S., Wilde, P., Orth, C.J. & Berry, W.B.N. (1989). Elemental Geochemistry of Black Shales--Statistical Comparison of Low-Calcic Shales with Other Shales. Metalliferous black shales and related ore deposits; program and abstracts, U.S. Geological Survey Circular 1037. http://www.marscigrp.org/usgs89.html | SGP |
746 | Racka, M., Marynowski, L., Filipiak, P., Sobstel, M., Pisarzowska, A. & Bond, D.P. G. (2010). Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): Geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 549-575. https://doi.org/10.1016/j.palaeo.2010.08.028 | DM-SED |
25 | Raiswell, R. & Canfield, D.E. (1998). Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298, 219-245. https://doi.org/10.2475/ajs.298.3.219 | SGP |
312 | Raiswell, R., Reinhard, C.T., Derkowski, A., Owens, J.D., Bottrell, S.H., Anbar, A.D. & Lyons, T.W. (2011). Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochimica et Cosmochimica Acta, 75, 1072-1087. https://doi.org/10.1016/j.gca.2010.11.013 | SGP |
524 | Ramos, M.E., Giorgioni, M., Walde, D.H., do Carmo, D.A., Fazio, G., Vieira, L.C., Denezine, M., V. Santos, R., Rodrigues Adorno, R. & Lage Guida, L. (2022). New Facies Model and Carbon Isotope Stratigraphy for an Ediacaran Carbonate Platform From South America (Tamengo Formation—Corumbá Group, SW Brazil). Frontiers in Earth Science, 10, 749066. https://doi.org/10.3389/feart.2022.749066 | SGP |
662 | Rantitsch, G., Melcher, F., Meisel, T. & Rainer, T. (2003). Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits. Mineralogy and Petrology, 77, 109-127. https://doi.org/10.1007/s00710-002-0197-0 | DM-SED |
615 | Rashid, S.A. (2005). The geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation, Kumaun Lesser Himalaya : Implications for provenance, mineralogical control and weathering. Current Science, 88, 1832-1836. | USGS-CMIBS |
370 | Rasmy, M. & Basily, A.B. (1983). Spectrographic study of trace elements in some Egyptian black shales associated with phosphate deposits. Chemical Geology, 39, 115-123. https://doi.org/10.1016/0009-2541(83)90075-X | USGS-CMIBS |
734 | Raza, M., Ahmad, A.H.M., Shamim Khan, M. & Khan, F. (2012). Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering. International Geology Review, 54, 111-129. https://doi.org/10.1080/00206814.2010.517044 | DM-SED |
616 | Raza, M., Casshyap, S.M. & Khan, A. (2002). Geochemistry of Mesoproterozoic Lower Vindhyan Shales from Chittaurgarh, southeastern Rajasthan and its bearing on source rock composition, palaeoweathering conditions and tectono-sedimentary environments. Journal of the Geological Society of India, 60, 505-518. | USGS-CMIBS |
417 | Raza, M., Dayal, A.M., Khan, A., Bhardwaj, V.R. & Rais, S. (2010). Geochemistry of lower Vindhyan clastic sedimentary rocks of Northwestern Indian shield: Implications for composition and weathering history of Proterozoic continental crust. Journal of Asian Earth Sciences, 39, 51-61. https://doi.org/10.1016/j.jseaes.2010.02.007 | USGS-CMIBS |
309 | Reinhard, C.T., Raiswell, R., Scott, C.T., Anbar, A.D. & Lyons, T.W. (2009). A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326, 713-716. https://doi.org/10.1126/science.1176711 | SGP |
564 | Remírez, M.N., Gilleaudeau, G.J., Elrick, M., Henderson, M.A., Over, D., Willette, D.C. & Algeo, T.J. (2023). Linking anoxia, biotic events, and basin evolution in the Late Devonian Illinois Basin, North America: A geochemical approach. Marine and Petroleum Geology, 158, 106556. https://doi.org/10.1016/j.marpetgeo.2023.106556 | SGP |
591 | Remírez, M.N., Gilleaudeau, G.J., Gan, T., Kipp, M.A., Tissot, F.L. H., Kaufman, A.J. & Parente, M. (2024). Carbonate uranium isotopes record global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event. Proceedings of the National Academy of Sciences, 121, e2406032121. https://doi.org/10.1073/pnas.2406032121 | SGP |
723 | Revel, M., Ducassou, E., Grousset, F.E., Bernasconi, S.M., Migeon, S., Revillon, S., Mascle, J., Murat, A., Zaragosi, S. & Bosch, D. (2010). 100,000 Years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews, 29, 1342-1362. https://doi.org/10.1016/j.quascirev.2010.02.006 | DM-SED |
794 | Rheams, K.F. & Neathery, T.L. (1984). Characterization and Geochemistry of Devonian Oil Shale: North Alabama, Northwest Georgia, and South-Central Tennessee (A Resource Evaluation) Final Report. Technical Information Center Oak Ridge Tennessee. | DM-SED |
471 | Richiano, S. (2014). Lower Cretaceous anoxic conditions IN the Austral basin, south-western Gondwana, Patagonia Argentina. Journal of South American Earth Sciences, 54, 37-46. https://doi.org/10.1016/j.jsames.2014.04.006 | SGP |
472 | Richiano, S., Gómez-Peral, L.E., Varela, A.N., Gómez Dacal, A.R., Cavarozzi, C.E. & Poiré, D.G. (2019). Geochemical characterization of black shales from the Río Mayer Formation (Early Cretaceous), Austral-Magallanes Basin, Argentina: Provenance response during Gondwana break-up. Journal of South American Earth Sciences, 93, 67-83. https://doi.org/10.1016/j.jsames.2019.04.009 | SGP |
474 | Richiano, S., Varela, A.N., Gómez-Peral, L.E., Cereceda, A. & Poiré, D.G. (2015). Composition of the Lower Cretaceous source rock from the Austral Basin (Río Mayer Formation, Patagonia, Argentina): Regional implication for unconventional reservoirs in the Southern Andes. Marine and Petroleum Geology, 66, 764-790. https://doi.org/10.1016/j.marpetgeo.2015.07.018 | SGP |
451 | Rico, K.I., Sheldon, N.D., Gallagher, T.M. & Chappaz, A. (2019). Redox Chemistry and Molybdenum Burial in a Mesoproterozoic Lake. Geophysical Research Letters, 46, 5871-5878. https://doi.org/10.1029/2019GL083316 | SGP |
361 | Riley, K.W. & Saxby, J.D. (1982). Association of organic matter and vanadium in oil shale from the Toolebuc Formation of the Eromanga Basin, Australia. Chemical Geology, 37, 265-275. https://doi.org/10.1016/0009-2541(82)90082-1 | USGS-CMIBS |
673 | Rimmer, S.M. (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206, 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029 | DM-SED |
422 | Ritcey, D.H., Evenchick, C.A. & Ratcliffe, K.T. (2006). Geochemical and heavy mineral analyses of the Bowser Lake and Sustut groups, north central British Columbia, Canada. Geological Survey of Canada, Open File, 5072. https://doi.org/10.4095/221569 | USGS-CMIBS |
560 | Ritzer, S.R., Schoepfer, S.D., Bussian, B.A., Farrell, U.C., Fraser, T.A., Henderson, C.M., Kang, J., Mwinde, C.N., Patch, A.D. & Sperling, E.A. (2024). The relationship between total organic carbon and bottom water redox state in North American black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 649, 112266. https://doi.org/10.1016/j.palaeo.2024.112266 | SGP |
782 | Rivera, K.T. (2013). Geologic controls on nitrogen isotopes in marine black shale: a case study of the Woodford Shale, Anadarko Basin, Oklahoma. [Master's thesis, Oklahoma State University] | DM-SED |
620 | Robl, T.L. (1983). Commercial feasibility of Mississippian and Devonian oil shales of Kentucky. Final Report to U.S. Department of Energy, Grant No. DEFG44-80R-410-195, IMMR83/081, University of Kentucky Institute for Mining and Minerals Research, Lexington, Kentucky https://doi.org/10.2172/5394103 | USGS-CMIBS |
628 | Robl, T.L. & Barron, L.S. (1988). The geochemistry of Devonian black shales in central Kentucky and its relationship to inter-basinal correlation and depositional environment. In: McMillan, N.J., Embry, A.F. & Glass, D.J. (Eds.), Devonian of the World; proceedings of the 2nd international symposium on the Devonian System; Volume II, Sedimentation (pp. 377-392). Canadian Society of Petroleum Geologists. | USGS-CMIBS |
719 | Roddaz, M., Debat, P. & Nikiema, S. (2007). Geochemistry of Upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust. Precambrian Research, 159, 197-211. https://doi.org/10.1016/j.precamres.2007.06.008 | DM-SED |
394 | Rogers, N., Staal, C.R., Winchester, J.A. & Fyffe, L.R. (2003). Provenance and Chemical Stratigraphy of the Sedimentary Rocks of the Miramichi, Tetagouche, California Lake, and Fournier Groups, Northern New Brunswick. In: Goodfellow, W.D., McCutcheon, S.R. & Peter, J.M. (Eds.), Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Economic Geology Monograph 11. Society of Economic Geologists. https://doi.org/10.5382/Mono.11.07 | USGS-CMIBS |
465 | Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2016). Bulk mineralogy from x-ray diffraction analysis of Alberta stratigraphic units evaluated for shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab-delimited format). 2016-0003. AER/AGS Digital Data. | AGS |
464 | Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2016). Inorganic geochemistry of Alberta geological units for shale- and siltstone-hosted hydrocarbon evaluation (tabular data, tab-delimited format) 2016-0001. AER/AGS Digital Data. | AGS |
463 | Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2017). Bulk rock geochemistry data from x-ray fluorescence analysis of samples from Alberta stratigraphic units evaluated for their shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab-delimited format) 2016-0007. AER/AGS Digital Data. | AGS |
466 | Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2017). Clay mineral x-ray diffraction analysis results of outcrop samples from Alberta stratigraphic units evaluated for their shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab delimited format) 2016-0006. AER/AGS Digital Data. | AGS |
359 | Roser, B.P., Coombs, D.S., Korsch, R. & Campbell, J.D. (2002). Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine, 139, 665-685. https://doi.org/10.1017/S0016756802006945 | USGS-CMIBS |
164 | Ross, D.J.K. & Bustin, R.M. (2006). Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 54, 337-365. https://doi.org/10.2113/gscpgbull.54.4.337 | SGP |
364 | Ross, D.J.K. & Bustin, R.M. (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027 | USGS-CMIBS |
26 | Rozanov, A.G., Volkov, I.I. & Yagodinskaya, T.A. (1974). Forms of iron in surface layer of Black Sea sediments. In: Degens, E.T. & Ross, D.A. (Eds.), The Black Sea--Geology, Chemistry, and Biology (pp. 532-541). American Association of Petroleum Geologists. https://doi.org/10.1306/M20377C16 | SGP |
360 | Rudnick, R.L. & Gao, S. (2003). Composition of the Continental Crust. In: Anbar, A.D. & Weis, D. (Eds.), Treatise on Geochemistry Vol. 3 (pp. 1-64). Elsevier. https://doi.org/10.1016/B0-08-043751-6/03016-4 | USGS-CMIBS |
476 | Rugen, E.J., Ineson, J.R. & Frei, R. (2022). Low oxygen seawater and major shifts in the paleoenvironment towards the terminal Ediacaran: Insights from the Portfjeld Formation, North Greenland. Precambrian Research, 379, 106781. https://doi.org/10.1016/j.precamres.2022.106781 | SGP |
532 | Rutledge, R.L., Gilleaudeau, G.J., Remírez, M.N., Kaufman, A.J., Lyons, T.W., Bates, S.M. & Algeo, T.J. (2024). Productivity and organic carbon loading control uranium isotope behavior in ancient reducing settings: Implications for the paleoredox proxy. Geochimica et Cosmochimica Acta, 368, 197-213. https://doi.org/10.1016/j.gca.2024.01.007 | SGP |
213 | Saether, O.M., Xie, R., Aagaard, P., Endre, E., Løken, T. & Rudolph-Lund, K. (2010). Main and trace element content of shales from Ankerskogen (Hamar) and Øvre Slottsgt. (Oslo), Norway. NGU Report 2009.063. https://www.ngu.no/upload/Publikasjoner/Rapporter/2009/2009_063.pdf | SGP |
67 | Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J. & Lyons, T.W. (2003). A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strat, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195, 229-273. https://doi.org/10.1016/S0009-2541(02)00397-2 | SGP |
488 | Sahoo, S.K., Gilleaudeau, G.J., Wilson, K., Hart, B.S., Barnes, B.D., Faison, T., Bowman, A.R., Larson, T.E. & Kaufman, A.J. (2023). Basin-scale reconstruction of euxinia and Late Devonian mass extinctions. Nature, 615, 640-645. https://doi.org/10.1038/s41586-023-05716-2 | SGP |
52 | Sahoo, S.K., Planavsky, N.J., Jiang, G., Kendall, B., Owens, J.D., Wang, X., Shi, X., Anbar, A.D. & Lyons, T.W. (2016). Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology. https://doi.org/10.1111/gbi.12182 | SGP |
57 | Sahoo, S.K., Planavsky, N.J., Kendall, B., Wang, X., Shi, X., Scott, C.T., Anbar, A.D., Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489, 546-549. https://doi.org/10.1038/nature11445 | SGP |
783 | Salem, N. (2013). Geochemical characterisation of the Pliensbachian-Toarcian boundary during the onset of the Toarcian Oceanic Anoxic Event. North Yorkshire, UK. [Doctoral thesis, Newcastle University] | DM-SED |
432 | Sambasiva Rao, V.V., Sreenivas, B., Balaram, V., Govil, P.K. & Srinivasan, R. (1999). The nature of the Archean upper crust as revealed by the geochemistry of the Proterozoic shales of the Kaladgi basin, Karnataka, southern India. Precambrian Research, 98, 53-65. https://doi.org/10.1016/S0301-9268(99)00038-8 | USGS-CMIBS |
617 | Samson, S.D., Patchett, P., Gehrels, G.E. & Anderson, R.G. (1990). Nd and Sr Isotopic Characterization of the Wrangellia Terrane and Implications for Crustal Growth of the Canadian Cordillera. The Journal of Geology, 98, 749-762. https://doi.org/10.1086/629438 | USGS-CMIBS |
798 | Sandberg, C.A. & Gutschick, R.C. (1984). Distribution, microfauna, and source-rock potential of Mississippian Delle Phosphatic Member of Woodman Formation and equivalents, Utah and adjacent states. In: Woodward, J., Meissner, F.F. & Clayton, J.L. (Eds.), Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (pp. 135-178). Rocky Mountain Association of Geologists. | DM-SED |
753 | Saunders, J.A. & Savrda, C.E. (1993). Geochemistry of the Athens Shale: Implications for the genesis of Mississippi Valley-Type deposits of the Southernmost Appalachians. Southeastern Geology, 33, 161-170. | DM-SED |
743 | Saupé, F. & Vegas, G. (1987). Chemical and mineralogical compositions of black shales (Middle Palaeozoic of the Central Pyrenees, Haute-Garonne, France). Mineralogical Magazine, 51, 357-369. https://doi.org/10.1180/minmag.1987.051.361.03 | DM-SED |
351 | Sawyer, E.W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chemical Geology, 55, 77-95. https://doi.org/10.1016/0009-2541(86)90129-4 | USGS-CMIBS |
618 | Scasso, R. & Bauseh, W. (1989). Mineralogical and Geochemical Characterization of the Ameghino Formation Mudstones (Upper Jurassic, Antarctic Peninsula) and Its Stratigraphieal, Diagenetical and Paleoenvironmental Meaning. Polarforschung, 59, 179-198. | USGS-CMIBS |
428 | Schaller, T., Morford, J.L., Emerson, S.R. & Feely, R.A. (2000). Oxyanions in metalliferous sediments: tracers for paleoseawater metal concentrations? Geochimica et Cosmochimica Acta, 64, 2243-2254. https://doi.org/10.1016/S0016-7037(99)00443-3 | USGS-CMIBS |
170 | Scheller, E.L., Dickson, A.J., Canfield, D.E., Korte, C., Kristiansen, K.K. & Dahl, T.W. (2018). Ocean redox conditions between the snowballs – Geochemical constraints from Arena Formation, East Greenland. Precambrian Research, 319, 173-186. https://doi.org/10.1016/j.precamres.2017.12.009 | SGP |
145 | Schmid, S., Kunzmann, M. & Pagès, A. (2017). Inorganic geochemical evaluation of hydrocarbon source rock potential of Neoproterozoic strata in the Amadeus Basin, Australia. Marine and Petroleum Geology, 86, 1094-1105. https://doi.org/10.1016/j.marpetgeo.2017.07.015 | SGP |
520 | Schobben, M., Foster, W.J., Sleveland, A.R., Zuchuat, V., Svensen, H.H., Planke, S., Bond, D.P. G., Marcelis, F., Newton, R.J., Wignall, P.B. & Poulton, S.W. (2020). A nutrient control on marine anoxia during the end-Permian mass extinction. Nature Geoscience, 13, 640-646. https://doi.org/10.1038/s41561-020-0622-1 | SGP |
138 | Schoepfer, S.D., Algeo, T.J., Ward, P.D., Williford, K.H. & Haggart, J.W. (2016). Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction? Earth and Planetary Science Letters, 451, 138-148. https://doi.org/10.1016/j.epsl.2016.06.050 | SGP |
111 | Schoepfer, S.D., Henderson, C.M., Garrison, G.H. & Ward, P.D. (2012). Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 313-314, 181-188. https://doi.org/10.1016/j.palaeo.2011.10.019 | SGP |
112 | Schoepfer, S.D., Henderson, C.M., Garrison, G.H., Foriel, J., Ward, P.D., Selby, D., Hower, J.C., Algeo, T.J. & Shen, Y. (2013). Termination of a continent-margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada). Global and Planetary Change, 105, 21-35. https://doi.org/10.1016/j.gloplacha.2012.07.005 | SGP |
286 | Schoepfer, S.D., Tobin, T.S., Witts, J.D. & Newton, R.J. (2017). Intermittent euxinia in the high-latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 477, 40-54. https://doi.org/10.1016/j.palaeo.2017.04.013 | SGP |
165 | Schovsbo, N.H. (2003). The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica. Bulletin of the Geological Society of Denmark, 50, 11-27. https://doi.org/10.37570/bgsd-2003-50-01 | SGP |
674 | Schulte, P., Scheibner, C. & Speijer, R.P. (2011). Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene Thermal Maximum in the Dababiya Quarry section, Egypt. Chemical Geology, 285, 167-183. https://doi.org/10.1016/j.chemgeo.2011.04.004 | DM-SED |
814 | Schultz, L.G., Tourtelot, H.A., Gill, J.R. & Boerngen, J.G. (1980). Composition and Properties of the Pierre Shale and Equivalent Rocks, Northern Great Plains Region. Geochemistry of the Pierre Shale and Equivalent Rocks of Late Cretaceous Age, USGS Professional Paper 1064-B (pp. 114). U.S. Government Printing Office. https://doi.org/10.3133/pp1064B | DM-SED |
424 | Schultz, R.B. & Coveney, R.M. (1992). Time-dependent changes for Midcontinent Pennsylvania black shales, U.S.A.. Chemical Geology, 99, 83-100. https://doi.org/10.1016/0009-2541(92)90032-Z | USGS-CMIBS |
619 | Schultz, R.B. & Maynard, J. (1989). Midcontinent Virgilian (Upper Pennsylvanian) black shales in eastern Kansas. In: Grauch, R.I. & Leventhal, J.S. (Eds.), Metalliferous black shales and related ore deposits; program and abstracts, U.S. Geological Survey Circular 1037 (pp. 68-78). . | USGS-CMIBS |
106 | Scott, C.T., Slack, J.F. & Kelley, K.D. (2017). The hyper-enrichment of V and Zn in black shales of the Late Devonian-Early Mississippian Bakken formation (USA). Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.01.026 | SGP |
77 | Shaffer, J. (2015). Is the Utica Shale a Valid Estimator of Global Paleoredox Conditions? [Bachelor's thesis, Harvard University] | SGP |
200 | Shaffer, N.R. (1996). Lateral variation in mineralogy and geochemistry of Pennsylvanian black shale sequences related to contemporancous fresh water channels, southwestern Indiana. [Doctoral thesis, Indiana University] | SGP |
162 | Shergold, J.H. (1985). Notes to accompany the Hay River-Mount Whelan Special 1:250 000 Geological Sheet, Southern Georgina Basin. Record 251, Geoscience Australia, Canberra https://pid.geoscience.gov.au/dataset/ga/15163 | SGP |
690 | Siebert, C., Kramers, J.D., Meisel, T., Morel, P. & Nägler, T. (2005). PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta, 69, 1787-1801. https://doi.org/10.1016/j.gca.2004.10.006 | DM-SED |
368 | Sifeta, K., Roser, B.P. & Kimura, J. (2005). Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, Northern Ethiopia. Journal of African Earth Sciences, 41, 212-234. https://doi.org/10.1016/j.jafrearsci.2005.04.004 | USGS-CMIBS |
649 | Sinclair, B.J. (1994). Geology and geochemistry of the Que River shale, Western Tasmania. [Bachelor's thesis, University of Tasmania] https://doi.org/10.25959/23211629.v1 | USGS-CMIBS |
441 | Singh, A.K. & Chakraborty, P.P. (2021). Geochemistry and hydrocarbon source rock potential of shales from the Palaeo-Mesoproterozoic Vindhyan Supergroup, central India. Energy Geoscience, S2666759221000585. https://doi.org/10.1016/j.engeos.2021.10.007 | SGP |
440 | Singh, A.K., Chakraborty, P.P. & Sarkar, S. (2018). Redox structure of Vindhyan hydrosphere: clues from total organic carbon, transition metal (Mo, Cr) concentrations and stable isotope (δ13C) chemistry. Current Science, 115, 1334-1341. https://doi.org/10.18520/cs%2Fv115%2Fi7%2F1334-1341 | SGP |
507 | Singh, P., Lu, W., Lu, Z., Jost, A.B., Lau, K.V., Bachan, A., van de Schootbrugge, B. & Payne, J.L. (2023). Reduction in animal abundance and oxygen availability during and after the end‐Triassic mass extinction. Geobiology, 21, 175-192. https://doi.org/10.1111/gbi.12533 | SGP |
621 | Slack, J.F. & Höy, T. (2000). Geochemistry and provenance of clastic metasedimentary rocks of the Aldridge and Fort Steele Formations, Purcell Supergroup, southeastern British Columbia. In: Lydon, J.W. (Ed.), The Geological Environment of the Sullivan Deposit, British Columbia. Geological Association of Canada Mineral Deposits Division, Special Publication No.1 (pp. 180-201). . | USGS-CMIBS |
291 | Slack, J.F., McAleer, R.J., Shanks, W.C. & Dumoulin, J.A. (2021). Diagenetic Barite-Pyrite-Wurtzite Formation and Redox Signatures in Triassic Mudstone, Brooks Range, Northern Alaska. Chemical Geology, 585, 120568. https://doi.org/10.1016/j.chemgeo.2021.120568 | SGP |
650 | Slack, J.F., Schmidt, J.M. & Dumoulin, J.A. (2004). Whole rock geochemical data for paleozoic sedimentary rocks of the western Brooks Range, Alaska. U.S. Geological Survey Open File Report 2004-1371. https://doi.org/10.3133/ofr20041371 | USGS-CMIBS |
251 | Slotznick, S., Sperling, E.A., Tosca, N.J., Miller, A.J., Clayton, K.E., van Helmond, N.A. G. M., Slomp, C.P. & Swanson-Hysell, N.L. (2019). Unraveling the Mineralogical Complexity of Sediment Iron Speciation Using Sequential Extractions. Geochemistry, Geophysics, Geosystems, 21, Articlee2019GC008666. https://doi.org/10.1029/2019GC008666 | SGP |
172 | Slotznick, S., Swanson-Hysell, N.L. & Sperling, E.A. (2018). Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proceedings of the National Academy of Sciences, 115, 12938-12943. https://doi.org/10.1073/pnas.1813493115 | SGP |
430 | Spalletti, L.A., Queralt, I., Matheos, S.D., Colombo, F. & Maggi, J. (2008). Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25, 440-463. https://doi.org/10.1016/j.jsames.2007.08.005 | USGS-CMIBS |
153 | Spencer, D. (1966). Factors Affecting Element Distributions in a Silurian Graptolite Band. Chemical Geology, 1, 221-249. https://doi.org/10.1016/0009-2541(66)90018-0 | SGP |
117 | Sperling, E.A. & Ingle, Jr., J.C. (2006). A Permian–Triassic boundary section at Quinn River Crossing, northwestern Nevada, and implications for the cause of the Early Triassic chert gap on the western Pangean margin. Geological Society of America Bulletin, 118, 733-746. https://doi.org/10.1130/B25803.1 | SGP |
158 | Sperling, E.A. & Stockey, R.G. (2018). The temporal and environmental context of early animal evolution: considering all the ingredients of an ‘explosion’. Integrative and Comparative Biology. https://doi.org/10.1093/icb/icy088 | SGP |
159 | Sperling, E.A., Balthazar, U. & Skovsted, C.B. (2018). On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada. Emerging Topics in Life Sciences. https://doi.org/10.1042/ETLS20170163 | SGP |
20 | Sperling, E.A., Carbone, C., Strauss, J.V., Johnston, D.T., Narbonne, G.M. & Macdonald, F.A. (2016). Oxygen, facies, and secular controls on the appearance of Cryogenia and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada. Geological Society of America Bulletin, 128, 558-575. https://doi.org/10.1130/B31329.1 | SGP |
23 | Sperling, E.A., Halverson, G.P., Knoll, A.H., Macdonald, F.A. & Johnston, D.T. (2013). A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters, 371-372, 143-155. https://doi.org/10.1016/j.epsl.2013.04.003 | SGP |
264 | Sperling, E.A., Melchin, M.J., Fraser, T.A., Stockey, R.G., Farrell, U.C., Bhajan, L., Brunoir, T.N., Cole, D.B., Gill, B.C., Lenz, A.C., Loydell, D.K., Malinowski, J.K., Miller, A.J., Plaza-Torres, S., Bock, B., Rooney, A.D., Tecklenburg, S., Vogel, J.M., Planavsky, N.J. & Strauss, J.V. (2021). A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 7, eabf4382. https://doi.org/10.1126/sciadv.abf4382 | SGP |
15 | Sperling, E.A., Rooney, A.D., Hays, L., Sergeev, V.N., Vorob'eva, N.G., Sergeeva, N.D., Selby, D., Johnston, D.T. & Knoll, A.H. (2014). Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12, 373-386. https://doi.org/10.1111/gbi.12091 | SGP |
64 | Sperling, E.A., Wolock, C.J., Morgan, A.S., Gill, B.C., Kunzmann, M., Halverson, G.P., Macdonald, F.A., Knoll, A.H. & Johnston, D.T. (2015). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523, 451-454. https://doi.org/10.1038/nature14589 | SGP |
196 | Spinks, S.C., Schmid, S. & Pagès, A. (2016). Delayed euxinia in Paleoproterozoic intracontinental seas: Vital havens for the evolution of eukaryotes? Precambrian Research, 287, 108-114. https://doi.org/10.1016/j.precamres.2016.11.002 | SGP |
493 | Spinks, S.C., Sperling, E.A., Thorne, R.L., LaFountain, F., White, A.J., Armstrong, J., Woltering, M. & Tyler, I.M. (2023). Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga. Geobiology, 21, 28-43. https://doi.org/10.1111/gbi.12524 | SGP |
582 | Sprinkel, D.A. & Waanders, G.L. (2005). Stratigraphy, organic microfossils, and thermal maturation of the Neoproterozoic Uinta Mountain Group in the eastern Uinta Mountains, northeastern Utah. In: Dehler, C.M., Pederson, J.L., Sprinkel, D.A. & Kowallis, B.J. (Eds.), Uinta Mountain Geology (pp. 63-73). Utah Geological Association. | SGP |
630 | Stanley, C.R. & Gemmell, J. (1995). Lithogeochemical exploration for metasomatic alteration zones using Pearce element ratios: Heliyer case study. Studies of VHMS-related alteration: geochemical and mineralogical vectors to ore, AMIRA/ARC project P439, Report 1. http://www.utas.edu.au/__data/assets/pdf_file/0018/270009/P439_01_Nov_1995.pdf | USGS-CMIBS |
435 | Stevenson, R. (1995). Crust and mantle evolution in the Late Archean: Evidence from a Sm-Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario, Canada. Geological Society of America Bulletin, 107, 1458-1467. https://doi.org/10.1130/0016-7606(1995)107<1458:CAMEIT>2.3.CO;2 | USGS-CMIBS |
253 | Strauss, J.V., Fraser, T.A., Melchin, M.J., Allen, T., Malinowski, J.K., Feng, X., Taylor, J.F., Day, J., Gill, B.C. & Sperling, E.A. (2020). The Road River Group of northern Yukon, Canada: early Paleozoic deep-water sedimentation within the Great American Carbonate Bank. Canadian Journal of Earth Sciences, 57, 1193-1219. https://doi.org/10.1139/cjes-2020-0017 | SGP |
315 | Stüeken, E.E., Buick, R. & Anbar, A.D. (2015). Selenium isotopes support free O2 in the latest Archean. Geology, 43, 259-262. https://doi.org/10.1130/G36218.1 | SGP |
234 | Stüeken, E.E., Buick, R. & Lyons, T.W. (2019). Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Research, 334, Article105474. https://doi.org/10.1016/j.precamres.2019.105474 | SGP |
113 | Stüeken, E.E., Foriel, J., Buick, R. & Schoepfer, S.D. (2015). Selenium isotope ratios, redox changes and biological productivity across the end-Permian mass extinction. Chemical Geology, 410, 28-39. https://doi.org/10.1016/j.chemgeo.2015.05.021 | SGP |
231 | Stüeken, E.E., Martinez, A., Love, G.D., Olsen, P.E., Bates, S.M. & Lyons, T.W. (2019). Effects of pH on redox proxies in a Jurassic rift lake: Implications for interpreting environmental records in deep time. Geochimica et Cosmochimica Acta, 252, 240-267. https://doi.org/10.1016/j.gca.2019.03.014 | SGP |
353 | Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K. & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147, 124-147. https://doi.org/10.1016/j.precamres.2006.02.006 | USGS-CMIBS |
254 | Sullivan, N.B., Loydell, D.K., Montgomery, P., Molyneux, S.G., Zalasiewicz, J.A., Ratcliffe, K.T., Campbell, E., Griffiths, J.D. & Lewis, G. (2018). A record of Late Ordovician to Silurian oceanographic events on the margin of Baltica based on new carbon isotope data, elemental geochemistry, and biostratigraphy from two boreholes in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 95-106. https://doi.org/10.1016/j.palaeo.2017.10.016 | SGP |
198 | Sumartojo, J. (1974). A Study of the Mineralogy and Geochemistry of the Tindelpina Shale (Upper Proterozoic) Adelaide Geosyncline, South Australia. [Doctoral thesis, University of Cincinnati] https://scholar.uc.edu/show/pv63g0260 | SGP |
809 | Sun, Y., Wang, W., Lang, X., Guan, C., Ouyang, Q., Pang, K., Li, G., Hu, Y., Shi, H., Zhao, X. & Zhou, C. (2025). A shallow-water oxygen minimum zone in an oligotrophic Tonian basin. Nature Communications, 16, 725. https://doi.org/10.1038/s41467-025-55881-3 | SGP |
688 | Sun, Y.D., Wignall, P.B., Joachimski, M.M., Bond, D.P. G., Grasby, S.E., Lai, X.L., Wang, L.N., Zhang, Z.T. & Sun, S. (2016). Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444, 88-100. https://doi.org/10.1016/j.epsl.2016.03.037 | DM-SED |
687 | Takahashi, S., Yamasaki, S., Ogawa, Y., Kimura, K., Kaiho, K., Yoshida, T. & Tsuchiya, N. (2014). Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth and Planetary Science Letters, 393, 94-104. https://doi.org/10.1016/j.epsl.2014.02.041 | DM-SED |
709 | Tanner, L.H., Kyte, F.T., Richoz, S. & Krystyn, L. (2016). Distribution of iridium and associated geochemistry across the Triassic–Jurassic boundary in sections at Kuhjoch and Kendlbach, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 13-26. https://doi.org/10.1016/j.palaeo.2016.01.011 | DM-SED |
495 | Tao, J., Zhang, J., Liu, Y., Stüeken, E.E., Dong, Z., Shi, M., Li, P., Zhang, Q. & Poulton, S.W. (2022). A stable and moderate nitrate pool in largely anoxic Mesoproterozoic oceans and implications for eukaryote evolution. Precambrian Research, 381, 106868. https://doi.org/10.1016/j.precamres.2022.106868 | SGP |
651 | Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Scientific Publications. | USGS-CMIBS |
208 | Them, T.R., Gill, B.C., Caruthers, A.H., Gerhardt, A.M., Gröcke, D.R., Lyons, T.W., Marroquín, S.M., Nielsen, S.G., Trabucho Alexandre, J.P. & Owens, J.D. (2018). Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proceedings of the National Academy of Sciences, 115, 6596-6601. https://doi.org/10.1073/pnas.1803478115 | SGP |
206 | Them, T.R., Gill, B.C., Caruthers, A.H., Gröcke, D.R., Tulsky, E.T., Martindale, R.C., Poulton, T.P. & Smith, P.L. (2017). High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth and Planetary Science Letters, 459, 118-126. https://doi.org/10.1016/j.epsl.2016.11.021 | SGP |
207 | Them, T.R., Gill, B.C., Selby, D., Gröcke, D.R., Friedman, R.M. & Owens, J.D. (2017). Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Nature: Scientific Reports, 7, 1-10. https://doi.org/10.1038/s41598-017-05307-y | SGP |
209 | Them, T.R., Jagoe, C.H., Caruthers, A.H., Gill, B.C., Grasby, S.E., Gröcke, D.R., Yin, R. & Owens, J.D. (2019). Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 507, 62-72. https://doi.org/10.1016/j.epsl.2018.11.029 | SGP |
533 | Them, T.R., Owens, J.D., Marroquín, S.M., Caruthers, A.H., Alexandre, J.P. & Gill, B.C. (2022). Reduced Marine Molybdenum Inventory Related to Enhanced Organic Carbon Burial and an Expansion of Reducing Environments in the Toarcian (Early Jurassic) Oceans. AGU Advances, 3, e2022AV000671. https://doi.org/10.1029/2022AV000671 | SGP |
101 | Thompson, W.R. (2013). A Geochemical Assessment of the Utica Shale in the Mohawk Valley of New York: Evidence for Diachronous Deposition and Ramifications for Potential Hydrocarbon Systems. [Bachelor's thesis, Harvard University] | SGP |
128 | Thomson, D., Rainbird, R.H., Planavsky, N.J., Lyons, T.W. & Bekker, A. (2015). Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A record of ocean composition prior to the Cryogenian glaciations. Precambrian Research, 263, 232-245. https://doi.org/10.1016/j.precamres.2015.02.007 | SGP |
663 | Tian, X. & Luo, K. (2017). Distribution and enrichment patterns of selenium in the Ediacaran and early Cambrian strata in the Yangtze Gorges area, South China. Science China Earth Sciences, 60, 1268-1282. https://doi.org/10.1007/s11430-016-9045-1 | DM-SED |
747 | Tian, X., Luo, K. & Zuza, A.V. (2017). The Trace Element Distribution Patterns of Ediacaran‐Early Cambrian Black Shales and the Origin of Selenium in the Guangning Area, Western Guangdong Province, South China. Acta Geologica Sinica - English Edition, 91, 1978-1991. https://doi.org/10.1111/1755-6724.13445 | DM-SED |
632 | Toole, R. (2006). Petrographic and chemical variations through the Goldenville and Halifax formations, Bear River, High Head, and Broad River sections, southwestern Nova Scotia. [Bachelor's thesis, Acadia University] | USGS-CMIBS |
222 | Tostevin, R., Clarkson, M.O., Gangl, S., Shields, G.A., Wood, R.A., Bowyer, F.T., Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506, 104-112. https://doi.org/10.1016/j.epsl.2018.10.045 | SGP |
221 | Tostevin, R., He, T., Turchyn, A.V., Wood, R.A., Penny, A.M., Bowyer, F.T., Antler, G. & Shields, G.A. (2017). Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate.. Precambrian Research, 290, 113-125. https://doi.org/10.1016/j.precamres.2017.01.004 | SGP |
220 | Tostevin, R., Wood, R.A., Shields, G.A., Poulton, S.W., Guilbaud, R., Bowyer, F.T., Penny, A.M., He, T., Curtis, A., Hoffmann, K. & Clarkson, M.O. (2016). Low-oxygen waters limited habitable space for early animals. Nature Communications, 7, Article12818. https://doi.org/10.1038/ncomms12818 | SGP |
592 | Trecalli, A., Spangenberg, J.E., Adatte, T., Föllmi, K.B. & Parente, M. (2012). Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth and Planetary Science Letters, 357-358, 214-225. https://doi.org/10.1016/j.epsl.2012.09.043 | SGP |
227 | Tribovillard, N., Desprairies, A., Lallier-Vergès, E., Bertrand, P., Moureau, N., Ramdani, A. & Ramanampisoa, L. (1994). Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 165-181. https://doi.org/10.1016/0031-0182(94)90028-0 | SGP |
681 | Tribovillard, N., Hatem, E., Averbuch, O., Barbecot, F., Bout-Roumazeilles, V. & Trentesaux, A. (2015). Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology, 401, 67-82. https://doi.org/10.1016/j.chemgeo.2015.02.026 | DM-SED |
119 | Tripathy, G.R., Hannah, J.L., Stein, H.J. & Yang, G. (2014). Re-Os age and depositional environment for black shales from the Cambrian-Ordovician boundary, Green Point, western Newfoundland. Geochemistry, Geophysics, Geosystems, 15, 1021-1037. https://doi.org/10.1002/2013GC005217 | SGP |
511 | Tu, C., Diamond, C.W., Stüeken, E.E., Cao, M., Pan, W. & Lyons, T.W. (2024). Dynamic evolution of marine productivity, redox, and biogeochemical cycling track local and global controls on Cryogenian sea-level change. Geochimica et Cosmochimica Acta, 365, 114-135. https://doi.org/10.1016/j.gca.2023.12.005 | SGP |
283 | Turner, A.C.E., Algeo, T.J., Peng, Y. & Herrmann, A.D. (2019). Circulation patterns in the Late Pennsylvanian North American Midcontinent Sea inferred from spatial gradients in sediment chemistry and mineralogy. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109023. https://doi.org/10.1016/j.palaeo.2018.12.008 | SGP |
721 | Turner, E.C. & Kamber, B.S. (2012). Arctic Bay Formation, Borden Basin, Nunavut (Canada): Basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean. Precambrian Research, 208-211, 1-18. https://doi.org/10.1016/j.precamres.2012.03.006 | DM-SED |
423 | Ugidos, J.M., Armenteros, I., Barba, P., Valladares, M.I. & Colmenero, J.R. (1997). Geochemistry and petrology of recycled orogen-derived sediments: a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain. Precambrian Research, 84, 163-180. https://doi.org/10.1016/S0301-9268(97)00023-5 | USGS-CMIBS |
354 | Ugidos, J.M., Sánchez-Santos, J.M., Barba, P. & Valladares, M.I. (2010). Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical data and statistical results as evidence for a shared homogenised source area. Precambrian Research, 178, 51-58. https://doi.org/10.1016/j.precamres.2010.01.009 | USGS-CMIBS |
355 | Ugidos, J.M., Valladares, M.I., Barba, P. & Ellam, R.M. (2003). The Upper Neoproterozoic–Lower Cambrian of the Central Iberian Zone, Spain: chemical and isotopic (Sm-Nd) evidence that the sedimentary succession records an inverted stratigraphy of its source. Geochimica et Cosmochimica Acta, 67, 2615-2629. https://doi.org/10.1016/S0016-7037(03)00027-9 | USGS-CMIBS |
357 | Ugidos, J.M., Valladares, M.I., Recio, C., Rogers, G., Fallick, A.E. & Stephens, W.E. (1997). Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chemical Geology, 136, 55-70. https://doi.org/10.1016/S0009-2541(96)00138-6 | USGS-CMIBS |
135 | Uhlein, G.J., Uhlein, A., Halverson, G.P., Stevenson, R., Caxito, F.A., Cox, G.M. & Carvalho, J.F.M.G. (2016). The Carrancas Formation, Bambuí Group: A record of pre-Marinoan sedimentation on the southern São Francisco craton, Brazil. Journal of South American Earth Sciences, 71, 1-16. https://doi.org/10.1016/j.jsames.2016.06.009 | SGP |
627 | Van Baalen, M.R. (2006). Geology and geochemistry of metamorphosed black shales in central Maine. In: Gibson, D., Daly, J. & Reusch, D. (Eds.), Guidebook for field trips in western Maine (pp. 217-237). . | USGS-CMIBS |
459 | van de Schootbrugge, B., Payne, J.L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K.B. & Quan, T.M. (2008). Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems, 9, n/a-n/a. https://doi.org/10.1029/2007GC001914 | SGP |
144 | Ver Straeten, C.A., Brett, C.E. & Sageman, B.B. (2011). Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 54-73. https://doi.org/10.1016/j.palaeo.2010.10.010 | SGP |
744 | Vine, J.D. & Tourtelot, E.B. (1970). Geochemistry of black shale deposits; a summary report. Economic Geology, 65, 253-272. https://doi.org/10.2113/gsecongeo.65.3.253 | DM-SED |
199 | Voolma, M., Soesoo, A., Hade, S., Hints, R. & Kallaste, T. (2013). Geochemical Heterogeneity of Estonian Graptolite Argillite. Oil Shale, 30, 377-401. https://doi.org/10.3176/oil.2013.3.02 | SGP |
60 | Wallis, E. (2007). The climatic and environmental history of the South Chinese Yangtze Platform during the Neoproterozoic and Early Cambrian: Hydrothermally active and salinity stratified epicontinental basins a key for understanding the "Cambrian Explosion"? [Doctoral thesis, Technische Universität Berlin] https://doi.org/10.14279/depositonce-1565 | SGP |
575 | Wang, C., Dong, Z., Robbins, L.J., Zhang, B., Peng, Z., Tong, X., Zhang, L. & Konhauser, K.O. (2024). A craton-wide geochemical survey of late Archean banded iron formations in China. Earth and Planetary Science Letters, 642, 118879. https://doi.org/10.1016/j.epsl.2024.118879 | SGP |
41 | Wang, J., Chen, D., Yan, D., Wei, H. & Xiang, L. (2012). Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chemical Geology, 306-307, 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005 | SGP |
47 | Wang, X., Shi, X., Zhao, X. & Tang, D. (2015). Increase of seawater Mo inventory and ocean oxygenation during the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 621-631. https://doi.org/10.1016/j.palaeo.2015.09.003 | SGP |
685 | Wang, X., Tang, Y., Jiang, Y., Xie, P., Zhang, S. & Chen, Z. (2017). Mineralogy and geochemistry of an organic- and V-Cr-Mo-U-rich siliceous rock of Late Permian age, western Hubei Province, China. International Journal of Coal Geology, 172, 19-30. https://doi.org/10.1016/j.coal.2016.12.006 | DM-SED |
551 | Wang, X., Zhang, S., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Haxen, E.R., Su, J., Wang, Y. & Canfield, D.E. (2017). Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. American Journal of Science, 317, 861-900. https://doi.org/10.2475/08.2017.01 | SGP |
552 | Wang, X., Zhang, S., Ye, Y., Ma, S., Su, J., Wang, H. & Canfield, D.E. (2023). Nitrogen cycling during the Mesoproterozoic as informed by the 1400 million year old Xiamaling Formation. Earth-Science Reviews, 243, 104499. https://doi.org/10.1016/j.earscirev.2023.104499 | SGP |
570 | Wang, Y., Wignall, P.B., Xiong, Y., Loydell, D.K., Peakall, J., Baas, J.H., Mills, B.J.W. & Poulton, S.W. (2024). Marine redox dynamics and biotic response to the mid-Silurian Ireviken Extinction Event in a mid-shelf setting. Journal of the Geological Society, 181, jgs2023-155. https://doi.org/10.1144/jgs2023-155 | SGP |
385 | Wang, Z. & Li, G. (1991). Barite and witherite deposits in Lower Cambrian shales of South China; stratigraphic distribution and geochemical characterization. Economic Geology, 86, 354-363. https://doi.org/10.2113/gsecongeo.86.2.354 | USGS-CMIBS |
741 | Wani, H. & Mondal, M.M.E. (2011). Evaluation of provenance, tectonic setting, and paleoredox conditions of the Mesoproterozoic–Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales. Lithosphere, 3, 143-154. https://doi.org/10.1130/L74.1 | DM-SED |
625 | Watanabe, Y. (2002). The Late Archean biosphere: Implications of organic and inorganic geochemistry of marine shales and terrestrial paleosols. [Doctoral thesis, The Pennsylvania State University] https://etda.libraries.psu.edu/catalog/5979 | USGS-CMIBS |
577 | Wei, C., Cao, J., Dong, T. & Wang, Y. (2024). Effects of the Emeishan large igneous province (ELIP) and coastal upwelling on paleoenvironment and organic matter accumulation during the Middle Permian (Capitanian), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 653, 112426. https://doi.org/10.1016/j.palaeo.2024.112426 | SGP |
724 | Wei, H., Algeo, T.J., Yu, H., Wang, J., Guo, C. & Shi, G. (2015). Episodic euxinia in the Changhsingian (late Permian) of South China: Evidence from framboidal pyrite and geochemical data. Sedimentary Geology, 319, 78-97. https://doi.org/10.1016/j.sedgeo.2014.11.008 | DM-SED |
88 | Wen, H., Fan, H., Zhang, Y., Cloquet, C. & Carignan, J. (2015). Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164, 1-16. https://doi.org/10.1016/j.gca.2015.05.008 | SGP |
68 | Werne, J.P., Sageman, B.B., Lyons, T.W. & Hollander, D.J. (2002). An integrated assessment of a "type euxinic" deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. American Journal of Science, 302, 110-143. https://doi.org/10.2475/ajs.302.2.110 | SGP |
654 | White, C.E. (2010). Compilation of geochemical and petrographic data from the western and southern parts of the Goldenville and Halifax groups, Nova Scotia. Nova Scotia Department of Natural Resources Mineral Resources Branch Open File Report ME 2010-1. https://novascotia.ca/natr/meb/pdf/10ofr01.asp | USGS-CMIBS |
657 | White, D.A., Elrick, M., Romaniello, S.J. & Zhang, F. (2018). Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones. Earth and Planetary Science Letters, 503, 68-77. https://doi.org/10.1016/j.epsl.2018.09.020 | SGP |
678 | Wille, M., Nebel, O., Van Kranendonk, M.J., Schoenberg, R., Kleinhanns, I.C. & Ellwood, M.J. (2013). Mo–Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76Ga black shales from the Pilbara, Western Australia. Chemical Geology, 340, 68-76. https://doi.org/10.1016/j.chemgeo.2012.12.018 | DM-SED |
781 | Williams, J.C. (2014). Black Shales of the Neo-Tethys: The Geochemical Record of the End-Permian Crisis. [Doctoral thesis, University of Massachusetts Boston] | DM-SED |
677 | Williams, J.C., Basu, A.R., Bhargava, O.N., Ahluwalia, A.D. & Hannigan, R.E. (2012). Resolving original signatures from a sea of overprint — The geochemistry of the Gungri Shale (Upper Permian, Spiti Valley, India). Chemical Geology, 324-325, 59-72. https://doi.org/10.1016/j.chemgeo.2012.01.020 | DM-SED |
707 | Wójcik-Tabol, P. & Ślączka, A. (2015). Are Early Cretaceous environmental changes recorded in deposits of the Western part of the Silesian Nappe? A geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 293-308. https://doi.org/10.1016/j.palaeo.2014.10.040 | DM-SED |
492 | Woltz, C.R., Porter, S.M., Agić, H., Dehler, C.M., Junium, C.K., Riedman, L.A., Hodgskiss, M.S. W., Wörndle, S. & Halverson, G.P. (2021). Total organic carbon and the preservation of organic-walled microfossils in Precambrian shale. Geology, 49, 556-560. https://doi.org/10.1130/G48116.1 | SGP |
94 | Wood, R.A., Poulton, S.W., Prave, A.R., Hoffmann, K., Clarkson, M.O., Guilbaud, R., Lyne, J.W., Tostevin, R., Bowyer, F.T., Penny, A.M., Curtis, A. & Kasemann, S.A. (2015). Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Research, 261, 252-271. https://doi.org/10.1016/j.precamres.2015.02.004 | SGP |
525 | Wörndle, S., Crockford, P.W., Kunzmann, M., Bui, T. & Halverson, G.P. (2019). Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through I/[Ca + Mg] ratios. Chemical Geology, 524, 119-135. https://doi.org/10.1016/j.chemgeo.2019.06.015 | SGP |
534 | Worsham, S.R., Holmden, C. & Qing, H. (2013). Preliminary results of a magnesium isotope study of dolomite in Upper Ordovician strata, southeastern Saskatchewan, northern Williston Basin. Summary of Investigations 2013, Volume 1, 2013-4.1, Paper A-9, Sask. Ministry of the Economy http://publications.gov.sk.ca/documents/310/91937-SOI2013V1_A9_Worsham_et_al.pdf | SGP |
392 | Wronkiewicz, D.J. & Condie, K.C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401-2416. https://doi.org/10.1016/0016-7037(87)90293-6 | USGS-CMIBS |
366 | Wronkiewicz, D.J. & Condie, K.C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, 1537-1549. https://doi.org/10.1016/0016-7037(89)90236-6 | USGS-CMIBS |
147 | Xiang, L., Schoepfer, S.D., Shen, S., Cao, C. & Zhang, H. (2017). Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran–Cambrian transition: Evidence from western Zhejiang, South China. Earth and Planetary Science Letters, 464, 84-94. https://doi.org/10.1016/j.epsl.2017.02.012 | SGP |
197 | Xiang, L., Schoepfer, S.D., Zhang, H., Cao, C. & Shen, S. (2018). Evolution of primary producers and productivity across the Ediacaran-Cambrian transition. Precambrian Research, 313, 68-77. https://doi.org/10.1016/j.precamres.2018.05.023 | SGP |
229 | Xiang, L., Schoepfer, S.D., Zhang, H., Chen, Z., Cao, C. & Shen, S. (2020). Deep-water dissolved iron cycling and reservoir size across the Ediacaran-Cambrian transition. Chemical Geology, 541, Article119575. https://doi.org/10.1016/j.chemgeo.2020.119575 | SGP |
146 | Xiang, L., Schoepfer, S.D., Zhang, H., Yuan, D., Cao, C., Zheng, Q., Henderson, C.M. & Shen, S. (2016). Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 59-71. https://doi.org/10.1016/j.palaeo.2015.10.046 | SGP |
547 | Xiao, S., Shen, B., Tang, Q., Kaufman, A.J., Yuan, X., Li, J. & Qian, M. (2014). Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China. Precambrian Research, 246, 208-225. https://doi.org/10.1016/j.precamres.2014.03.004 | SGP |
516 | Xu, L., Lechte, M., Shi, X., Zheng, W., Zhou, L., Huang, K., Zhou, X. & Tang, D. (2024). Large Igneous Province Emplacement Triggered an Oxygenation Event at ∼1.4 Ga: Evidence From Mercury and Paleo‐Productivity Proxies. Geophysical Research Letters, 51, e2023GL106654. https://doi.org/10.1029/2023GL106654 | SGP |
50 | Xu, L., Lehmann, B., Mao, J., Nägler, T.F., Neubert, N., Böttcher, M.E. & Escher, P. (2012). Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319, 45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016 | SGP |
785 | Yamaguchi, K. (2002). Geochemistry of Archean–Paleoproterozoic black shales: the early evolution of the atmosphere, oceans, and biosphere. [Doctoral thesis, The Pennsylvania State University] | DM-SED |
425 | Yamashita, K. & Creaser, R.A. (1999). Geochemical and Nd isotopic constraints for the origin of Late Archean turbidites from the Yellowknife area, Northwest Territories, Canada. Geochimica et Cosmochimica Acta, 63, 2579-2598. https://doi.org/10.1016/S0016-7037(99)00167-2 | USGS-CMIBS |
755 | Yan, D., Chen, D., Wang, Q., Wang, J. & Wang, Z. (2009). Carbon and sulfur isotopic anomalies across the Ordovician–Silurian boundary on the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 274, 32-39. https://doi.org/10.1016/j.palaeo.2008.12.016 | DM-SED |
356 | Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P. & Zhang, F. (2007). Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197, 127-140. https://doi.org/10.1016/j.sedgeo.2006.09.004 | USGS-CMIBS |
140 | Yang, J., Cawood, P.A., Du, Y., Li, W. & Yan, J. (2016). Reconstructing Early Permian tropical climates from chemical weathering indices. Geological Society of America Bulletin, 128, 739-751. https://doi.org/10.1130/B31371.1 | SGP |
716 | Yang, R., Cao, J., Hu, G., Bian, L., Hu, K. & Fu, X. (2017). Marine to brackish depositional environments of the Jurassic–Cretaceous Suowa Formation, Qiangtang Basin (Tibet), China. Palaeogeography, Palaeoclimatology, Palaeoecology, 473, 41-56. https://doi.org/10.1016/j.palaeo.2017.02.031 | DM-SED |
324 | Yang, S., Kendall, B., Lu, X., Zhang, F. & Zheng, W. (2017). Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Research, 298, 187-201. https://doi.org/10.1016/j.precamres.2017.06.016 | SGP |
514 | Yang, X., Mao, J., Li, R., Huang, F., He, C., Zhao, C., Wei, W., Yang, G., Xiong, Y. & Poulton, S.W. (2024). Fluctuating oxygenation and dynamic iron cycling in the late Paleoproterozoic ocean. Earth and Planetary Science Letters, 626, 118554. https://doi.org/10.1016/j.epsl.2023.118554 | SGP |
508 | Ye, M., Zhang, S., Ye, Y., Wu, M. & Wang, X. (2023). Spatial and Temporal Redox Heterogeneity Controlled by a Fe(II), Anoxic Upwelling System in the Early Mesoproterozoic Ocean. Geophysical Research Letters, 50, e2023GL103598. https://doi.org/10.1029/2023GL103598 | SGP |
682 | Yin, R., Xu, L., Lehmann, B., Lepak, R.F., Hurley, J.P., Mao, J., Feng, X. & Hu, R. (2017). Anomalous mercury enrichment in Early Cambrian black shales of South China: Mercury isotopes indicate a seawater source. Chemical Geology, 467, 159-167. https://doi.org/10.1016/j.chemgeo.2017.08.010 | DM-SED |
738 | Young, G.M. (2002). Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in the Wasatch Range, Utah. Geological Society of America Bulletin, 114, 387-399. https://doi.org/10.1130/0016-7606(2002)114<0387:GIOANG>2.0.CO;2 | DM-SED |
365 | Yu, B., Dong, H., Widom, E., Chen, J. & Lin, C. (2009). Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34, 418-436. https://doi.org/10.1016/j.jseaes.2008.07.003 | USGS-CMIBS |
701 | Zeng, S., Wang, J., Fu, X., Chen, W., Feng, X., Wang, D., Song, C. & Wang, Z. (2015). Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Marine and Petroleum Geology, 64, 203-221. https://doi.org/10.1016/j.marpetgeo.2015.02.031 | DM-SED |
487 | Zhang, F., Stockey, R.G., Xiao, S., Shen, S., Dahl, T.W., Wei, G., Cao, M., Li, Z., Kang, J., Cui, Y., Anbar, A.D. & Planavsky, N.J. (2022). Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans. Earth and Planetary Science Letters, 583, 117437. https://doi.org/10.1016/j.epsl.2022.117437 | SGP |
482 | Zhang, J., Li, C., Fang, X., Li, W., Deng, Y., Tu, C., Algeo, T.J., Lyons, T.W. & Zhang, Y. (2022). Progressive expansion of seafloor anoxia in the Middle to Late Ordovician Yangtze Sea: Implications for concurrent decline of invertebrate diversity. Earth and Planetary Science Letters, 598, 117858. https://doi.org/10.1016/j.epsl.2022.117858 | SGP |
556 | Zhang, S., Su, J., Ma, S., Wang, H., Wang, X., He, K., Wang, H. & Canfield, D.E. (2021). Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Research, 357, 106166. https://doi.org/10.1016/j.precamres.2021.106166 | SGP |
554 | Zhang, S., Wang, X., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Costa, M., Connelly, J.N., Zhang, B., Su, J. & Canfield, D.E. (2016). Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences, 113, 1731-1736. https://doi.org/10.1073/pnas.1523449113 | SGP |
553 | Zhang, S., Wang, X., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Haxen, E.R., Wen, H., Ye, Y. & Canfield, D.E. (2019). Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid‐Proterozoic ocean. Geobiology, 17, 225-246. https://doi.org/10.1111/gbi.12337 | SGP |
555 | Zhang, S., Wang, X., Wang, H., Hammarlund, E.U., Su, J., Wang, Y. & Canfield, D.E. (2017). The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences, 14, 2133-2149. https://doi.org/10.5194/bg-14-2133-2017 | SGP |
497 | Zheng, W., Zhou, A., Sahoo, S.K., Nolan, M.R., Ostrander, C.M., Sun, R., Anbar, A.D., Xiao, S. & Chen, J. (2023). Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nature Communications, 14, 3920. https://doi.org/10.1038/s41467-023-39427-z | SGP |
160 | Zhou, C. & Jiang, S. (2009). Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279-286. https://doi.org/10.1016/j.palaeo.2008.10.024 | SGP |
700 | Zhou, L., Friis, H. & Poulsen, M.L. (2015). Geochemical evaluation of the Late Paleocene and Early Eocene shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61, 111-122. https://doi.org/10.1016/j.marpetgeo.2014.12.014 | DM-SED |
718 | Zhou, L., Kang, Z., Wang, Z., Peng, Y. & Xiao, H. (2017). Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159, 376-386. https://doi.org/10.1016/j.petrol.2017.09.047 | DM-SED |
426 | Zhou, L., Wignall, P.B., Su, J., Feng, Q., Xie, S., Zhao, L. & Huang, J. (2012). U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology, 324-325, 99-107. https://doi.org/10.1016/j.chemgeo.2012.03.020 | USGS-CMIBS |
500 | Zhou, X., Liu, Y., Cao, H., Zhong, H. & Li, Y. (2021). Responses of oceanic chemistry to climatic perturbations during the Ordovician-Silurian transition: Implications for geochemical proxies and organic accumulations. Marine and Petroleum Geology, 134, 105341. https://doi.org/10.1016/j.marpetgeo.2021.105341 | SGP |
576 | Zou, C., Qiu, Z., Poulton, S.W., Dong, D., Wang, H., Chen, D., Lu, B., Shi, Z. & Tao, H. (2018). Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46, 535-538. https://doi.org/10.1130/G40121.1 | SGP |
756 | Zuo, J., Tong, J., Zhao, L., Chang, D. & Zhao, R. (2013). Geochemical Environment Restoration of the Lower Yangtze Paleocean in the Early Triassic, Southeastern China. Earth Science-Journal of China University of Geosciences, 38, 441-453. https://doi.org/10.3799/dqkx.2013.044 | DM-SED |