B. References - ufarrell/sgp_phase2 GitHub Wiki

Published studies with data included in Phase 2

SGP reference_id Reference work Data Source(s)
329 Abanda, P.A. & Hannigan, R.E. (2006). Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 230, 42-59. https://doi.org/10.1016/j.chemgeo.2005.11.011 USGS-CMIBS
328 Abre, P., Cingolani, C.A., Zimmermann, U., Cairncross, B. & Chemale, F. (2011). Provenance of Ordovician clastic sequences of the San Rafael Block (Central Argentina), with emphasis on the Ponón Trehué Formation. Gondwana Research, 19, 275-290. https://doi.org/10.1016/j.gr.2010.05.013 USGS-CMIBS
720 Absar, N., Raza, M., Roy, M., Naqvi, S.M. & Roy, A.K. (2009). Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: Records from geochemistry of clastic sediments of 1.9Ga Gwalior Group. Precambrian Research, 168, 313-329. https://doi.org/10.1016/j.precamres.2008.11.001 DM-SED
449 Abshire, M.L., Riedinger, N., Clymer, J.M., Scott, C.T., Severmann, S., Romaniello, S.J. & Puckette, J.O. (2022). Reconstructing the paleoceanographic and redox conditions responsible for variations in uranium content in North American Devonian black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 587, 110763. https://doi.org/10.1016/j.palaeo.2021.110763 SGP
448 Abshire, M.L., Romaniello, S.J., Kuzminov, A.M., Cofrancesco, J., Severmann, S. & Riedinger, N. (2020). Uranium isotopes as a proxy for primary depositional redox conditions in organic-rich marine systems. Earth and Planetary Science Letters, 529, 115878. https://doi.org/10.1016/j.epsl.2019.115878 SGP
330 Adams, C.J., Cluzel, D. & Griffin, W.L. (2009). Detrital-zircon ages and geochemistry of sedimentary rocks in basement Mesozoic terranes and their cover rocks in New Caledonia, and provenances at the Eastern Gondwanaland margin∗. Australian Journal of Earth Sciences, 56, 1023-1047. https://doi.org/10.1080/08120090903246162 USGS-CMIBS
290 Adeboye, O.O., Riedinger, N. & Quan, T.M. (2022). Geochemical Evaluation of Organic Matter Enrichment in the “Mississippian Limestone” Interval of the Anadarko Shelf of Oklahoma. Marine and Petroleum Geology, 135, 105422. https://doi.org/10.1016/j.marpetgeo.2021.105422 SGP
289 Adeboye, O.O., Riedinger, N., Wu, T., Grammer, G. & Quan, T.M. (2020). Redox conditions on the Anadarko Shelf of Oklahoma during the deposition of the “Mississippian Limestone”. Marine and Petroleum Geology, 116, 104345. https://doi.org/10.1016/j.marpetgeo.2020.104345 SGP
93 Ahm, A.C., Bjerrum, C.J. & Hammarlund, E.U. (2017). Disentangling the record of diagenesis, local redox conditinos, and global seawater chemistry during the latest Ordovician glaciation. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2016.09.049 SGP
331 Alberdi-Genolet, M. & Tocco, R. (1999). Trace metals and organic geochemistry of the Machiques Member (Aptian–Albian) and La Luna Formation (Cenomanian–Campanian), Venezuela. Chemical Geology, 160, 19-38. https://doi.org/10.1016/S0009-2541(99)00044-3 USGS-CMIBS
691 Alexander, B.W., Bau, M., Andersson, P. & Dulski, P. (2008). Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378-394. https://doi.org/10.1016/j.gca.2007.10.028 DM-SED
444 Alferes, C.L., Rodrigues, R. & Pereira, E. (2011). Geoquímica orgânica aplicada à Formação Irati, na área de São Mateus do Sul (PR), Brasil. Geochimica Brasiliensis, 25. SGP
280 Algeo, T.J. & Maynard, J. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009 SGP
281 Algeo, T.J., Rowe, H., Hower, J.C., Schwark, L., Herrmann, A.D. & Heckel, P. (2008). Changes in ocean denitrification during Late Carboniferous glacial–interglacial cycles. Nature Geoscience, 1, 709-714. https://doi.org/10.1038/ngeo307 SGP
506 Algeo, T.J., Schwark, L. & Hower, J.C. (2004). High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology, 206, 259-288. https://doi.org/10.1016/j.chemgeo.2003.12.028 SGP
668 Alibert, C. & McCulloch, M.T. (1993). Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, western Australia. Geochimica et Cosmochimica Acta, 57, 187-204. https://doi.org/10.1016/0016-7037(93)90478-F DM-SED
672 Amajor, L.C. (1987). Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Sciences, 6, 633-641. https://doi.org/10.1016/0899-5362(87)90002-9 DM-SED
307 Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C.T., Garvin, J. & Buick, R. (2007). A Whiff of Oxygen Before the Great Oxidation Event? Science, 317, 1903-1906. https://doi.org/10.1126/science.1140325 SGP
510 Anderson, R.P., Tosca, N.J., Gaines, R.R., Mongiardino Koch, N. & Briggs, D.E. G. (2018). A mineralogical signature for Burgess Shale–type fossilization. Geology, 46, 347-350. https://doi.org/10.1130/G39941.1 SGP
431 Anjos, C.W., Meunier, A., Guimarães, E.M. & el Albani, A. (2010). Saponite-rich black shales and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism (Paraná basin, Brazil). Clays and Clay Minerals, 58, 606-626. https://doi.org/10.1346/CCMN.2010.0580503 USGS-CMIBS
304 Ansari, A.H., Ahmad, S., Govil, P., Agrawal, S. & Mathews, R.P. (2020). Mo-Ni and organic carbon isotope signatures of the mid-late Mesoproterozoic oxygenation. Journal of Asian Earth Sciences, 191, 104201. https://doi.org/10.1016/j.jseaes.2019.104201 SGP
305 Ansari, A.H., Singh, V.K., Sharma, M. & Kumar, K. (2021). High authigenic Co enrichment in the non‐euxinic buff‐grey and black shale of the Chandarpur Group, Chhattisgarh Supergroup: Implication for the late Mesoproterozoic shallow marine redox condition. Terra Nova, 34, 72-82. https://doi.org/10.1111/ter.12564 SGP
686 Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.Il, Balaram, V., Cruz-Martínez, A. & Avila-Ramírez, G. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus. Géoscience, 345, 185-202. https://doi.org/10.1016/j.crte.2013.03.004 DM-SED
652 Armstrong, D.K. & Sergerie, P. (2003). Data for the Comparative Resource Evaluation of Selected Shale Units, Southern Ontario. Ontario Geological Survey Open File Report 6094. https://www.geologyontario.mines.gov.on.ca/publication/OFR6094 USGS-CMIBS
333 Arnaboldi, M. & Meyers, P.A. (2007). Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 425-443. https://doi.org/10.1016/j.palaeo.2007.02.016 USGS-CMIBS
733 Arthur, M.A. & Dean, W.E. (1998). Organic‐matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography, 13, 395-411. https://doi.org/10.1029/98PA01161 DM-SED
623 Asiedu, D.K., Dampare, S.B., Sakyi, P., Banoeng-Yakubo, B., Osae, S., Nyarko, B.J. & Manu, J. (2004). Geochemistry of Paleoproterozoic metasedimentary rocks from the Birim diamondiferous field, southern Ghana: Implications for provenance and crustal evolution at the Archean-Proterozoic boundary. Geochemical Journal, 38, 215-228. https://doi.org/10.2343/geochemj.38.215 USGS-CMIBS
622 Asiedu, D.K., Suzuki, S., Nogami, K. & Shibata, T. (2000). Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: Constraints on provenance and tectonic environment. Geochemical Journal, 34, 155-173. https://doi.org/10.2343/geochemj.34.155 USGS-CMIBS
455 Bachan, A., van de Schootbrugge, B., Fiebig, J., McRoberts, C.A., Ciarapica, G. & Payne, J.L. (2012). Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ13Ccarb and δ13Corg records: Constraints from paired δ13C records. Geochemistry, Geophysics, Geosystems, 13. https://doi.org/10.1029/2012GC004150 SGP
698 Baioumy, H.M. & Lehmann, B. (2017). Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: Evidence for the late Cretaceous Tethys anoxia. Journal of African Earth Sciences, 133, 7-14. https://doi.org/10.1016/j.jafrearsci.2017.05.006 DM-SED
396 Baioumy, H.M., Eglinton, L.B. & Peucker-Ehrenbrink, B. (2011). Rhenium–osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt. Chemical Geology, 285, 70-81. https://doi.org/10.1016/j.chemgeo.2011.02.026 USGS-CMIBS
683 Baioumy, H.M., Ulfa, Y., Nawawi, M., Padmanabhan, E. & Anuar, M.N. (2016). Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: Implications for their origin and maturation. International Journal of Coal Geology, 165, 90-105. https://doi.org/10.1016/j.coal.2016.08.007 DM-SED
772 Baker, T.L. (1995). Elemental geochemistry and micropaleontology of an Upper Pennsylvanian black shale: The Haskell-Cass Cycle (Douglas Group), Southern Kansas. [Master's thesis, Texas Tech University] http://hdl.handle.net/2346/12744 DM-SED
731 Ball, T.T. & Farmer, G.L. (1998). Infilling history of a Neoproterozoic intracratonic basin: Nd isotope provenance studies of the Uinta Mountain Group, Western United States. Precambrian Research, 87, 1-18. https://doi.org/10.1016/S0301-9268(97)00051-X DM-SED
778 Bangert, B. (2000). Tephrostratigraphy, petrography, geochemistry, age and fossil record of the Ganigobis Shale Member and associated glaciomarine deposits of the Dwyka Group, Late Carboniferous, southern Africa. [Doctoral thesis, Bayerischen Julius-Maximilians-Universität Würzburg] https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/files/179/bangert.pdf DM-SED
599 Basson Smith, A.J. (2009). The Paleo-environmental significance of the iron-formations and iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan Basin, South Africa. [Master's thesis, University of Johannesburg] https://hdl.handle.net/10210/2440 USGS-CMIBS
480 Bastos, L.P., Pereira, E., da Costa Cavalcante, D., Ferreira Alferes, C.L., Jorge de Menezes, C. & Rodrigues, R. (2020). Expression of Early Cretaceous global anoxic events in Northeastern Brazilian basins. Cretaceous Research, 110, 104390. https://doi.org/10.1016/j.cretres.2020.104390 SGP
443 Bastos, L.P., Rodrigues, R., Pereira, E., Bergamaschi, S., Alferes, C.L., Augland, L.E., Domeier, M., Planke, S. & Svensen, H.H. (2021). The birth and demise of the vast epicontinental Permian Irati-Whitehill sea: Evidence from organic geochemistry, geochronology, and paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 562, 110103. https://doi.org/10.1016/j.palaeo.2020.110103 SGP
589 Bauer, K.W., Bottini, C., Frei, R., Asael, D., Planavsky, N.J., Francois, R., McKenzie, N., Erba, E. & Crowe, S.A. (2021). Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology, 49, 1452-1456. https://doi.org/10.1130/G49065.1 SGP
590 Bauer, K.W., Bottini, C., Katsev, S., Jellinek, M., Francois, R., Erba, E. & Crowe, S.A. (2022). Ferruginous oceans during OAE1a and collapse of the marine sulfate pool. Earth and Planetary Science Letters, 578, 117324. https://doi.org/10.1016/j.epsl.2021.117324 SGP
378 Bavinton, O.A. & Taylor, S.R. (1980). Rare earth element geochemistry of Archean metasedimentary rocks from Kambalda, Western Australia. Geochimica et Cosmochimica Acta, 44, 639-648. https://doi.org/10.1016/0016-7037(80)90154-4 USGS-CMIBS
766 Bernasconi, S.M. (1991). Geochemical and microbial controls on dolomite formation and organic matter production/preservation in anoxic environments: A case study from the Middle Triassic Grenzbitumenzone, Southern Alps (Ticino, Switzerland). [Doctoral thesis, ETH] https://doi.org/10.3929/ethz-a-000611458 DM-SED
379 Bhatia, M.R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97-113. https://doi.org/10.1016/0037-0738(85)90025-9 USGS-CMIBS
296 Birdwell, J.E. & French, K.L. (2019). Geochemistry data for the USGS Gulf Coast #1 West Woodway core - A thermally immature core of the Eagle Ford Group in central Texas. U.S. Geological Survey data release. https://doi.org/10.5066/P95QUX1H SGP
788 Bisnett, A.J. (2001). Petrography and geochemistry of Pennsylvanian black shales in offshore and nearshore stratigraphic settings in Midcontinent and Illinois Basins. [Doctoral thesis, University of Iowa] DM-SED
452 Bokanda, E., Fralick, P.W., Bisse, S., Ashukem, E., Belinga, B., Bokanda, F., Ligbwah, V., Chin, T. & Ekomane, E. (2022). Trace elements geochemistry, total organic carbon, palaeosalinity, and hydrothermal characteristics of the Cretaceous black shale in the Mamfe Basin (West Africa). Solid Earth Sciences, 7, 237-246. https://doi.org/10.1016/j.sesci.2022.07.001 SGP
453 Bokanda, E., Fralick, P.W., Ekomane, E., Bisse, S., Tata, C., Ashukem, E. & Belinga, B. (2021). Geochemical constraints on the provenance, paleoweathering and maturity of the Mamfe black shales, West Africa. Journal of African Earth Sciences, 175, 104078. https://doi.org/10.1016/j.jafrearsci.2020.104078 SGP
693 Bolhar, R., Hofmann, A., Siahi, M., Feng, Y. & Delvigne, C. (2015). A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ∼3.0 Ga Pongola Supergroup, Kaapvaal Craton. Geochimica et Cosmochimica Acta, 158, 57-78. https://doi.org/10.1016/j.gca.2015.02.026 DM-SED
414 Bolhar, R., Kamber, B.S., Moorbath, S., Whitehouse, M.J. & Collerson, K.D. (2005). Chemical characterization of earth’s most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland. Geochimica et Cosmochimica Acta, 69, 1555-1573. https://doi.org/10.1016/j.gca.2004.09.023 USGS-CMIBS
561 Bowman, C.N., Them, T.R., Knight, M.D., Kaljo, D., Eriksson, M.E., Hints, O., Martma, T., Owens, J.D. & Young, S.A. (2021). A multi-proxy approach to constrain reducing conditions in the Baltic Basin during the late Silurian Lau carbon isotope excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, 581, 110624. https://doi.org/10.1016/j.palaeo.2021.110624 SGP
562 Bowman, C.N., Young, S.A., Kaljo, D., Eriksson, M.E., Them, T.R., Hints, O., Martma, T. & Owens, J.D. (2019). Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology, 47, 968-972. https://doi.org/10.1130/G46571.1 SGP
509 Bowyer, F.T., Krause, A.J., Song, Y., Huang, K., Fu, Y., Shen, B., Li, J., Zhu, X., Kipp, M.A., Van Maldegem, L.M., Brocks, J.J., Shields, G.A., Le Hir, G., Mills, B.J.W. & Poulton, S.W. (2023). Biological diversification linked to environmental stabilization following the Sturtian Snowball glaciation. Science Advances, 9, eadf9999. https://doi.org/10.1126/sciadv.adf9999 SGP
238 Bowyer, F.T., Shore, A.J., Wood, R.A., Alcott, L.J., Thomas, A.L., Butler, I.B., Curtis, A., Hainanan, S., Curtis-Walcott, S., Penny, A.M. & Poulton, S.W. (2020). Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia. Nature: Scientific Reports, 10, Article2240. https://doi.org/10.1038/s41598-020-59335-2 SGP
239 Bowyer, F.T., Wood, R.A. & Poulton, S.W. (2017). Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective. Geobiology, 15, 516-551. https://doi.org/10.1111/gbi.12232 SGP
21 Boyer, D.L., Owens, J.D., Lyons, T.W. & Droser, M.L. (2011). Joining forces: Combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 306, 134-146. https://doi.org/10.1016/j.palaeo.2011.04.012 SGP
445 Browne, T.N., Hofmann, M.H., Malkowski, M.A., Wei, J. & Sperling, E.A. (2020). Redox and paleoenvironmental conditions of the Devonian-Carboniferous Sappington Formation, southwestern Montana, and comparison to the Bakken Formation, Williston Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110025. https://doi.org/10.1016/j.palaeo.2020.110025 SGP
661 Brumsack, H. (1989). Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau, 78, 851-882. https://doi.org/10.1007/BF01829327 DM-SED
210 Brumsack, H. (1991). Inorganic geochemistry of the German 'Posidonia Shale':palaeoenvironmental consequences. Geological Society Special Publications, 58, 353-362. https://doi.org/10.1144/GSL.SP.1991.058.01.22 SGP
450 Busch, J.F., Boag, T.H., Sperling, E.A., Rooney, A.D., Feng, X., Moynihan, D.P. & Strauss, J.V. (2023). Integrated litho-, chemo- and sequence stratigraphy of the Ediacaran Gametrail Formation across a shelf-slope transect in the Wernecke Mountains, Yukon, Canada. American Journal of Science, 323, 4. https://doi.org/10.2475/001c.74874 SGP
446 Busch, J.F., Hodgin, E.B., Ahm, A.C., Husson, J.M., Macdonald, F.A., Bergmann, K.D., Higgins, J.A. & Strauss, J.V. (2022). Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth and Planetary Science Letters, 579, 117368. https://doi.org/10.1016/j.epsl.2022.117368 SGP
680 Cabral, A.R., Creaser, R.A., Nägler, T., Lehmann, B., Voegelin, A.R., Belyatsky, B., Pašava, J., Seabra Gomes, A.A., Galbiatti, H., Böttcher, M.E. & Escher, P. (2013). Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chemical Geology, 362, 91-104. https://doi.org/10.1016/j.chemgeo.2013.08.041 DM-SED
624 Cai, G., Guo, F., Liu, X., Sui, S., Li, C. & Zhao, L. (2008). Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Journal, 42, 381-402. https://doi.org/10.2343/geochemj.42.381 USGS-CMIBS
28 Calvert, S.E. & Karlin, R.E. (1991). Relationships between sulphur, organic carbon and iron in the modern sediments of the Black Sea. Geochimica et Cosmochimica Acta, 55, 2483-2490. https://doi.org/10.1016/0016-7037(91)90367-E SGP
390 Cameron, E.M. & Baumann, A. (1972). Carbonate sedimentation during the Archean. Chemical Geology, 10, 17-30. https://doi.org/10.1016/0009-2541(72)90074-5 USGS-CMIBS
409 Cameron, E.M. & Garrels, R.M. (1980). Geochemical compositions of some Precambrian shales from the Canadian Shield. Chemical Geology, 28, 181-197. https://doi.org/10.1016/0009-2541(80)90046-7 USGS-CMIBS
332 Cameron, E.M. & Jonasson, I.R. (1972). Mercury in precambrian shales of the Canadian Shield. Geochimica et Cosmochimica Acta, 36, 985-1005. https://doi.org/10.1016/0016-7037(72)90017-8 USGS-CMIBS
631 Camiré, G., La Fleche, M.R. & Malo, M. (1993). Géochimie des roches volcaniques cambro-ordoviciennes du Groupe de Shickshock: incidences sur la stratigraphie et le contexte géotectonique de la Gaspésie septentrionale. Recherches en cours, Partie E. Comm. Geol. Can., Etude 93-1E. USGS-CMIBS
398 Campos Alvarez, N.O. & Roser, B.P. (2007). Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source weathering, provenance, and tectonic setting. Journal of South American Earth Sciences, 23, 271-289. https://doi.org/10.1016/j.jsames.2007.02.003 USGS-CMIBS
245 Canfield, D.E., Knoll, A.H., Poulton, S.W., Narbonne, G.M. & Dunning, G.R. (2020). Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. American Journal of Science, 320, 97-124. https://doi.org/10.2475/02.2020.01 SGP
59 Canfield, D.E., Poulton, S.W. & Narbonne, G.M. (2007). Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315, 92-95. https://doi.org/10.1126/science.1135013 SGP
51 Canfield, D.E., Poulton, S.W., Knoll, A.H., Narbonne, G.M., Ross, G., Goldberg, T. & Strauss, H. (2008). Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321, 949-952. https://doi.org/10.1126/science.1154499 SGP
168 Canfield, D.E., Zhang, S., Frank, A.B., Wang, X., Wang, H., Su, J., Ye, Y. & Frei, R. (2018). Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9, 2871. https://doi.org/10.1038/s41467-018-05263-9 SGP
557 Canfield, D.E., Zhang, S., Wang, H. & Wang, X. (2024). Xiamaling Data base. Mendeley Data, 1. https://doi.org/10.17632/BWNDGT89WP.1 SGP
633 Caplan, M.L. (1997). Factors influencing the formation of organic-rich sedimentary facies: Examples from the Devonian-carboniferous Exshaw formation, Alberta, Canada. [Doctoral thesis, University of British Columbia] https://doi.org/10.14288/1.0053323 USGS-CMIBS
729 Caplan, M.L. & Bustin, R.M. (1999). Palaeoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: role of enhanced primary production. Organic Geochemistry, 30, 161-188. https://doi.org/10.1016/S0146-6380(98)00202-2 DM-SED
695 Carmichael, S.K., Waters, J.A., Batchelor, C.J., Coleman, D.M., Suttner, T.J., Kido, E., Moore, L.M. & Chadimová, L. (2016). Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt. Gondwana Research, 32, 213-231. https://doi.org/10.1016/j.gr.2015.02.009 DM-SED
803 Carter, J.E. (1998). Structure, stratigraphy, and geochemistry of the Upper Ordovician Lawrence Harbour formation, Exploits Subzone, Newfoundland. [Master's thesis, Memorial University of Newfoundland] http://research.library.mun.ca/id/eprint/10728 DM-SED
523 Caxito, F.A., Sperling, E.A., Fazio, G., Rodrigues Adorno, R., Denezine, M., do Carmo, D.A., Giorgioni, M., Uhlein, G.J. & Sial, A.N. (2024). A shift in redox conditions near the Ediacaran/Cambrian transition and its possible influence on early animal evolution, Corumbá Group, Brazil. Geoscience Frontiers, 15, 101810. https://doi.org/10.1016/j.gsf.2024.101810 SGP
334 Chakrabarti, R., Abanda, P.A., Hannigan, R.E. & Basu, A.R. (2007). Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies. Chemical Geology, 244, 221-231. https://doi.org/10.1016/j.chemgeo.2007.06.017 USGS-CMIBS
204 Challands, T.J., Armstrong, H.A., Maloney, D.P., Davies, J.R., Wilson, D.J. H. & Owen, A.W. (2009). Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): A case study from the Welsh Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 395-410. https://doi.org/10.1016/j.palaeo.2008.10.004 SGP
513 Chang, C., Hu, W., Huang, K., Wang, Z. & Zhang, X. (2023). Mass Extinction Coincided With Expanded Continental Margin Euxinia During the Cambrian Age 4. Geophysical Research Letters, 50, e2023GL105560. https://doi.org/10.1029/2023GL105560 SGP
512 Chang, C., Hu, W., Wang, X., Huang, K., Yang, A. & Zhang, X. (2019). Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4. Geochimica et Cosmochimica Acta, 257, 49-67. https://doi.org/10.1016/j.gca.2019.04.021 SGP
91 Chang, H., Chu, X., Feng, L. & Huang, J. (2010). Iron speciation in cherts from the Laobao Formation, South China: implications for anoxic and ferruginous deep-water conditions. Chinese Science Bulletin, 55, 3189-3196. https://doi.org/10.1007/s11434-010-4006-6 SGP
92 Chang, H., Chu, X., Feng, L. & Huang, J. (2012). Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322, 80-87. https://doi.org/10.1016/j.palaeo.2012.01.019 SGP
704 Chen, C., Mu, C., Zhou, K., Liang, W., Ge, X., Wang, X., Wang, Q. & Zheng, B. (2016). The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76, 159-175. https://doi.org/10.1016/j.marpetgeo.2016.04.022 DM-SED
274 Chen, K., Rudnick, R.L., Wang, Z., Tang, M., Gaschnig, R., Zou, Z., He, T., Hu, Z. & Liu, Y. (2020). How mafic was the Archean upper continental crust? Insights from Cu and Ag in ancient glacial diamictites. Geochimica et Cosmochimica Acta, 278, 16-29. https://doi.org/10.1016/j.gca.2019.08.002 SGP
270 Chen, K., Walker, R.J., Rudnick, R.L., Gao, S., Gaschnig, R., Puchtel, I.S., Tang, M. & Hu, Z. (2016). Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: Evidence from glacial diamictites. Geochimica et Cosmochimica Acta, 191, 1-16. https://doi.org/10.1016/j.gca.2016.07.004 SGP
699 Chen, L., Jenkyns, H.C., Xu, G., Mattioli, E., Da, X., Yi, H., Xia, M., Zhu, Z. & Huang, Z. (2016). Preliminary nannofossil and geochemical data from Jurassic black shales from the Qiangtang Basin, northern Tibet. Journal of Asian Earth Sciences, 115, 257-267. https://doi.org/10.1016/j.jseaes.2015.10.004 DM-SED
710 Chen, R. & Sharma, S. (2016). Role of alternating redox conditions in the formation of organic-rich interval in the Middle Devonian Marcellus Shale, Appalachian Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 446, 85-97. https://doi.org/10.1016/j.palaeo.2016.01.016 DM-SED
267 Chen, X., Li, M., Sperling, E.A., Zhang, T., Zong, K., Liu, Y. & Shen, Y. (2020). Mesoproterozoic paleo-redox changes during 1500–1400 Ma in the Yanshan Basin, North China. Precambrian Research, 347, 105835. https://doi.org/10.1016/j.precamres.2020.105835 SGP
42 Chen, X., Ling, H., Vance, D., Shields-Zhou, G.A., Zhu, M., Poulton, S.W., Och, L.M., Jiang, S., Li, D., Cremonese, L. & Archer, C. (2015). Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6, 1-7. https://doi.org/10.1038/ncomms8142 SGP
656 Cheng, K., Elrick, M. & Romaniello, S.J. (2020). Early Mississippian ocean anoxia triggered organic carbon burial and late Paleozoic cooling: Evidence from uranium isotopes recorded in marine limestone. Geology, 48, 363-367. https://doi.org/10.1130/G46950.1 SGP
157 Cheng, M., Li, C., Chen, X., Zhou, L., Algeo, T.J., Ling, H., Feng, L. & Jin, C. (2018). Delayed Neoproterozoic oceanic oxygenation: Evidence from Mo isotopes of the Cryogenian Datangpo Formation. Precambrian Research. https://doi.org/10.1016/j.precamres.2017.12.007 SGP
469 Cheng, M., Li, C., Jin, C., Wang, H., Algeo, T.J., Lyons, T.W., Zhang, F. & Anbar, A.D. (2020). Evidence for high organic carbon export to the early Cambrian seafloor. Geochimica et Cosmochimica Acta, 287, 125-140. https://doi.org/10.1016/j.gca.2020.01.050 SGP
83 Cheng, M., Li, C., Zhou, L., Algeo, T.J., Zhang, F., Romaniello, S.J., Jin, C., Lei, L., Feng, L. & Jiang, S. (2016). Marine Mo biogeochemistry in the context of dynamically euxinic mid-depth waters: A case study of the lower Cambrian Niutitang shales, South China. Geochimica et Cosmochimica Acta, 183, 79-93. https://doi.org/10.1016/j.gca.2016.03.035 SGP
142 Cheng, M., Li, C., Zhou, L., Feng, L., Algeo, T.J., Zhang, F., Romaniello, S.J., Jin, C., Ling, H. & Jiang, S. (2017). Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China. Geochimica et Cosmochimica Acta, 210, 42-58. https://doi.org/10.1016/j.gca.2017.04.032 SGP
496 Cherry, L.B., Gilleaudeau, G.J., Grazhdankin, D.V., Romaniello, S.J., Martin, A.J. & Kaufman, A.J. (2022). A diverse Ediacara assemblage survived under low-oxygen conditions. Nature Communications, 13, 7306. https://doi.org/10.1038/s41467-022-35012-y SGP
341 Cingolani, C.A., Manassero, M.J. & Abre, P. (2003). Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: Southern extension of the Precordillera crustal fragment, Argentina. Journal of South American Earth Sciences, 16, 91-106. https://doi.org/10.1016/S0895-9811(03)00021-X USGS-CMIBS
397 Clarke, D.B. & Halliday, A.N. (1980). Strontium isotope geology of the South Mountain batholith, Nova Scotia. Geochimica et Cosmochimica Acta, 44, 1045-1058. https://doi.org/10.1016/0016-7037(80)90058-7 USGS-CMIBS
478 Clarkson, M.O., Lenton, T.M., Andersen, M.B., Bagard, M., Dickson, A.J. & Vance, D. (2021). Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes. Nature Communications, 12, 399. https://doi.org/10.1038/s41467-020-20486-5 SGP
477 Clarkson, M.O., Stirling, C.H., Jenkyns, H.C., Dickson, A.J., Porcelli, D., Moy, C.M., Pogge von Strandmann, P.A., Cooke, I.R. & Lenton, T.M. (2018). Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 115, 2918-2923. https://doi.org/10.1073/pnas.1715278115 SGP
116 Clarkson, M.O., Wood, R.A., Poulton, S.W., Richoz, S., Newton, R.J., Kasemann, S.A., Bowyer, F.T. & Krystyn, L. (2016). Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7, Article12236. https://doi.org/10.1038/ncomms12236 SGP
252 Cole, D.B., Planavsky, N.J., Longley, M., Böning, P., Wilkes, D., Wang, X., Swanner, E.D., Wittkop, C., Loydell, D.K., Busigny, V., Knudsen, A.C. & Sperling, E.A. (2020). Uranium Isotope Fractionation in Non‐sulfidic Anoxic Settings and the Global Uranium Isotope Mass Balance. Global Biogeochemical Cycles, 34, Articlee2020GB006649. https://doi.org/10.1029/2020GB006649 SGP
749 Condie, K.C., Noll, P.D. & Conway, C.M. (1992). Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 77, 51-76. https://doi.org/10.1016/0037-0738(92)90103-X DM-SED
584 Cordie, D.R., Dornbos, S.Q. & Marenco, P.J. (2019). Increase in carbonate contribution from framework-building metazoans through early Cambrian reefs of the Western Basin and Range, USA. PALAIOS, 34, 159-174. https://doi.org/10.2110/palo.2018.085 SGP
585 Cordie, D.R., Dornbos, S.Q. & Marenco, P.J. (2020). Evidence for a local reef eclipse in a shallow marine carbonate environment following the regional extinction of archaeocyaths in Laurentia (Stage 4, Cambrian). Facies, 66, 5. https://doi.org/10.1007/s10347-019-0589-9 SGP
586 Cordie, D.R., Dornbos, S.Q., Marenco, P.J., Oji, T. & Gonchigdorj, S. (2019). Depauperate skeletonized reef-dwelling fauna of the early Cambrian: Insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 514, 206-221. https://doi.org/10.1016/j.palaeo.2018.10.027 SGP
386 Coveney, R.M. & Glascock, M.D. (1989). A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Applied Geochemistry, 4, 347-367. https://doi.org/10.1016/0883-2927(89)90012-7 USGS-CMIBS
391 Coveney, R.M. & Martin, S.P. (1983). Molybdenum and other heavy metals of the Mecca Quarry and Logan Quarry shales. Economic Geology, 78, 132-149. https://doi.org/10.2113/gsecongeo.78.1.132 USGS-CMIBS
395 Coveney, R.M., Leventhal, J.S., Glascock, M.D. & Hatch, J.R. (1987). Origins of metals and organic matter in the Mecca Quarry Shale Member and stratigraphically equivalent beds across the Midwest. Economic Geology, 82, 915-933. https://doi.org/10.2113/gsecongeo.82.4.915 USGS-CMIBS
358 Coveney, R.M., Murowchick, J.B., Grauch, R.I., Glascock, M.D. & Denison, J.R. (1992). Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99, 101-114. https://doi.org/10.1016/0009-2541(92)90033-2 USGS-CMIBS
181 Cox, G.M., Jarrett, A., Edwards, D., Crockford, P.W., Halverson, G.P., Collins, A.S., Poirier, A. & Li, Z. (2016). Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440, 101-114. https://doi.org/10.1016/j.chemgeo.2016.06.025 SGP
288 Cox, G.M., Sansjofre, P., Blades, M.L., Farkas, J. & Collins, A.S. (2019). Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Nature: Scientific Reports, 9, 5200. https://doi.org/10.1038/s41598-019-40783-4 SGP
389 Cox, R., Armstrong, R.A. & Ashwal, L.D. (1998). Sedimentology, geochronology and provenance of the Proterozoic Itremo Group, central Madagascar, and implications for pre-Gondwana palaeogeography. Journal of the Geological Society, 155, 1009-1024. https://doi.org/10.1144/gsjgs.155.6.1009 USGS-CMIBS
380 Cox, R., Lowe, D.R. & Cullers, R.L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9 USGS-CMIBS
74 Creveling, J.R., Johnston, D.T., Poulton, S.W., Kotrc, B., März, C., Schrag, D.P. & Knoll, A.H. (2014). Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin, 126, 145-163. https://doi.org/10.1130/B30819.1 SGP
526 Crockford, P.W., Kunzmann, M., Blättler, C.L., Kalderon-Asael, B., Murphy, J.G., Ahm, A.C., Sharoni, S., Halverson, G.P., Planavsky, N.J., Halevy, I. & Higgins, J.A. (2021). Reconstructing Neoproterozoic seawater chemistry from early diagenetic dolomite. Geology, 49, 442-446. https://doi.org/10.1130/G48213.1 SGP
363 Cruse, A.M. & Lyons, T.W. (2004). Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales. Chemical Geology, 206, 319-345. https://doi.org/10.1016/j.chemgeo.2003.12.010 USGS-CMIBS
600 Cubitt, J.M. (1979). The geochemistry, mineralogy and petrology of Upper Paleozoic shales of Kansas. Kansas Geological Survey Bulletin, 217, 117. USGS-CMIBS
188 Cui, H., Grazhdankin, D.V., Xiao, S., Peek, S., Rogov, V.I., Bykova, N.V., Sievers, N.E., Liu, X. & Kaufman, A.J. (2016). Redox-dependent distribution of early macro-organisms: Evidence from the terminal Ediacaran Khatyspyt Formation in Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 122-139. https://doi.org/10.1016/j.palaeo.2016.08.015 SGP
189 Cui, H., Kaufman, A.J., Peng, Y., Liu, X., Plummer, R.E. & Lee, E.I. (2018). The Neoproterozoic Hüttenberg δ13C anomaly: Genesis and global implications. Precambrian Research, 313, 242-262. https://doi.org/10.1016/j.precamres.2018.05.024 SGP
191 Cui, H., Kaufman, A.J., Xiao, S., Peek, S., Cao, H., Min, X., Cai, Y., Siegel, Z., Liu, X., Peng, Y., Schiffbauer, J.D. & Martin, A.J. (2016). Environmental context for the terminal Ediacaran biomineralization of animals. Geobiology, 14, 344-363. https://doi.org/10.1111/gbi.12178 SGP
190 Cui, H., Kaufman, A.J., Xiao, S., Zhou, C. & Liu, X. (2017). Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chemical Geology, 450, 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010 SGP
460 Cui, H., Xiao, S., Cai, Y., Peek, S., Plummer, R.E. & Kaufman, A.J. (2019). Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China. Geological Magazine, 156, 1924-1948. https://doi.org/10.1017/S0016756819000293 SGP
400 Cullers, R.L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51, 181-203. https://doi.org/10.1016/S0024-4937(99)00063-8 USGS-CMIBS
214 Cullers, R.L. & Podkovyrov, V.N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77-93. https://doi.org/10.1016/S0301-9268(00)00090-5 SGP
730 Cullers, R.L. & Podkovyrov, V.N. (2002). The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117, 157-183. https://doi.org/10.1016/S0301-9268(02)00079-7 DM-SED
46 Dahl, T.W., Hammarlund, E.U., Anbar, A.D., Bond, D.P. G., Gill, B.C., Gordon, G.W., Knoll, A.H., Nielsen, A.T., Schovsbo, N.H. & Canfield, D.E. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107, 17911-17915. https://doi.org/10.1073/pnas.1011287107 SGP
297 Dang, D., Wang, W., Gibson, T.M., Kunzmann, M., Andersen, M.B., Halverson, G.P. & Evans, R. (2022). Authigenic uranium isotopes of late Proterozoic black shale. Chemical Geology, 588, 120644. https://doi.org/10.1016/j.chemgeo.2021.120644 SGP
65 Darroch, S.A. F., Sperling, E.A., Boag, T.H., Racicot, R.A., Mason, S.J., Morgan, A.S., Tweedt, S., Myrow, P., Johnston, D.T., Erwin, D.H. & Laflamme, M. (2015). Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society B, 282. https://doi.org/10.1098/rspb.2015.1003 SGP
801 Davis, C., Pratt, L.M., Sliter, W.V., Mompart, L. & Murat, B. (1999). Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo Basin, Venezuela. In: Barrera, E. & Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System (pp. 203-230). Geological Society of America. https://doi.org/10.1130/0-8137-2332-9.203 DM-SED
786 de la Rue, S.R. (2010). Implications for an Anoxia-Related Control on Green Algal Distributions in the Late Devonian Frasnian/Famennian Boundary. [Doctoral thesis, University of Idaho] https://www.proquest.com/docview/608923045 DM-SED
581 Dehler, C.M., Elrick, M., Bloch, J.D., Crossey, L.J., Karlstrom, K.E. & Des Marais, D.J. (2005). High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: Implications for mid-Neoproterozoic climate change. Geological Society of America Bulletin, 117, 32. https://doi.org/10.1130/B25471.1 SGP
634 Derkey, P.D., Abercrombie, F.N., Vuke, S.M. & Daniel, J.A. (1985). Geology and oil shale resources of the Heath Formation, Fergus County, Montana. Montana Bureau of Mines and Geology, Memoir 57. https://www.mtmemory.org/nodes/view/3743 USGS-CMIBS
427 Deru, X., Xuexiang, G., Pengchun, L., Guanghao, C., Bin, X., Bachlinski, R., Zhuanli, H. & Gonggu, F. (2007). Mesoproterozoic–Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 29, 637-650. https://doi.org/10.1016/j.jseaes.2006.04.006 USGS-CMIBS
636 Desborough, G.A., Poole, F.G. & Green, G.N. (1981). Metalliferous oil shales in central Montana and northeastern Nevada. U.S. Geological Survey Open File Report 81-121. https://doi.org/10.3133/ofr81121 USGS-CMIBS
635 Desborough, G.A., Poole, F.G., Hose, R.K. & Radtke, A.S. (1979). Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada. U.S. Geological Survey Open File Report 79-530. https://doi.org/10.3133/ofr79530 USGS-CMIBS
727 Di Leo, P., Dinelli, E., Mongelli, G. & Schiattarella, M. (2002). Geology and geochemistry of Jurassic pelagic sediments, Scisti silicei Formation, southern Apennines, Italy. Sedimentary Geology, 150, 229-246. https://doi.org/10.1016/S0037-0738(01)00181-6 DM-SED
767 Dong, T. (2016). Geochemical, petrophysical and geomechanical properties of stratigraphic sequences in Horn River Shale, Middle and Upper Devonian, Northeastern British Columbia, Canada. [Doctoral thesis, University of Alberta] https://doi.org/10.7939/R3CZ32G43 DM-SED
192 Doyle, K.A., Poulton, S.W., Newton, R.J., Podkovyrov, V.N. & Bekker, A. (2018). Shallow water anoxia in the Mesoproterozoic ocean: Evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Research, 317, 196-210. https://doi.org/10.1016/j.precamres.2018.09.001 SGP
637 Doyon, J. (2004). Comparaison de la composition des roches métasédimentaires archéennes dans six bassins de la province du Supérieur: une étude géochimique et statistique. [Master's thesis, Université du Québec à Chicoutimi] https://doi.org/10.1522/18186288 USGS-CMIBS
287 Drabon, N., Galić, A., Mason, P.R.D. & Lowe, D.R. (2019). Provenance and tectonic implications of the 3.28–3.23 Ga Fig Tree Group, central Barberton greenstone belt, South Africa. Precambrian Research, 325, 1-19. https://doi.org/10.1016/j.precamres.2019.02.010 SGP
310 Duan, Y., Anbar, A.D., Arnold, G.L., Lyons, T.W., Gordon, G.W. & Kendall, B. (2010). Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochimica et Cosmochimica Acta, 74, 6655-6668. https://doi.org/10.1016/j.gca.2010.08.035 SGP
75 Duan, Y., Severmann, S., Anbar, A.D., Lyons, T.W., Gordon, G.W. & Sageman, B.B. (2010). Isotopic evidence for Fe cycling and repartitioning in ancient oxygen-deficient settings: Examples from black shales of the mid-to-late Devonian Appalachian basin. Earth and Planetary Science Letters, 290, 244-253. https://doi.org/10.1016/j.epsl.2009.11.052 SGP
166 Dumoulin, J.A., Johnson, C.A., Kelley, K.D., Jarboe, P.J., Hackley, P.C., Scott, C.T. & Slack, J.F. (2017). Transgressive-regressive cycles in the metalliferous, oil shale-bearing Heath Formation (UpperMississippian), central Montana. Stratigraphy, 14, 97-122. https://doi.org/10.29041/strat.14.1-4.97-122 SGP
141 Dumoulin, J.A., Slack, J.F., Whalen, M.T. & Harris, A.G. (2011). Depositional Setting and Geochemistry of Phosphorites and Metalliferous Black Shales in the Carboniferous-Permian Lisburne Group, Northern Alaska. USGS Professional Paper 1776-C. https://doi.org/10.3133/pp1776C SGP
461 Dumoulin, J.A., Whidden, K.J., Rouse, W.A., Lease, R.O., Boehlke, A. & O’Sullivan, P. (2022). Biosiliceous, organic-rich, and phosphatic facies of Triassic strata of northwest Alaska: Transect across a high-latitude, low-angle continental margin. In: Aiello, I.W., Barron, J.A. & Ravelo, A. (Eds.), Understanding the Monterey Formation and Similar Biosiliceous Units across Space and Time (pp. 243-271). Geological Society of America. https://doi.org/10.1130/2022.2556(11) SGP
750 Dypvik, H. & Zakharov, V. (2012). Fine-grained epicontinental Arctic sedimentation – mineralogy and geochemistry of shales from the Late Jurassic-Early Cretaceous transition Henning Dypvik & Victor Zakharov. Norwegian Journal of Geology, 92, 65-87. DM-SED
568 Edwards, C.T. & Saltzman, M.R. (2016). Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 102-117. https://doi.org/10.1016/j.palaeo.2015.08.005 SGP
567 Edwards, C.T., Fike, D.A., Saltzman, M.R., Lu, W. & Lu, Z. (2018). Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction. Earth and Planetary Science Letters, 481, 125-135. https://doi.org/10.1016/j.epsl.2017.10.002 SGP
475 Ejeh, O. (2021). Geochemistry of rocks (Late Cretaceous) in the Anambra Basin, SE Nigeria: insights into provenance, tectonic setting, and other palaeo-conditions. Heliyon, 7, e08110. https://doi.org/10.1016/j.heliyon.2021.e08110 SGP
484 Ejeh, O., Akpoborie, I. & Etobro, A. (2015). Heavy Minerals and Geochemical Characteristics of Sandstones as Indices of Provenance and Source Area Tectonics of the Ogwashi-Asaba Formation, Niger Delta Basin. Open Journal of Geology, 05, 562-576. https://doi.org/10.4236/ojg.2015.58051 SGP
655 Elrick, M., Gilleaudeau, G.J., Romaniello, S.J., Algeo, T.J., Morford, J.L., Sabbatino, M., Goepfert, T.J., Cleal, C., Cascales-Miñana, B. & Chernyavskiy, P. (2022). Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones. Earth and Planetary Science Letters, 581, 117410. https://doi.org/10.1016/j.epsl.2022.117410 SGP
219 Emmings, J.F. (2018). Controls on UK Lower Namurian Shale Gas Prospectivity: Understanding the Spatial and Temporal Distribution of Organic Matter in Siliciclastic Mudstones. [Doctoral thesis, University of Leicester] SGP
216 Emmings, J.F., Davies, S.J., Vane, C.H., Leng, M.J., Moss-Hayes, V., Stephenson, M.H. & Jenkin, G.R. T. (2017). Stream and slope weathering effects on organic-rich mudstone geochemistry and implications for hydrocarbon source rock assessment: A Bowland Shale case study. Chemical Geology, 471, 74-91. https://doi.org/10.1016/j.chemgeo.2017.09.012 SGP
217 Emmings, J.F., Davies, S.J., Vane, C.H., Moss-Hayes, V. & Stephenson, M.H. (2019). From marine bands to hybrid flows: Sedimentology of a Mississippian black shale. Sedimentology. https://doi.org/10.1111/sed.12642 SGP
218 Emmings, J.F., Hennissen, J.A., Stephenson, M.H., Poulton, S.W., Vane, C.H., Davies, S.J., Leng, M.J., Lamb, A. & Moss-Hayes, V. (2019). Controls on amorphous organic matter type and sulphurization in a Mississippian black shale. Review of Palaeobotany and Palynology, 268, 1-18. https://doi.org/10.1016/j.revpalbo.2019.04.004 SGP
569 Emmings, J.F., Hennissen, J.A., Vane, C.H., Damaschke, M., Marvin, L., Moss-Hayes, V., Lamb, A., Lacey, J., Leng, M.J. & Riley, N.J. (2024). The Bowland Shale Formation in the Blacon Basin: syngenetic processes, stacking patterns and heat productivity. Geological Society Special Publications, 534, 61-90. https://doi.org/10.1144/SP534-2022-262 SGP
233 Emmings, J.F., Poulton, S.W., Vane, C.H., Davies, S.J., Jenkin, G.R. T., Stephenson, M.H., Leng, M.J., Lamb, A. & Moss-Hayes, V. (2020). A Mississippian black shale record of redox oscillation in the Craven Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology, 538, Article109423. https://doi.org/10.1016/j.palaeo.2019.109423 SGP
399 Eriksson, K.A., Taylor, S.R. & Korsch, R. (1992). Geochemistry of 1.8-1.67 Ga mudstones and siltstones from the Mount Isa Inlier, Queensland Australia: Provenance and tectonic implications. Geochimica et Cosmochimica Acta, 56, 899-909. https://doi.org/10.1016/0016-7037(92)90035-H USGS-CMIBS
416 Eriksson, P.G., Reczko, B.F.F., Merkle, R.K.W., Schreiber, U.M., Engelbrecht, J.P., Res, M. & Snyman, C.P. (1994). Early proterozoic black shales of the Timeball Hill Formation, South Africa: volcanogenic and palaeoenvironmental influences. Journal of African Earth Sciences, 18, 325-337. https://doi.org/10.1016/0899-5362(94)90071-X USGS-CMIBS
722 Eroglu, S., Schoenberg, R., Wille, M., Beukes, N.J. & Taubald, H. (2015). Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Research, 266, 27-46. https://doi.org/10.1016/j.precamres.2015.04.014 DM-SED
418 Ewers, G.R. & Higgins, N.C. (1985). Geochemistry of the early proterozoic metasedimentary rocks of the alligator rivers region, Northern Territory, Australia. Precambrian Research, 29, 331-357. https://doi.org/10.1016/0301-9268(85)90042-7 USGS-CMIBS
87 Fan, H., Zhu, X., Wen, H., Yan, B., Li, J. & Feng, L. (2014). Oxygenation of Ediacaran Ocean recorded by iron isotopes. Geochimica et Cosmochimica Acta, 140, 80-94. https://doi.org/10.1016/j.gca.2014.05.029 SGP
470 Fang, H., Tang, D., Shi, X., Lechte, M., Shang, M., Zhou, X. & Yu, W. (2020). Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1.58 Ga), North China Platform: Genesis and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559, 109966. https://doi.org/10.1016/j.palaeo.2020.109966 SGP
16 Farrell, U.C., Briggs, D.E. G., Hammarlund, E.U., Sperling, E.A. & Gaines, R.R. (2013). Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York. American Journal of Science, 313, 452-489. https://doi.org/10.2475/05.2013.02 SGP
403 Fatimah, . & Ward, C.R. (2009). Mineralogy and organic petrology of oil shales in the Sangkarewang Formation, Ombilin Basin, West Sumatra, Indonesia. International Journal of Coal Geology, 77, 424-435. https://doi.org/10.1016/j.coal.2008.04.005 USGS-CMIBS
337 Faure, K., Armstrong, R.A., Harris, C. & Willis, J.P. (1996). Provenance of mudstones in the Karoo Supergroup of the Ellisras basin, South Africa: Geochemical evidence. Journal of African Earth Sciences, 23, 189-204. https://doi.org/10.1016/S0899-5362(96)00061-9 USGS-CMIBS
638 Fedikow, M.A.F., Bezys, R.K., Bamburak, J.D., Conley, G.G. & Garret, R.G. (1998). Geochemical database for Phanerozoic black shales in Manitoba. Manitoba Energy and Mines, Geological Services, Open File Report OF98-2. https://geochem.nrcan.gc.ca/cdogs/content/pub/pub03295_e.htm USGS-CMIBS
404 Fedo, C.M. (1997). Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research, 84, 17-36. https://doi.org/10.1016/S0301-9268(96)00058-7 USGS-CMIBS
387 Fedo, C.M., Eriksson, K.A. & Krogstad, E.J. (1996). Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for provenance and source-area weathering. Geochimica et Cosmochimica Acta, 60, 1751-1763. https://doi.org/10.1016/0016-7037(96)00058-0 USGS-CMIBS
381 Fedo, C.M., Young, G.M. & Nesbitt, H.W. (1997). Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian Research, 86, 201-223. https://doi.org/10.1016/S0301-9268(97)00049-1 USGS-CMIBS
85 Feng, L., Chu, X., Huang, J., Zhang, Q. & Chang, H. (2010). Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18, 632-637. https://doi.org/10.1016/j.gr.2010.02.011 SGP
34 Feng, L., Li, C., Huang, J., Chang, H. & Chu, X. (2014). A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China. Precambrian Research, 246, 123-133. https://doi.org/10.1016/j.precamres.2014.03.002 SGP
335 Feng, R. & Kerrich, R. (1990). Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061-1081. https://doi.org/10.1016/0016-7037(90)90439-R USGS-CMIBS
810 Fernandes, H.A., Boggiani, P.C., Frederiksen, J.A., de Campos, M., Cardoso-Lucas, V., Freitas, B.T. & Frei, R. (2025). Rapid bioproductivity recovery following the Marinoan glaciation: Evidence from Sr-Cr-Cd isotopes and trace elements in the Morraria do Sul cap dolostone, Brazil. Chemical Geology, 673, 122548. https://doi.org/10.1016/j.chemgeo.2024.122548 SGP
639 Ferri, F. & Boddy, M. (2005). Geochemistry of Early to Middle Jurassic organic-rich shales, Intermontane Basins, British Columbia. Summary of Activities 2005, BC Ministry of Energy and Mines http://webmap.em.gov.bc.ca/mapplace/minpot/Publications_Summary.asp?key=3658 USGS-CMIBS
706 Fleurance, S., Cuney, M., Malartre, F. & Reyx, J. (2013). Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219. https://doi.org/10.1016/j.palaeo.2012.10.020 DM-SED
3 Formolo, M.J., Riedinger, N. & Gill, B.C. (2014). Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 146-154. https://doi.org/10.1016/j.palaeo.2014.08.024 SGP
226 Foscolos, A.E., Embry, A.F., Snowdon, L.R. & Podruski, J.A. (1988). Mass Transfer of Elements in Middle Triassic Shale/Sandstone Sequences, Sverdrup Basin, Arctic Islands. Part 1: Mineralogy, composition, SEM character and Rock-Eval/TOC results, East Drake L-06 and Skybattle Bay M-11 cores. Geological Survey of Canada, Open File, 1812. https://doi.org/10.4095/130494 SGP
382 Fralick, P.W. & Kronberg, B.I. (1997). Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113, 111-124. https://doi.org/10.1016/S0037-0738(97)00049-3 USGS-CMIBS
802 Fraser, K.H. (2005). The sedimentology and geochemistry of the Second White Specks Formation, north/central Alberta, Canada. [Master's thesis, University of Alberta] https://doi.org/10.7939/r3-cadd-zv88 DM-SED
155 Fraser, T.A. & Hutchinson, M.P. (2017). Lithogeochemical characterization of the Middle–Upper Devonian Road River Group and Canol and Imperial formations on Trail River, east Richardson Mountains, Yukon: age constraints and a depositional model for fine-grained strata in the Lower Paleozoic Richardson trough. Canadian Journal of Earth Sciences, 451, 731-765. https://doi.org/10.1139/cjes-2016-0216 SGP
247 Fraser, T.A. & Reinhardt, L. (2014). Stratigraphy, geochemistry and source rock potential of the Boundary Creek Formation, North Slope, Yukon and a description of its burning shale locality. In: MacFarlane, K.E., Nordling, M.G. & Sack, P.J. (Eds.), Yukon Exploration and Geology 2014 (pp. 45-71). Yukon Geological Survey. SGP
266 Fraser, T.A., Milton, J. & Gouwy, S. (2021). New geochemistry from old drill holes at the Tom property, Macmillan Pass, Yukon. In: Smith, J.B. (Ed.), Yukon Exploration and Geology 2020 (pp. 19-46). Yukon Geological Survey. SGP
301 Freitas, B.T., Rudnitzki, I.D., Morais, L., de Campos, M., Almeida, R.P., Warren, L.V., Boggiani, P.C., Caetano-Filho, S., Bedoya-Rueda, C., Babinski, M., Fairchild, T.R. & Trindade, R.I.F. (2021). Cryogenian glaciostatic and eustatic fluctuations and massive Marinoan-related deposition of Fe and Mn in the Urucum District, Brazil. Geology, 49, 1478-1483. https://doi.org/10.1130/G49134.1 SGP
458 French, K.L., Birdwell, J.E. & Lewan, M.D. (2020). Trends in thermal maturity indicators for the organic sulfur-rich Eagle Ford Shale. Marine and Petroleum Geology, 118, 104459. https://doi.org/10.1016/j.marpetgeo.2020.104459 SGP
489 French, K.L., Birdwell, J.E. & Lillis, P.G. (2022). Geochemistry of the Cretaceous Mowry Shale in the Wind River Basin, Wyoming. Geological Society of America Bulletin, 135, 1899-1922. https://doi.org/10.1130/B36382.1 SGP
696 Frimmel, H.E., Tack, L., Basei, M.S., Nutman, A.P. & Boven, A. (2006). Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. Journal of African Earth Sciences, 46, 221-239. https://doi.org/10.1016/j.jafrearsci.2006.04.010 DM-SED
383 Fritz, W.J. & Vanko, D.A. (1992). Geochemistry and origin of a black mudstone in a volcaniclastic environment, Ordovician Lower Rhyolitic Tuff Formation, North Wales, UK. Sedimentology, 39, 663-674. https://doi.org/10.1111/j.1365-3091.1992.tb02143.x USGS-CMIBS
640 Frost, J.K., Zierath, D.L. & Shimp, N.F. (1985). Chemical composition and geochemistry of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Illinois State Geological Survey Contract/grant report 1985-04. https://resources.isgs.illinois.edu/publications/cg1985-04 USGS-CMIBS
735 Fu, X., Tan, F., Feng, X., Wang, D., Chen, W., Song, C. & Zeng, S. (2014). Early Jurassic anoxic conditions and organic accumulation in the eastern Tethys. International Geology Review, 56, 1450-1465. https://doi.org/10.1080/00206814.2014.945103 DM-SED
712 Fujisaki, W., Sawaki, Y., Yamamoto, S., Sato, T., Nishizawa, M., Windley, B.F. & Maruyama, S. (2016). Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 397-420. https://doi.org/10.1016/j.palaeo.2016.01.039 DM-SED
410 Fyffe, L.R. & Pickerill, R.K. (1993). Geochemistry of Upper Cambrian-Lower Ordovician black shale along a northeastern Appalachian transect. Geological Society of America Bulletin, 105, 897-910. https://doi.org/10.1130/0016-7606(1993)105%3C0897:GOUCLO%3E2.3.CO;2 USGS-CMIBS
751 Gao, L., Zhou, W., Zhang, Y., Leng, C., Zhang, Z., Jiming, Y., Cui, Y. & Wan, X. (2017). Geochemical characteristics of marine strata and the evolution of paleoceanographic environment from Late Jurassic to Early Cretaceous in Gonggar, Southern Tibet. Earth Science Frontiers, 24, 195-204. https://doi.org/10.13745/j.esf.2017.01.012 DM-SED
713 Gao, P., Liu, G., Jia, C., Young, A., Wang, Z., Wang, T., Zhang, P. & Wang, D. (2016). Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran–Early Cambrian: Constraints from petrology and geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 450, 91-110. https://doi.org/10.1016/j.palaeo.2016.02.058 DM-SED
308 Garvin, J., Buick, R., Anbar, A.D., Arnold, G.L. & Kaufman, A.J. (2009). Isotopic Evidence for an Aerobic Nitrogen Cycle in the Latest Archean. Science, 323, 1045-1048. https://doi.org/10.1126/science.1165675 SGP
268 Gaschnig, R., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Hu, Z. & Gao, S. (2014). Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth and Planetary Science Letters, 408, 87-99. https://doi.org/10.1016/j.epsl.2014.10.002 SGP
269 Gaschnig, R., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Valley, J.W., Hu, Z., Gao, S. & Beck, M.L. (2016). Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites. Geochimica et Cosmochimica Acta, 186, 316-343. https://doi.org/10.1016/j.gca.2016.03.020 SGP
224 Gavrilov, Y.O., Shchepetova, E.V., Baraboshkin, E.Y. & Shcherbinina, E.A. (2002). The Early Cretaceous Anoxic Basin of the Russian Plate: Sedimentology and Geochemistry. Lithology and Mineral Resources, 37, 310-329. https://doi.org/10.1023/A:101994330 SGP
340 Gavshin, V.M. & Zakharov, V.A. (1996). Geochemistry of the Upper Jurassic-Lower Cretaceous Bazhenov Formation, West Siberia. Economic Geology, 91, 122-133. https://doi.org/10.2113/gsecongeo.91.1.122 USGS-CMIBS
100 Geboy, N.J., Kaufman, A.J., Walker, R.J., Misi, A., de Oliviera, T., Miller, K.E., Azmy, K., Kendall, B. & Poulton, S.W. (2013). Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil. Precambrian Research, 238, 199-213. https://doi.org/10.1016/j.precamres.2013.10.010 SGP
799 Genger, D. & Sethi, P.S. (1998). A geochemical and sedimentological investigation of high-resolution environmental changes within the Late Pennsylvanian (Missourian) Eudora core black shale of the Mid-Continent region, U.S.A.. In: Schieber, J., Zimmerle, W. & Sethi, P.S. (Eds.), Shales and Mudstones I and II (pp. 271-293). E. Schweizerbart’sche Verlagsbuchhandlung. DM-SED
692 Georgiev, S.V., Stein, H.J., Hannah, J.L., Henderson, C.M. & Algeo, T.J. (2015). Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada. Geochimica et Cosmochimica Acta, 150, 192-210. https://doi.org/10.1016/j.gca.2014.11.019 DM-SED
676 Georgiev, S.V., Stein, H.J., Hannah, J.L., Weiss, H.M., Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali, M. & Piasecki, S. (2012). Chemical signals for oxidative weathering predict Re–Os isochroneity in black shales, East Greenland. Chemical Geology, 324-325, 108-121. https://doi.org/10.1016/j.chemgeo.2012.01.003 DM-SED
405 Gibbs, A.K., Montgomery, C.W., O'Day, P.A. & Erslev, E.A. (1986). The Archean-Proterozoic transition: Evidence from the geochemistry of metasedimentary rocks of Guyana and Montana. Geochimica et Cosmochimica Acta, 50, 2125-2141. https://doi.org/10.1016/0016-7037(86)90067-0 USGS-CMIBS
232 Gibson, T.M., Kunzmann, M., Poirier, A., Schumann, D., Tosca, N.J. & Halverson, G.P. (2020). Geochemical signatures of transgressive shale intervals from the 811 Ma Fifteenmile Group in Yukon, Canada: Disentangling sedimentary redox cycling from weathering alteration. Geochimica et Cosmochimica Acta, 280, 161-184. https://doi.org/10.1016/j.gca.2020.04.013 SGP
300 Gibson, T.M., Millikin, A.E.G., Anderson, R.P., Myrow, P., Rooney, A.D. & Strauss, J.V. (2021). Tonian deltaic and storm-influenced marine sedimentation on the edge of Laurentia: The Veteranen Group of northeastern Spitsbergen, Svalbard. Sedimentary Geology, 426, 106011. https://doi.org/10.1016/j.sedgeo.2021.106011 SGP
298 Gibson, T.M., Wörndle, S., Crockford, P.W., Bui, T., Creaser, R.A. & Halverson, G.P. (2019). Radiogenic isotope chemostratigraphy reveals marine and nonmarine depositional environments in the late Mesoproterozoic Borden Basin, Arctic Canada. , 131, 1965-1978. https://doi.org/10.1130/B35060.1 SGP
72 Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. & Saltzman, M.R. (2011). Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 81-83. https://doi.org/10.1038/nature09700 SGP
401 Gill, J.B., Hiscott, R.N. & Vidal, P. (1994). Turbidite geochemistry and evolution of the Izu-Bonin arc and continents. Lithos, 33, 135-168. https://doi.org/10.1016/0024-4937(94)90058-2 USGS-CMIBS
130 Gilleaudeau, G.J. & Kah, L.C. (2013). Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic. Chemical Geology, 356, 21-37. https://doi.org/10.1016/j.chemgeo.2013.07.004 SGP
131 Gilleaudeau, G.J. & Kah, L.C. (2015). Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships. Precambrian Research, 257, 94-108. https://doi.org/10.1016/j.precamres.2014.11.030 SGP
326 Gilleaudeau, G.J., Algeo, T.J., Lyons, T.W., Bates, S.M. & Anbar, A.D. (2021). Novel watermass reconstruction in the Early Mississippian Appalachian Seaway based on integrated proxy records of redox and salinity. Earth and Planetary Science Letters, 558, 116746. https://doi.org/10.1016/j.epsl.2021.116746 SGP
817 Gilleaudeau, G.J., Kah, L.C., Junium, C.K. & Anbar, A.D. (2025). Aerobic nitrogen cycling in a molybdenum-limited, redox-stratified Mesoproterozoic epeiric sea. Earth and Planetary Science Letters, 661, 119369. https://doi.org/10.1016/j.epsl.2025.119369 SGP
236 Gilleaudeau, G.J., Sahoo, S.K., Ostrander, C.M., Owens, J.D., Poulton, S.W., Lyons, T.W. & Anbar, A.D. (2020). Molybdenum isotope and trace metal signals in an iron-rich Mesoproterozoic ocean: A snapshot from the Vindhyan Basin, India. Precambrian Research, 343, Article105718. https://doi.org/10.1016/j.precamres.2020.105718 SGP
531 Gilleaudeau, G.J., Wei, W., Remírez, M.N., Song, Y., Lyons, T.W., Bates, S.M., Anbar, A.D. & Algeo, T.J. (2023). Geochemical and Hydrographic Evolution of the Late Devonian Appalachian Seaway: Linking Sedimentation, Redox, and Salinity Across Time and Space. Geochemistry, Geophysics, Geosystems, 24, e2023GC010973. https://doi.org/10.1029/2023GC010973 SGP
348 Glasmacher, U.A., Zentilli, M. & Ryan, R. (2003). Nitrogen distribution in Lower Palaeozoic slates/phyllites of the Meguma Supergroup, Nova Scotia, Canada: implications for Au and Zn–Pb mineralisation and exploration. Chemical Geology, 194, 297-329. https://doi.org/10.1016/S0009-2541(02)00322-4 USGS-CMIBS
402 Glikson, M., Chappell, B.W., Freeman, R.S. & Webber, E. (1985). Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chemical Geology, 53, 155-174. https://doi.org/10.1016/0009-2541(85)90028-2 USGS-CMIBS
99 Goldberg, K. & Humayun, M. (2016). Geochemical paleoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil. Brazilian Journal of Geology, 46, 377-393. https://doi.org/10.1590/2317-4889201620160001 SGP
185 Goldberg, K., Menezes, J.O. & Gonzalez, M.B. (2017). Geochemistry and Organic Petrography of Aptian-Albian Source Rocks in the Araripe Basin, Northeastern Brazil. AAPG Search and Discovery Article #10972. https://doi.org/10.2113/gscpgbull.54.4.337 SGP
39 Goldberg, T., Strauss, H., Guo, Q. & Liu, C. (2007). Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 175-193. https://doi.org/10.1016/j.palaeo.2007.03.015 SGP
481 Gong, Z., Wei, G., Fakhraee, M., Alcott, L.J., Jiang, L., Zhao, M. & Planavsky, N.J. (2023). Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion. Geobiology, gbi.12547. https://doi.org/10.1111/gbi.12547 SGP
375 Goodfellow, W.D., Peter, J.M., Winchester, J.A. & Staal, C.R. (2003). Ambient Marine Environment and Sediment Provenance during Formation of Massive Sulfide Deposits in the Bathurst Mining Camp: Importance of Reduced Bottom Waters to Sulfide Precipitation and Preservation. In: Goodfellow, W.D., McCutcheon, S.R. & Peter, J.M. (Eds.), Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Economic Geology Monograph 11. Society of Economic Geologists. https://doi.org/10.5382/Mono.11.08 USGS-CMIBS
66 Gordon, G.W., Lyons, T.W., Arnold, G.L., Roe, J., Sageman, B.B. & Anbar, A.D. (2009). When do black shales tell molybdenum isotope tales? Geology, 37, 535-538. https://doi.org/10.1130/G25186A.1 SGP
689 Goren, O. (2015). Distribution and mineralogical residence of trace elements in the Israeli carbonate oil shales. Fuel, 143, 118-130. https://doi.org/10.1016/j.fuel.2014.11.024 DM-SED
748 Grasby, S.E., Beauchamp, B. & Knies, J. (2016). Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology, 44, 779-782. https://doi.org/10.1130/G38141.1 DM-SED
339 Graves, M.C. & Zentilli, M. (1988). Geochemical Characterization of the Goldenville Formation - Halifax Formation Transition Zone of the Meguma Group, Nova Scotia. Geological Survey of Canada, Open File, 1829. https://doi.org/10.4095/130427 USGS-CMIBS
275 Greaney, A.T., Rudnick, R.L., Romaniello, S.J., Johnson, A.C., Gaschnig, R. & Anbar, A.D. (2020). Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust. Earth and Planetary Science Letters, 534, 116083. https://doi.org/10.1016/j.epsl.2020.116083 SGP
373 Gromet, L., Haskin, L.A., Korotev, R.L. & Dymek, R.F. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9 USGS-CMIBS
344 Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X. & Qi, L. (2002). Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72, 393-407. https://doi.org/10.1306/081601720393 USGS-CMIBS
173 Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M. & Shields-Zhou, G.A. (2015). A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nature Geoscience, 8, 466-471. https://doi.org/10.1038/NGEO2434 SGP
243 Guilbaud, R., Poulton, S.W., Thompson, J., Husband, K.F., Zhu, M., Zhou, Y., Shields, G.A. & Lenton, T.M. (2020). Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nature Geoscience, 13, 296-301. https://doi.org/10.1038/s41561-020-0548-7 SGP
174 Guilbaud, R., Slater, B., Poulton, S.W., Harvey, T.H.P., Brocks, J.J., Nettersheim, B.J. & Butterfield, N.J. (2018). Oxygen minimum zones in the early Cambrian ocean. Geochemical Perspectives Letters, 6, 33-38. https://doi.org/10.7185/geochemlet.1806 SGP
37 Guo, Q., Shields, G.A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T. & Yang, X. (2007). Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016 SGP
55 Guo, Q., Strauss, H., Liu, C., Goldberg, T., Zhu, M., Pi, D., Heubeck, C., Vernhet, E., Yang, X. & Fu, P. (2007). Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 140-157. https://doi.org/10.1016/j.palaeo.2007.03.014 SGP
808 Hagen, A.P.I., Gill, B.C., Vayda, P.J. & Pruss, S.B. (2024). Reconstructing the redox environment of the Cambrian Harkless Formation, Nevada, USA: Navigating the effects of iron-rich clay minerals on the iron speciation redox proxy. Chemical Geology, 670, 122453. https://doi.org/10.1016/j.chemgeo.2024.122453 SGP
462 Hagen, A.P.I., Jones, D.S., Tosca, N.J., Fike, D.A. & Pruss, S.B. (2022). Sedimentary mercury as a proxy for redox oscillations during the Cambrian SPICE event in western Newfoundland. Canadian Journal of Earth Sciences, 59, 504-520. https://doi.org/10.1139/cjes-2021-0108 SGP
684 Hakimi, M.H., Abdullah, W.H., Alqudah, M., Makeen, Y.M. & Mustapha, K.A. (2016). Reducing marine and warm climate conditions during the Late Cretaceous, and their influence on organic matter enrichment in the oil shale deposits of North Jordan. International Journal of Coal Geology, 165, 173-189. https://doi.org/10.1016/j.coal.2016.08.015 DM-SED
697 Hakimi, M.H., Abdullah, W.H., Makeen, Y.M., Saeed, S.A., Al-Hakame, H., Al-Moliki, T., Al-Sharabi, K.Q. & Hatem, B.A. (2017). Geochemical characterization of the Jurassic Amran deposits from Sharab area (SW Yemen): Origin of organic matter, paleoenvironmental and paleoclimate conditions during deposition. Journal of African Earth Sciences, 129, 579-595. https://doi.org/10.1016/j.jafrearsci.2017.01.009 DM-SED
527 Halverson, G.P., Hoffman, P.F., Schrag, D.P., Maloof, A.C. & Rice, A.Hugh (2005). Toward a Neoproterozoic composite carbon-isotope record. Geological Society of America Bulletin, 117, 1181. https://doi.org/10.1130/B25630.1 SGP
528 Halverson, G.P., Maloof, A.C., Schrag, D.P., Dudás, F.Ö. & Hurtgen, M. (2007). Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. Chemical Geology, 237, 5-27. https://doi.org/10.1016/j.chemgeo.2006.06.013 SGP
71 Hammarlund, E.U., Dahl, T.W., Harper, D.A. T., Bond, D.P. G., Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A. & Canfield, D.E. (2012). A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331-332, 128-129. https://doi.org/10.1016/j.epsl.2012.02.024 SGP
150 Hammarlund, E.U., Gaines, R.R., Prokopenko, M.G., Qi, C., Hou, X. & Canfield, D.E. (2017). Early Cambrian oxygen minimum zone-like conditions at Chengjiang. Earth and Planetary Science Letters, 475, 160-168. https://doi.org/10.1016/j.epsl.2017.06.054 SGP
171 Hammarlund, E.U., Smith, M., Rasmussen, J.A., Nielsen, A.T., Canfield, D.E. & Harper, D.A. T. (2018). The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low-oxygen environments and ecosystems. Geobiology, 17, 12-26. https://doi.org/10.1111/gbi.12315 SGP
163 Hansen, J., Nielsen, J.K. & Hanken, N. (2009). The relationships between Late Ordovician sea-level changes and faunal turnover in western Baltica: Geochemical evidence of oxic and dysoxic bottom-water conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 268-278. https://doi.org/10.1016/j.palaeo.2008.10.022 SGP
180 Hantsoo, K.G., Kaufman, A.J., Cui, H., Plummer, R.E. & Narbonne, G.M. (2018). Effects of bioturbation on carbon and sulfur cycling across the Ediacaran–Cambrian transition at the GSSP in Newfoundland, Canada. Canadian Journal of Earth Sciences, 55, 1240-1252. https://doi.org/10.1139/cjes-2017-0274 SGP
151 Harris, N.B., Mnich, C.A., Selby, D. & Korn, D. (2013). Minor and trace element and Re–Os chemistry of the Upper Devonian Woodford Shale, Permian Basin, west Texas: Insights into metal abundance and basin processes. Chemical Geology, 356, 76-93. https://doi.org/10.1016/j.chemgeo.2013.07.018 SGP
284 Hartwell, W.J. (1998). Geochemical and petrographic analysis of the Upper Devonian-Lower Mississippian Bakken black shales from the Williston Basin, North Dakota. [Master's thesis, University of Cincinnati] SGP
408 Hassan, S., Ishiga, H., Roser, B.P., Dozen, K. & Naka, T. (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: implications for provenance and tectonism at the Gondwana margin. Chemical Geology, 158, 293-314. https://doi.org/10.1016/S0009-2541(99)00057-1 USGS-CMIBS
666 Hatch, J.R. & Leventhal, J.S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99, 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y DM-SED
725 Hatch, J.R. & Leventhal, J.S. (1997). Early diagenetic partial oxidation of organic matter and sulfides in the Middle Pennsylvanian (Desmoinesian) Excello Shale member of the Fort Scott Limestone and equivalents, northern Midcontinent region, USA. Chemical Geology, 134, 215-235. https://doi.org/10.1016/S0009-2541(96)00006-X DM-SED
246 Hattori, K., Desrochers, A. & Pedro, J. (2019). Provenance and depositional environment of organic-rich calcareous black shale of the Late Ordovician Macasty Formation, western Anticosti Basin, eastern Canada. Canadian Journal of Earth Sciences, 56, 321-334. https://doi.org/10.1139/cjes-2018-0095 SGP
642 Haus, M. & Paulk, T. (1993). PETROCH lithogeochemical data. Ontario Geological Survey Open File Report 5855. USGS-CMIBS
522 Haxen, E.R., Schovsbo, N.H., Nielsen, A.T., Richoz, S., Loydell, D.K., Posth, N.R., Canfield, D.E. & Hammarlund, E.U. (2023). “Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world. Earth and Planetary Science Letters, 622, 118416. https://doi.org/10.1016/j.epsl.2023.118416 SGP
412 Hayashi, K., Fujisawa, H., Holland, H.D. & Ohmoto, H. (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115-4137. https://doi.org/10.1016/S0016-7037(97)00214-7 USGS-CMIBS
658 He, R., Elrick, M., Day, J., Lu, W. & Lu, Z. (2022). Devonian upper ocean redox trends across Laurussia: Testing potential influences of marine carbonate lithology on bulk rock I/Ca signals. Frontiers in Marine Science, 9, 874759. https://doi.org/10.3389/fmars.2022.874759 SGP
550 Heard, A.W., Wang, Y., Ostrander, C.M., Auro, M., Canfield, D.E., Zhang, S., Wang, H., Wang, X. & Nielsen, S.G. (2023). Coupled vanadium and thallium isotope constraints on Mesoproterozoic ocean oxygenation around 1.38-1.39 Ga. Earth and Planetary Science Letters, 610, 118127. https://doi.org/10.1016/j.epsl.2023.118127 SGP
811 Hein, J.R., McIntyre, B., Perkins, R.B., Piper, D.Z. & Evans, J.G. (2002). Composition of the Rex Chert and associated rocks of the Permian Phosphoria Formation: Soda Springs area, SE Idaho. U.S. Geological Survey Open File Report 2002-345. https://doi.org/10.3133/ofr02345 DM-SED
601 Hemming, S.R., McLennan, S.M. & Hanson, G.N. (1995). Geochemical and Nd/Pb Isotopic Evidence for the Provenance of the Early Proterozoic Virginia Formation, Minnesota. Implications for the Tectonic Setting of the Animikie Basin. The Journal of Geology, 103, 147-168. https://doi.org/10.1086/629733 USGS-CMIBS
194 Henderson, M.A., Serra, F., Feltes, N., Albanesi, G.L. & Kah, L.C. (2018). Paired isotope records of carbonate and organic matter from the Middle Ordovician of Argentina: Intrabasinal variation and effects of the marine chemocline. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 107-130. https://doi.org/10.1016/j.palaeo.2017.10.018 SGP
384 Hennessy, J.F. & Mossman, D.J. (1996). Geochemistry of Ordovician black shales at Meductic, southern Miramichi Highlands, New Brunswick. Atlantic Geology, 32. https://doi.org/10.4138/2089 USGS-CMIBS
345 Hetzel, A., Böttcher, M.E., Wortmann, U.G. & Brumsack, H. (2009). Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302-328. https://doi.org/10.1016/j.palaeo.2008.11.005 USGS-CMIBS
447 Hippertt, J., Caxito, F.A., Uhlein, G.J., Nalini, H.A., Sial, A.N., Abreu, A.T. & Nogueira, L.B. (2019). The fate of a Neoproterozoic intracratonic marine basin: Trace elements, TOC and IRON speciation geochemistry of the Bambuí Basin, Brazil. Precambrian Research, 330, 101-120. https://doi.org/10.1016/j.precamres.2019.05.001 SGP
797 Hirst, D.M. (1974). Geochemistry of Sediments from Eleven Black Sea Cores. In: Degens, E.T. & Ross, D.A. (Eds.), The Black Sea--Geology, Chemistry, and Biology (pp. 430-455). American Association of Petroleum Geologists. https://doi.org/10.1306/M20377C10 DM-SED
543 Hodgin, E.B., Nelson, L.L., Wall, C.J., Barrón-Díaz, A.J., Webb, L.C., Schmitz, M.D., Fike, D.A., Hagadorn, J.W. & Smith, E.F. (2021). A link between rift-related volcanism and end-Ediacaran extinction? Integrated chemostratigraphy, biostratigraphy, and U-Pb geochronology from Sonora, Mexico. Geology, 49, 115-119. https://doi.org/10.1130/G47972.1 SGP
228 Hodgskiss, M.S. W. & Sperling, E.A. (2020). Stratigraphy and shale geochemistry of the Belcher Group, Belcher Islands, southern Nunavut. Summary of Activities 2019, Canada-Nunavut Geoscience Office https://cngo.ca/summary-of-activities/2019/ SGP
293 Hodgskiss, M.S. W., Dagnaud, O.M. J., Frost, J.L., Halverson, G.P., Schmitz, M.D., Swanson-Hysell, N.L. & Sperling, E.A. (2019). New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth and Planetary Science Letters, 520, 141-152. https://doi.org/10.1016/j.epsl.2019.05.023 SGP
292 Hodgskiss, M.S. W., Lalonde, S.V., Crockford, P.W. & Hutchings, A.M. (2021). A carbonate molybdenum isotope and cerium anomaly record across the end-GOE: Local records of global oxygenation. Geochimica et Cosmochimica Acta, 313, 313-339. https://doi.org/10.1016/j.gca.2021.08.013 SGP
294 Hodgskiss, M.S. W., Lamothe, K., Halverson, G.P. & Sperling, E.A. (2020). Extending the record of the Lomagundi–Jatuli carbon isotope excursion in the Labrador Trough, Canada. Canadian Journal of Earth Sciences, 57, 1089-1102. https://doi.org/10.1139/cjes-2019-0198 SGP
249 Hodgskiss, M.S. W., Sansjofre, P., Kunzmann, M., Sperling, E.A., Cole, D.B., Crockford, P.W., Gibson, T.M. & Halverson, G.P. (2020). A high-TOC shale in a low productivity world: The late Mesoproterozoic Arctic Bay Formation, Nunavut. Earth and Planetary Science Letters, 544, Article116384. https://doi.org/10.1016/j.epsl.2020.116384 SGP
411 Hofmann, A. (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143, 23-49. https://doi.org/10.1016/j.precamres.2005.09.005 USGS-CMIBS
338 Hofmann, A., Bolhar, R., Dirks, P. & Jelsma, H. (2003). The geochemistry of Archaean shales derived from a Mafic volcanic sequence, Belingwe greenstone belt, Zimbabwe: provenance, source area unroofing and submarine versus subaerial weathering. Geochimica et Cosmochimica Acta, 67, 421-440. https://doi.org/10.1016/S0016-7037(02)01086-4 USGS-CMIBS
537 Holmden, C., Panchuk, K. & Finney, S.C. (2012). Tightly coupled records of Ca and C isotope changes during the Hirnantian glaciation event in an epeiric sea setting. Geochimica et Cosmochimica Acta, 98, 94-106. https://doi.org/10.1016/j.gca.2012.09.017 SGP
660 Hu, J., Li, Q., Li, J., Huang, J. & Ge, D. (2016). Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet. Geological Journal, 51, 560-571. https://doi.org/10.1002/gj.2653 DM-SED
736 Huang, J., Chu, X., Lyons, T.W., Planavsky, N.J. & Wen, H. (2013). A new look at saponite formation and its implications for early animal records in the Ediacaran of South China. Geobiology, 11, 3-14. https://doi.org/10.1111/gbi.12018 DM-SED
812 Issacs, C.M., Bird, K.J., Medrano, M.D., Keller, M.A., Piper, D.Z. & Gautier, D.L. (1995). Preliminary report on major and minor elements in cores from the Triassic Shublik Formation, Jurassic and Cretaceous Kingak Shale, and Cretaceous pebble shale unit, Hue Shale, and Torok Formation, North Slope, Alaska. U.S. Geological Survey Open File Report 95-236. https://doi.org/10.3133/ofr95236 DM-SED
789 Jaminski, J. (1997). Geochemical and petrographic patterns of cyclicity in the Devonian-Mississippian black shales of the central Appalachian Basin. [Doctoral thesis, University of Cincinnati] DM-SED
193 Jarrett, A. (2015). Biogeochemical evolution in the Neoproterozoic Amadeus Basin, central Australia. [Doctoral thesis, Australian National University] https://doi.org/10.25911/5d7637d1ca2a1 SGP
212 Jenkyns, H.C., Gröcke, D.R. & Hesselbo, S.P. (2001). Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography and Paleoclimatology, 16, 593-603. https://doi.org/10.1029/2000PA000558 SGP
33 Jin, C., Li, C., Algeo, T.J., Planavsky, N.J., Cui, H., Yang, X., Zhao, Y., Zhang, X. & Xie, S. (2016). A highly redox-heterogenous ocean in South China during the early Cambrian (~529-514 Ma): Implications for biota-environment co-evolution. Earth and Planetary Science Letters, 441, 38-51. https://doi.org/10.1016/j.epsl.2016.02.019 SGP
483 Johnson, B.W., Mettam, C. & Poulton, S.W. (2022). Combining Nitrogen Isotopes and Redox Proxies Strengthens Paleoenvironmental Interpretations: Examples From Neoproterozoic Snowball Earth Sediments. Frontiers in Earth Science, 10, 745830. https://doi.org/10.3389/feart.2022.745830 SGP
176 Johnson, B.W., Poulton, S.W. & Goldblatt, C. (2017). Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth. Nature Communications, 1-10. https://doi.org/10.1038/s41467-017-01453-z SGP
491 Johnston, D.T., Macdonald, F.A., Gill, B.C., Hoffman, P.F. & Schrag, D.P. (2012). Uncovering the Neoproterozoic carbon cycle. Nature, 483, 320-323. https://doi.org/10.1038/nature10854 SGP
195 Johnston, D.T., Poulton, S.W., Dehler, C.M., Porter, S.M., Husson, J.M., Canfield, D.E. & Knoll, A.H. (2010). An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290, 64-73. https://doi.org/10.1016/j.epsl.2009.11.059 SGP
167 Johnston, D.T., Poulton, S.W., Tosca, N.J., O'Brien, T., Halverson, G.P., Schrag, D.P. & Macdonald, F.A. (2013). Searching for an oxygenation event in the fossiliferous Ediacaran of northwestern Canada. Chemical Geology, 362, 273-286. https://doi.org/10.1016/j.chemgeo.2013.08.046 SGP
457 Jost, A.B., Bachan, A., van de Schootbrugge, B., Brown, S.T., DePaolo, D.J. & Payne, J.L. (2017). Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochemistry, Geophysics, Geosystems, 18, 113-124. https://doi.org/10.1002/2016GC006724 SGP
454 Jost, A.B., Bachan, A., van de Schootbrugge, B., Lau, K.V., Weaver, K.L., Maher, K. & Payne, J.L. (2017). Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction. Geochemistry, Geophysics, Geosystems, 18, 3093-3108. https://doi.org/10.1002/2017GC006941 SGP
149 Kabanov, P. (2017). Geological and geochemical data from Mackenzie Corridor. Part VII: new geochemical, Rock-Eval 6, and field data from the Ramparts and Canol formations of northern Mackenzie Valley, Northwest Territories. Geological Survey of Canada, Open File, 8341. https://doi.org/10.4095/306299 SGP
134 Kabanov, P. & Dewing, K. (2015). Geological and geochemical data from the Canadian Arctic Islands. Part XIII: new bulk geochemical and Rock-Eval data from Upper Paleozoic cores and preliminary results for basinal shales. Geological Survey of Canada, Open File 7848. https://doi.org/10.4095/296803 SGP
133 Kabanov, P., Gouwy, S., Lawrence, P.A., Weleschuk, D.J. & Chan, W.C. (2016). Geological and geochemical data from Mackenzie Corridor. Part III: New data on lithofacies, micropaleontology, lithogeochemistry, and Rock-EvalTM pyrolysis from the Devonian Horn River Group in the Mackenzie Plain and Norman Range, Northwest Territories. Geological Survey of Canada, Open File 7951. https://doi.org/10.4095/297832 SGP
132 Kabanov, P., Saad, S., Weleschuk, D.J. & Sanei, H. (2015). Geological and geochemical data from Mackenzie Corridor. Part II: Lithogeochemistry and Rock-Eval data for the black shale cored section of Little Bear N-09 well (Mackenzie Plain, Horn River Group, Devonian). Geological Survey of Canada, Open File 7948. https://doi.org/10.4095/297427 SGP
336 Kalsbeek, F. & Frei, R. (2010). Geochemistry of Precambrian sedimentary rocks used to solve stratigraphical problems: An example from the Neoproterozoic Volta basin, Ghana. Precambrian Research, 176, 65-76. https://doi.org/10.1016/j.precamres.2009.10.004 USGS-CMIBS
415 Kamber, B.S., Greig, A. & Collerson, K.D. (2005). A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta, 69, 1041-1058. https://doi.org/10.1016/j.gca.2004.08.020 USGS-CMIBS
486 Kang, J., Gill, B.C., Reid, R., Zhang, F. & Xiao, S. (2023). Nitrate limitation in early Neoproterozoic oceans delayed the ecological rise of eukaryotes. Science Advances, 9, eade9647. https://doi.org/10.1126/sciadv.ade9647 SGP
760 Karma, R. (1991). Geology and Geochemistry of the Bakken Formation (Devonian-Mississippian) in Saskatchewan. [Master's thesis, University of Regina] https://pubsaskdev.blob.core.windows.net/pubsask-prod/88032/88032-Karma-Parslow_1989_MiscRep89-4.pdf DM-SED
429 Kasanzu, C., Maboko, M.A.H. & Manya, S. (2008). Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Research, 164, 201-213. https://doi.org/10.1016/j.precamres.2008.04.007 USGS-CMIBS
139 Kasprak, A.H., Sepúlveda, J., Price-Waldman, R., Williford, K.H., Schoepfer, S.D., Haggart, J.W., Ward, P.D., Summons, R.E. & Whiteside, J.H. (2015). Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology, 43, 307-310. https://doi.org/10.1130/G36371.1 SGP
602 Ke, L., Gao, S., Pan, Y. & Hu, Z. (2008). Geochemistry and provenance of the Early Cretaceous lacustrine castic sedimentary rocks of yixian formation from the Sihetun section, West Liaoning. Earth Science-Journal of China University of Geosciences, 33, 504-514. USGS-CMIBS
313 Kendall, B., Brennecka, G.A., Weyer, S. & Anbar, A.D. (2013). Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chemical Geology, 362, 105-114. https://doi.org/10.1016/j.chemgeo.2013.08.010 SGP
323 Kendall, B., Creaser, R.A., Gordon, G.W. & Anbar, A.D. (2009). Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta, 73, 2534-2558. https://doi.org/10.1016/j.gca.2009.02.013 SGP
314 Kendall, B., Creaser, R.A., Reinhard, C.T., Lyons, T.W. & Anbar, A.D. (2015). Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Science Advances, 1, e1500777. https://doi.org/10.1126/sciadv.1500777 SGP
311 Kendall, B., Reinhard, C.T., Lyons, T.W., Kaufman, A.J., Poulton, S.W. & Anbar, A.D. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3, 647-652. https://doi.org/10.1038/ngeo942 SGP
136 Kimmig, J. & Pratt, B. (2016). Taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstatte, Rockslide Formation, Mackenzie Mountains, Northwest Territories, Canada. Lethaia, 49, 150-169. https://doi.org/10.1111/let.12135 SGP
536 Kimmig, S.R. & Holmden, C. (2017). Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf ‘calcite sea’ during the Hirnantian glaciation. Geochimica et Cosmochimica Acta, 206, 254-272. https://doi.org/10.1016/j.gca.2017.03.010 SGP
538 Kimmig, S.R., Nadeau, M.D., Swart, P.K. & Holmden, C. (2021). Mg and Sr isotopic evidence for basin wide alteration of early diagenetic dolomite in the Williston Basin by ascending crustal fluids. Geochimica et Cosmochimica Acta, 311, 198-225. https://doi.org/10.1016/j.gca.2021.06.006 SGP
406 Kimura, S., Shikazono, N., Kashiwagi, H. & Nohara, M. (2004). Middle Miocene–early Pliocene paleo-oceanic environment of Japan Sea deduced from geochemical features of sedimentary rocks. Sedimentary Geology, 164, 105-129. https://doi.org/10.1016/j.sedgeo.2003.08.003 USGS-CMIBS
278 Kipp, M.A., Algeo, T.J., Stüeken, E.E. & Buick, R. (2020). Basinal hydrographic and redox controls on selenium enrichment and isotopic composition in Paleozoic black shales. Geochimica et Cosmochimica Acta, 287, 229-250. https://doi.org/10.1016/j.gca.2019.12.016 SGP
279 Kipp, M.A., Lepland, A. & Buick, R. (2020). Redox fluctuations, trace metal enrichment and phosphogenesis in the ~2.0 Ga Zaonega Formation. Precambrian Research, 343, 105716. https://doi.org/10.1016/j.precamres.2020.105716 SGP
276 Kipp, M.A., Stüeken, E.E., Bekker, A. & Buick, R. (2017). Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114, 875-880. https://doi.org/10.1073/pnas.1615867114 SGP
277 Kipp, M.A., Stüeken, E.E., Yun, M., Bekker, A. & Buick, R. (2018). Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth and Planetary Science Letters, 500, 117-126. https://doi.org/10.1016/j.epsl.2018.08.007 SGP
502 Kirschbaum, M.A., Finn, T.M., Schenk, C.J. & Hawkins, S.J. (2019). Lithologic Descriptions, Geophysical Logs, and Source-Rock Geochemistry of the U.S. Geological Survey Alcova Reservoir AR–1–13 Core Hole, Natrona County, Wyoming. U.S. Geological Survey Scientific Investigations Report 2019-5123. https://doi.org/10.3133/sir20195123 SGP
669 Klein, C. & Beukes, N.J. (1993). Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada. Economic Geology, 88, 542-565. https://doi.org/10.2113/gsecongeo.88.3.542 DM-SED
183 Kloss, T.J., Dornbos, S.Q., Chen, J., McHenry, L.J. & Marenco, P.J. (2015). High-resolution geochemical evidence for oxic bottom waters in three Cambrian Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 90-95. https://doi.org/10.1016/j.palaeo.2015.08.048 SGP
317 Koehler, M.C., Buick, R., Kipp, M.A., Stüeken, E.E. & Zaloumis, J. (2018). Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences, 115, 7711-7716. https://doi.org/10.1073/pnas.1720820115 SGP
420 Komuro, K. & Kajiwara, Y. (2003). Paleoceanography and Heavy Metal Enrichment of Mudstones in the Green Tuff Region, Northeastern Japan. Resource Geology, 53, 37-49. https://doi.org/10.1111/j.1751-3928.2003.tb00156.x USGS-CMIBS
540 Kozik, N.P., Young, S.A., Ahlberg, P., Lindskog, A. & Owens, J.D. (2023). Progressive marine oxygenation and climatic cooling at the height of the Great Ordovician Biodiversification Event. Global and Planetary Change, 227, 104183. https://doi.org/10.1016/j.gloplacha.2023.104183 SGP
539 Kozik, N.P., Young, S.A., Lindskog, A., Ahlberg, P. & Owens, J.D. (2023). Protracted oxygenation across the Cambrian–Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event? Geobiology, 21, 323-340. https://doi.org/10.1111/gbi.12545 SGP
580 Kozik, N.P., Young, S.A., Newby, S.M., Liu, M., Chen, D., Hammarlund, E.U., Bond, D.P. G., Them, T.R. & Owens, J.D. (2022). Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction. Science Advances, 8, eabn8345. https://doi.org/10.1126/sciadv.abn8345 SGP
258 Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A.R., Sepp, H., Romashkin, A.E., Rychanchik, D.V. & Kirsimäe, K. (2019). Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals. Chemical Geology, 512, 43-57. https://doi.org/10.1016/j.chemgeo.2019.03.002 SGP
259 Kreitsmann, T., Lepland, A., Bau, M., Prave, A.R., Paiste, K., Mänd, K., Sepp, H., Martma, T., Romashkin, A.E. & Kirsimäe, K. (2020). Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: The carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia. Precambrian Research, 347, 105855. https://doi.org/10.1016/j.precamres.2020.105855 SGP
549 Kunert, A. & Kendall, B. (2023). Global ocean redox changes before and during the Toarcian Oceanic Anoxic Event. Nature Communications, 14, 815. https://doi.org/10.1038/s41467-023-36516-x SGP
114 Kunzmann, M., Bui, T., Crockford, P.W., Halverson, G.P., Scott, C.T., Lyons, T.W. & Wing, B.A. (2017). Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation. Geology. https://doi.org/10.1130/G38602.1 SGP
143 Kunzmann, M., Gibson, T.M., Halverson, G.P., Hodgskiss, M.S. W., Bui, T., Carozza, D.A., Sperling, E.A., Poirier, A., Cox, G.M. & Wing, B.A. (2017). Iron isotope biogeochemistry of Neoproterozoic marine shales. Geochimica et Cosmochimica Acta, 209, 85-105. https://doi.org/10.1016/j.gca.2017.04.003 SGP
78 Kunzmann, M., Halverson, G.P., Scott, C.T., Minarik, W.G. & Wing, B.A. (2015). Geochemistry of Neoproterozoic black shales from Svalbard: Implications for oceanic redox conditions spanning Cryogenian glaciations. Chemical Geology, 417, 383-393. https://doi.org/10.1016/j.chemgeo.2015.10.022 SGP
109 Kurzweil, F., Drost, K., Pašava, J., Wille, M., Taubald, H., Schoeckle, D. & Schoenberg, R. (2015). Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochimica et Cosmochimica Acta, 171, 121-142. https://doi.org/10.1016/j.gca.2015.08.022 SGP
110 Kurzweil, F., Wille, M., Gantert, N., Beukes, N.J. & Schoenberg, R. (2016). Manganese oxide shuttling in pre-GOE oceans – evidence from molybdenum and iron isotopes. Earth and Planetary Science Letters, 452, 69-78. https://doi.org/10.1016/j.epsl.2016.07.013 SGP
250 Laakso, T.A., Sperling, E.A., Johnston, D.T. & Knoll, A.H. (2020). Ediacaran reorganization of the marine phosphorus cycle. Proceedings of the National Academy of Sciences, 117, 11961-11967. https://doi.org/10.1073/pnas.1916738117 SGP
388 Lacassie, J.P., Hervé, F. & Roser, B.P. (2006). Sedimentary provenance study of the post-Early Permian to pre-Early Cretaceous metasedimentary Duque de York Complex, Chile. Revista geológica de Chile, 33. https://doi.org/10.4067/S0716-02082006000200001 USGS-CMIBS
186 Lang, X., Shen, B., Peng, Y., Xiao, S., Zhou, C., Bao, H., Kaufman, A.J., Huang, K., Crockford, P.W., Liu, Y., Tang, W. & Ma, H. (2018). Transient marine euxinia at the end of the terminal Cryogenian glaciation. Nature Communications, 8. https://doi.org/10.1038/s41467-018-05423-x SGP
535 LaPorte, D.F., Holmden, C., Patterson, W.P., Loxton, J.D., Melchin, M.J., Mitchell, C.E., Finney, S.C. & Sheets, H. (2009). Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 182-195. https://doi.org/10.1016/j.palaeo.2009.03.009 SGP
485 Lau, K.V., Macdonald, F.A., Maher, K. & Payne, J.L. (2017). Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth and Planetary Science Letters, 458, 282-292. https://doi.org/10.1016/j.epsl.2016.10.043 SGP
790 Lazar, O.R. (2007). Redefinition of the New Albany Shale of the Illinois Basin: An Integrated, Stratigraphic, Sedimentologic, and Geochemical Study. [Doctoral thesis, Indiana University] DM-SED
201 Le Boudec, A., Ineson, J.R., Rosing, M., Døssing, L., Martineau, F., Lécuyer, C. & Albarède, F. (2014). Geochemistry of the Cambrian Sirius Passet Lagerstatte, Northern Greenland. Geochemistry, Geophysics, Geosystems, 15, 886-904. https://doi.org/10.1002/2013GC005068 SGP
587 Lease, R.O., Whidden, K.J., Dumoulin, J.A., Houseknecht, D.W., Botterell, P.J., Dreier, M.F., Griffis, N.P., Mundil, R., Kylander-Clark, A.R.C., Sanders, M.M., Counts, J.W., Self-Trail, J.M., Gooley, J.T., Rouse, W.A., Smith, R.A. & DeVera, C.A. (2024). Arctic Alaska deepwater organic carbon burial and environmental changes during the late Albian–early Campanian (103–82 Ma). Earth and Planetary Science Letters, 646, 118948. https://doi.org/10.1016/j.epsl.2024.118948 SGP
407 Lee, Y.Il (2002). Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149, 219-235. https://doi.org/10.1016/S0037-0738(01)00174-9 USGS-CMIBS
376 Legault, M.I. & Hattori, K. (1994). Late Archaean geological development recorded in the Timiskaming Group sedimentary rocks, Kirkland Lake area, Abitibi greenstone belt, Canada. Precambrian Research, 68, 23-42. https://doi.org/10.1016/0301-9268(94)90063-9 USGS-CMIBS
762 Legg, J.A. (2014). Assessment of the petroleum generation potential of the Neal Shale in the Black Warrior Basin, Alabama. [Doctoral thesis, University of Alabama] DM-SED
205 LeRoy, M.A. & Gill, B.C. (2019). Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America. Geobiology, 1-20. https://doi.org/10.1111/gbi.12334 SGP
793 Lev, S.M. (1998). Integrated petrographic and geochemical characterization of rare earth element and uranium mobility in Llandeilo-Caradoc Formation black shales, Wales, U.K.. [Doctoral thesis, State University of New York at Stony Brook] DM-SED
342 Lev, S.M. & Filer, J.K. (2004). Assessing the impact of black shale processes on REE and the U–Pb isotope system in the southern Appalachian Basin. Chemical Geology, 206, 393-406. https://doi.org/10.1016/j.chemgeo.2003.12.012 USGS-CMIBS
643 Leventhal, J.S. (1980). Comparative geochemistry of Devonian shale cores from the Appalachian Basin, Mason, Monongalia, and Upshur counties, West Virginia; Illinois Basin, Tazwell County, Illinois, and Clark County, Indiana; and Michigan Basin, Sanilac County, Michigan. U.S. Geological Survey Open File Report 80-938. https://doi.org/10.3133/ofr80938 USGS-CMIBS
813 Leventhal, J.S. (1989). Geochemistry of minor and trace elements of 22 core samples from the Monterey Formation and related rocks in the Santa Maria Basin, California. Studies of uranium content and geochemistry of the Monterey Formation, California, U.S. Geological Survey Bulletin 1581-B. https://doi.org/10.3133/b1581B DM-SED
603 Leventhal, J.S. (1991). Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States. Mineralium Deposita, 26. https://doi.org/10.1007/BF00195256 USGS-CMIBS
626 Leventhal, J.S., Crock, J.G. & Malcolm, M.J. (1981). Geochemistry of trace elements and uranium in Devonian shales of the Appalachian Basin. U.S. Geological Survey Open File Report 81-778. https://doi.org/10.3133/ofr81778 USGS-CMIBS
604 Levitan, M.A., Alekseev, A.S., Badulina, N.V., Girin, Y.P., Kopaevich, L.F., Kubrakova, I.V., Tyutyunnik, O.A. & Chudetsky, M.Yu. (2010). Geochemistry of Cenomanian/Turonian boundary sediments in the mountainous part of Crimea and the northwestern Caucasus. Geochemistry International, 48, 534-554. https://doi.org/10.1134/S0016702910060029 USGS-CMIBS
605 Lewis, S.E., Henderson, R.A., Dickens, G.R., Shields, G.A. & Coxhell, S. (2010). The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia). Mineralium Deposita, 45, 599-620. https://doi.org/10.1007/s00126-010-0287-6 USGS-CMIBS
679 Lézin, C., Andreu, B., Pellenard, P., Bouchez, J., Emmanuel, L., Fauré, P. & Landrein, P. (2013). Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe. Chemical Geology, 341, 1-15. https://doi.org/10.1016/j.chemgeo.2013.01.003 DM-SED
148 Li, C., Jin, C., Planavsky, N.J., Algeo, T.J., Cheng, M., Yang, X., Zhao, Y. & Xie, S. (2017). Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian? Geology, 45. https://doi.org/10.1130/G39208.1 SGP
35 Li, C., Love, G.D., Lyons, T.W., Fike, D.A., Sessions, A.L. & Chu, X. (2010). A stratified redox model for the Ediacaran Ocean. Science, 328, 80-83. https://doi.org/10.1126/science.1182369 SGP
24 Li, C., Love, G.D., Lyons, T.W., Scott, C.T., Feng, L., Huang, J., Chang, H., Zhang, Q. & Chu, X. (2012). Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331-332, 246-256. https://doi.org/10.1016/j.epsl.2012.03.018 SGP
31 Li, C., Planavsky, N.J., Love, G.D., Reinhard, C.T., Hardisty, D.S., Feng, L., Bates, S.M., Huang, J., Zhang, Q., Chu, X. & Lyons, T.W. (2015). Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: Insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochimica et Cosmochimica Acta, 150, 90-105. https://doi.org/10.1016/j.gca.2014.12.005 SGP
32 Li, C., Planavsky, N.J., Shi, W., Zhang, Z., Zhou, C., Cheng, M., Tarhan, L.G., Luo, G. & Xie, S. (2015). Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems. Nature: Scientific Reports, 5, 1-8. https://doi.org/10.1038/srep17097 SGP
498 Li, N., Li, C., Algeo, T.J., Cheng, M., Jin, C., Zhu, G., Fan, J. & Sun, Z. (2021). Redox changes in the outer Yangtze Sea (South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212, 103443. https://doi.org/10.1016/j.earscirev.2020.103443 SGP
595 Li, Q., Liu, S., Han, B., Zhang, J. & Chu, Z. (2005). Geochemistry of metasedimentary rocks of the Proterozoic Xingxingxia complex: implications for provenance and tectonic setting of the eastern segment of the Central Tianshan Tectonic Zone, northwestern China. Canadian Journal of Earth Sciences, 42, 287-306. https://doi.org/10.1139/e05-011 USGS-CMIBS
271 Li, S., Gaschnig, R. & Rudnick, R.L. (2016). Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176, 96-117. https://doi.org/10.1016/j.gca.2015.12.012 SGP
571 Li, S., Wignall, P.B., Xiong, Y. & Poulton, S.W. (2024). Calibration of redox thresholds in black shale: Insight from a stratified Mississippian basin with warm saline bottom waters. Geological Society of America Bulletin, 136, 1266-1286. https://doi.org/10.1130/B36915.1 SGP
715 Li, Y., Zhang, T., Ellis, G.S. & Shao, D. (2017). Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 252-264. https://doi.org/10.1016/j.palaeo.2016.11.037 DM-SED
325 Li, Z., Cole, D.B., Newby, S.M., Owens, J.D., Kendall, B. & Reinhard, C.T. (2021). New constraints on mid-Proterozoic ocean redox from stable thallium isotope systematics of black shales. Geochimica et Cosmochimica Acta, 315, 185-206. https://doi.org/10.1016/j.gca.2021.09.006 SGP
343 Lipinski, M., Warning, B. & Brumsack, H. (2003). Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 459-475. https://doi.org/10.1016/S0031-0182(02)00619-3 USGS-CMIBS
593 Liu, Y., Bowyer, F.T., Zhu, M., Xiong, Y., He, T., Han, M., Tang, X., Zhang, J. & Poulton, S.W. (2024). Marine redox and nutrient dynamics linked to the Cambrian radiation of animals. Geology, 52, 729-734. https://doi.org/10.1130/G52220.1 SGP
115 Liu, Y., Li, C., Algeo, T.J., Fan, J. & Peng, P. (2016). Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 463, 180-191. https://doi.org/10.1016/j.palaeo.2016.10.006 SGP
499 Liu, Y., Li, Y., Hou, M., Shen, J., Algeo, T.J., Fan, J., Zhou, X., Chen, Q., Sun, Z. & Li, C. (2023). Terrestrial rather than volcanic mercury inputs to the Yangtze Platform (South China) during the Ordovician-Silurian transition. Global and Planetary Change, 220, 104023. https://doi.org/10.1016/j.gloplacha.2022.104023 SGP
728 Lo Mónaco, S., López, L., Rojas, H., Garcia, D., Premovic, P. & Briceño, H. (2002). Distribution of major and trace elements in La Luna Formation, Southwestern Venezuelan Basin. Organic Geochemistry, 33, 1593-1608. https://doi.org/10.1016/S0146-6380(02)00122-5 DM-SED
792 Locklair, R.E. (2007). Causes and Consequences of Marine Carbon Burial: Examples from the Cretaceous Niobrara Formation and the Permian Brushy Canyon Formation. [Doctoral thesis, Northwestern University] DM-SED
694 Long, J. & Luo, K. (2017). Trace element distribution and enrichment patterns of Ediacaran-early Cambrian, Ziyang selenosis area, Central China: Constraints for the origin of Selenium. Journal of Geochemical Exploration, 172, 211-230. https://doi.org/10.1016/j.gexplo.2016.11.010 DM-SED
468 Lopez, P.G., Weiss, J.A., Rokosh, C.D. & Pawlowicz, J.G. (2019). Inorganic Geochemistry of Bulk Samples from Selected Alberta Geological Units (tabular data, tab-delimited format) 2019-0021. AER/AGS Digital Data. AGS
745 Loukola-Ruskeeniemi, K. & Heino, T. (1996). Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Economic Geology, 91, 80-110. https://doi.org/10.2113/gsecongeo.91.1.80 DM-SED
118 Loydell, D.K., Butcher, A. & Frýda, J. (2013). The middle Rhuddanian (lower Silurian) ‘hot’ shale of North Africa and Arabia: An atypical hydrocarbon source rock. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 233-256. https://doi.org/10.1016/j.palaeo.2013.05.027 SGP
529 Lu, W., Wörndle, S., Halverson, G.P., Zhou, X., Bekker, A., Rainbird, R.H., Hardisty, D.S., Lyons, T.W. & Lu, Z. (2017). Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 53-57. https://doi.org/10.7185/geochemlet.1746 SGP
242 Lu, X., Dahl, T.W., Zheng, W., Wang, S. & Kendall, B. (2020). Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks. Geochimica et Cosmochimica Acta, 290, 76-103. https://doi.org/10.1016/j.gca.2020.08.032 SGP
566 Lu, X., Edwards, C.T. & Kendall, B. (2023). No evidence for expansion of global ocean euxinia during the base Stairsian mass extinction event (Tremadocian, Early Ordovician). Geochimica et Cosmochimica Acta, 341, 116-131. https://doi.org/10.1016/j.gca.2022.11.028 SGP
563 Lu, X., Gilleaudeau, G.J. & Kendall, B. (2024). Uranium isotopes in non-euxinic shale and carbonate reveal dynamic Katian marine redox conditions accompanying a decrease in biodiversity prior to the Late Ordovician Mass Extinction. Geochimica et Cosmochimica Acta, 364, 22-43. https://doi.org/10.1016/j.gca.2023.10.034 SGP
105 Lüning, S., Loydell, D.K., Sutcliffe, O., Ait Salem, A., Zanella, E., Craig, J. & Harper, D.A. T. (2000). Silurian - Lower Devonian black shales in Morocco: which are the organically richest horizons. Journal of Petroleum Geology, 293-311, 23. https://doi.org/10.1111/j.1747-5457.2000.tb01021.x SGP
265 Luo, J., Long, X., Bowyer, F.T., Mills, B.J.W., Li, J., Xiong, Y., Zhu, X., Zhang, K. & Poulton, S.W. (2021). Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean. Earth and Planetary Science Letters, 559, 116754. https://doi.org/10.1016/j.epsl.2021.116754 SGP
664 Luo, Q., Zhong, N., Zhu, L., Wang, Y., Qin, J., Qi, L., Zhang, Y. & Ma, Y. (2013). Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chinese Science Bulletin, 58, 1299-1309. https://doi.org/10.1007/s11434-012-5534-z DM-SED
641 Lydon, J.W., Höy, T., Slack, J.F. & Knapp, M.E. (2000). The geological environment of the Sullivan deposit, British Columbia. Geological Association of Canada, Mineral Deposits Division, Special Publication, 1. https://ostrnrcan-dostrncan.canada.ca/handle/1845/180901 USGS-CMIBS
124 Lyons, T.W., Luepke, J.J., Schrieber, M.E. & Zieg, G.A. (2000). Sulfur geochemical constraints on mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochimica et Cosmochimica Acta, 64, 427-437. https://doi.org/10.1016/S0016-7037(99)00323-3 SGP
120 Lyu, X., Kendall, B., Stein, H.J., Li, C., Hannah, J.L., Gordon, G.W. & Ebbestad, J.R. (2017). Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district, central Sweden. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.03.015 SGP
717 Ma, K., Hu, S., Wang, T., Zhang, B., Qin, S., Shi, S., Wang, K. & Qingyu, H. (2017). Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 176-187. https://doi.org/10.1016/j.palaeo.2017.02.038 DM-SED
169 Macdonald, F.A., Strauss, J.V., Sperling, E.A., Halverson, G.P., Narbonne, G.M., Johnston, D.T., Kunzmann, M., Schrag, D.P. & Higgins, J.A. (2013). The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, 362, 250-272. https://doi.org/10.1016/j.chemgeo.2013.05.032 SGP
752 Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., González-León, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G. & Grijalva-Noriega, F.J. (2016). Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista mexicana de ciencias geológicas, 33, 34-48. DM-SED
178 Magnall, J.M., Gleeson, S.A. & Paradis, S. (2015). The Importance of Siliceous Radiolarian-Bearing Mudstones in the Formation of Sediment-Hosted Zn-Pb ± Ba Mineralization in the Selwyn Basin, Yukon, Canada. Economic Geology, 110, 2139-2146. https://doi.org/10.2113/econgeo.110.8.2139 SGP
177 Magnall, J.M., Gleeson, S.A., Poulton, S.W., Gordon, G.W. & Paradis, S. (2018). Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits — Fe speciation and Mo isotope constraints from Late Devonian mudstones. Chemical Geology, 490, 45-60. https://doi.org/10.1016/j.chemgeo.2018.05.005 SGP
179 Magnall, J.M., Gleeson, S.A., Stern, R.A., Newton, R.J., Poulton, S.W. & Paradis, S. (2016). Open system sulphate reduction in a diagenetic environment – Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180, 146-163. https://doi.org/10.1016/j.gca.2016.02.015 SGP
546 Maloney, K.M., Halverson, G.P., Lechte, M., Gibson, T.M., Bui, T., Schiffbauer, J.D. & Laflamme, M. (2024). The paleoredox context of early eukaryotic evolution: insights from the Tonian Mackenzie Mountains Supergroup, Canada. Geobiology, 22, e12598. https://doi.org/10.1111/gbi.12598 SGP
437 Manassero, M.J., Cingolani, C.A. & Abre, P. (2009). A Silurian-Devonian marine platform-deltaic system in the San Rafael Block, Argentine Precordillera-Cuyania terrane: lithofacies and provenance. Geological Society Special Publications, 314, 215-240. https://doi.org/10.1144/SP314.12 USGS-CMIBS
260 Mänd, K., Lalonde, S.V., Robbins, L.J., Thoby, M., Paiste, K., Kreitsmann, T., Paiste, P., Reinhard, C.T., Romashkin, A.E., Planavsky, N.J., Kirsimäe, K., Lepland, A. & Konhauser, K.O. (2020). Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience, 13, 302-306. https://doi.org/10.1038/s41561-020-0558-5 SGP
442 Mänd, K., Planavsky, N.J., Porter, S.M., Robbins, L.J., Wang, C., Kreitsmann, T., Paiste, K., Paiste, P., Romashkin, A.E., Deines, Y.E., Kirsimäe, K., Lepland, A. & Konhauser, K.O. (2022). Chromium evidence for protracted oxygenation during the Paleoproterozoic. Earth and Planetary Science Letters, 584, 117501. https://doi.org/10.1016/j.epsl.2022.117501 SGP
644 Manheim, F.T. & Siems, D.E. (1974). Chemical analyses of Red Sea sediments. In: Whitmarsh, R.B., Weser, O.E. & Ross, D.A.Deep Sea Drilling Project Initial Reports Volume 23. https://doi.org/10.2973/dsdp.proc.23.129.1974 USGS-CMIBS
393 Manikyamba, C. & Kerrich, R. (2006). Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: First cycle volcanogenic sedimentary rocks in an intraoceanic arc–trench complex. Geochimica et Cosmochimica Acta, 70, 4663-4679. https://doi.org/10.1016/j.gca.2006.07.015 USGS-CMIBS
377 Manikyamba, C., Kerrich, R., González-Álvarez, I., Mathur, R. & Khanna, T.C. (2008). Geochemistry of Paleoproterozoic black shales from the Intracontinental Cuddapah basin, India: implications for provenance, tectonic setting, and weathering intensity. Precambrian Research, 162, 424-440. https://doi.org/10.1016/j.precamres.2007.10.003 USGS-CMIBS
705 Marynowski, L., Zatoń, M., Rakociński, M., Filipiak, P., Kurkiewicz, S. & Pearce, T.J. (2012). Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record. Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347, 66-86. https://doi.org/10.1016/j.palaeo.2012.05.020 DM-SED
606 Maslov, A., Ronkin, Y., Krupenin, M.T., Petrov, G., Kornilova, A., Lepikhina, O. & Popova, O. (2006). Systematics of rare earth elements, Th, Hf, Sc, Co, Cr, and Ni in the vendian pelitic rocks of the Serebryanka and Sylvitsa groups from the western slope of the Central Urals: A tool for monitoring provenance composition. Geochemistry International, 44, 559-580. https://doi.org/10.1134/S0016702906060036 USGS-CMIBS
347 Maslov, A.V., Isherskaya, M.V., Krupenin, M.T., Petrishcheva, V.G., Gulyaeva, T.Ya. & Gorbunova, N.P. (2010). Lithogeochemical features of Riphean fine-grained terrigenous rocks in the Kama-Belaya aulacogen and their formation conditions. Lithology and Mineral Resources, 45, 172-200. https://doi.org/10.1134/S0024490210020069 USGS-CMIBS
671 Matthäi, S.K. & Henley, R.W. (1996). Geochemistry and depositional environment of the gold-mineralized Proterozoic Koolpin Formation, Pine Creek Inlier, Northern Australia: a comparison with modern shale sequences. Precambrian Research, 78, 211-235. https://doi.org/10.1016/0301-9268(95)00057-7 DM-SED
285 McGuire, D.Joseph (1988). Stratigraphy, depositional history, and hydrocarbon source-rock potential of the Upper Cretaceous-Lower Tertiary Moreno Formation, central San Joaquin Basin, California. [Doctoral thesis, Stanford University] SGP
202 McKirdy, D.M., Hall, P.A., Nedin, C., Halverson, G.P., Michaelsen, B., Jago, J.B., Gehling, J.G. & Jenkins, R.J. F. (2011). Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences, 58, 259-272. https://doi.org/10.1080/08120099.2011.557439 SGP
346 McLennan, S.M., Taylor, S.R. & Eriksson, K.A. (1983). Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47, 1211-1222. https://doi.org/10.1016/0016-7037(83)90063-7 USGS-CMIBS
372 McLennan, S.M., Taylor, S.R. & McGregor, V.R. (1984). Geochemistry of Archean metasedimentary rocks from West Greenland. Geochimica et Cosmochimica Acta, 48, 1-13. https://doi.org/10.1016/0016-7037(84)90345-4 USGS-CMIBS
421 McLennan, S.M., Taylor, S.R., McCulloch, M.T. & Maynard, J. (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050. https://doi.org/10.1016/0016-7037(90)90269-Q USGS-CMIBS
349 McPherson, J.G. (1980). Genesis of variegated redbeds in the fluvial Aztec Siltstone (late devonian), southern victoria land, Antarctica. Sedimentary Geology, 27, 119-142. https://doi.org/10.1016/0037-0738(80)90033-0 USGS-CMIBS
645 Medrano, M.D. & Piper, D.Z. (1995). Partitioning of minor elements and major-element oxides between rock components and calculation of the marine derived fraction of the minor elements in rocks of the Phosphoria Formation, Idaho and Wyoming. U.S. Geological Survey Open File Report 95-270. https://doi.org/10.3133/ofr95270 USGS-CMIBS
739 Melchin, M.J., Mitchell, C.E., Holmden, C. & Storch, P. (2013). Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes. Geological Society of America Bulletin, 125, 1635-1670. https://doi.org/10.1130/B30812.1 DM-SED
726 Melezhik, V.A., Fallick, A.E., Filippov, M.M. & Larsen, O. (1999). Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth-Science Reviews, 47, 1-40. https://doi.org/10.1016/S0012-8252(99)00027-6 DM-SED
369 Meyer, F.M. & Robb, L.J. (1996). The geochemistry of black shales from the Chuniespoort Group, Transvaal Sequence, eastern Transvaal, South Africa. Economic Geology, 91, 111-121. https://doi.org/10.2113/gsecongeo.91.1.111 USGS-CMIBS
137 Miller, A.J., Strauss, J.V., Halverson, G.P., Macdonald, F.A., Johnston, D.T. & Sperling, E.A. (2017). Tracking the onset of Phanerozoic-style redox-sensitive trace metal enrichments: New results from basal Ediacaran post-glacial strata in NW Canada. Chemical Geology, 457, 24-37. https://doi.org/10.1016/j.chemgeo.2017.03.010 SGP
816 Millikin, A.E.G., Gibson, T.M., Strauss, J.V., Bergmann, K.D., Tosca, N.J., Anderson, R.P., Halverson, G.P., Zhang, T. & Rooney, A.D. (2025). Geochemistry and mineralogy of Neoproterozoic strata in northeastern Svalbard: revaluating the prevalence of basalt weathering during the early Neoproterozoic. Geological Society of America Bulletin. https://doi.org/10.1130/B38195.1 SGP
175 Mills, N. (2015). Paleoceanographic Conditions that Resulted in the Accumulation of Organic Matter in the Middle Pennsylvanian Hermosa Group, Southwestern Shelf, Paradox Basin, Utah. [Master's thesis, Baylor University] https://baylor-ir.tdl.org/handle/2104/9563 SGP
607 Mishra, M. & Sen, S. (2010). Geochemical signatures of Mesoproterozoic siliciclastic rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. Chinese Journal of Geochemistry, 29, 21-32. https://doi.org/10.1007/s11631-010-0021-1 USGS-CMIBS
433 Moisan, A. (1992). Petrochimie des gres de la formation de Bordeleau Chibougamau Quebec. [Master's thesis, Université du Québec à Chicoutimi] https://doi.org/10.1522/1473201 USGS-CMIBS
670 Mongenot, T., Tribovillard, N., Desprairies, A., Lallier-Vergès, E. & Laggoun-Defarge, F. (1996). Trace elements as palaeoenvironmental markers in strongly mature hydrocarbon source rocks: the Cretaceous La Luna Formation of Venezuela. Sedimentary Geology, 103, 23-37. https://doi.org/10.1016/0037-0738(95)00078-X DM-SED
708 Montero-Serrano, J., Föllmi, K.B., Adatte, T., Spangenberg, J.E., Tribovillard, N., Fantasia, A. & Suan, G. (2015). Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 83-99. https://doi.org/10.1016/j.palaeo.2015.03.043 DM-SED
419 Mossman, D.J., Gauthierlafaye, F. & Jackson, S. (2005). Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Research, 137, 253-272. https://doi.org/10.1016/j.precamres.2005.03.005 USGS-CMIBS
565 Motomura, K., Bekker, A., Bleeker, W., Ikehara, M., Sano, T., Guilmette, C., Lin, Y. & Kiyokawa, S. (2024). Nitrogen isotope gradient on continental margins during the late Paleoproterozoic. Geochimica et Cosmochimica Acta, 371, 144-161. https://doi.org/10.1016/j.gca.2024.02.022 SGP
303 Motomura, K., Kiyokawa, S., Ikehara, M., Sano, T., Bleeker, W., Tanaka, K., Miki, T. & Sano, Y. (2021). Redox fluctuation and δ13Corg-δ34S perturbations recorded in the 1.9 Ga Nuvilik Formation of the Cape Smith belt, Canada. Precambrian Research, 359, 106191. https://doi.org/10.1016/j.precamres.2021.106191 SGP
187 Mouro, L.D., Rakociński, M., Marynowski, L., Pisarzowska, A., Musabelliu, S., Zatoń, M., Carvalho, M.A., Fernandes, A.C.S. & Waichel, B.L. (2017). Benthic anoxia, intermittent photic zone euxinia and elevated productivity during deposition of the Lower Permian, post-glacial fossiliferous black shales of the Paraná Basin, Brazil. Global and Planetary Change, 158, 155-172. https://doi.org/10.1016/j.gloplacha.2017.09.017 SGP
273 Mundl, A., Walker, R.J., Reimink, J.R., Rudnick, R.L. & Gaschnig, R. (2018). Tungsten-182 in the upper continental crust: Evidence from glacial diamictites. Chemical Geology, 494, 144-152. https://doi.org/10.1016/j.chemgeo.2018.07.036 SGP
608 Nagarajan, R., Armstrong-Altrin, J.S., Nagendra, R., Madhavaraju, J. & Moutte, J. (2007). Petrography and Geochemistry of Terrigenous Sedimentary Rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, Southern India: Implications for Paleoweathering Conditions, Provenance and Source Rock Composition. Journal of the Geological Society of India, 70, 297-312. USGS-CMIBS
613 Nagarajan, R., Madhavaraju, J., Nagendra, R., Amstrong-Altrin, J. & Moutte, J. (2007). Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: Implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 24, 150-160. USGS-CMIBS
152 Nance, W.B. & Taylor, S.R. (1976). Rare earth element patterns and crustal evolution-I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40, 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4 SGP
667 Nance, W.B. & Taylor, S.R. (1977). Rare earth element patterns and crustal evolution—II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochimica et Cosmochimica Acta, 41, 225-231. https://doi.org/10.1016/0016-7037(77)90229-0 DM-SED
203 Nedin, C. (1995). The palaeontology and palaeoenvironment of the Early Cambrian Emu Bay Shale, Kangaroo Island, South Australia. [Doctoral thesis, University of Adelaide] https://digital.library.adelaide.edu.au/dspace/bitstream/2440/18603/2/02whole.pdf SGP
544 Nelson, L.L., Ahm, A.C., Macdonald, F.A., Higgins, J.A. & Smith, E.F. (2021). Fingerprinting local controls on the Neoproterozoic carbon cycle with the isotopic record of Cryogenian carbonates in the Panamint Range, California. Earth and Planetary Science Letters, 566, 116956. https://doi.org/10.1016/j.epsl.2021.116956 SGP
542 Nelson, L.L., Ramezani, J., Almond, J.E., Darroch, S.A. F., Taylor, W.L., Brenner, D.C., Furey, R.P., Turner, M. & Smith, E.F. (2022). Pushing the boundary: A calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa. Earth and Planetary Science Letters, 580, 117396. https://doi.org/10.1016/j.epsl.2022.117396 SGP
774 Newport, L.P. (2016). Petrographic and Geochemical Analysis of the Carboniferous (Namurian) Holywell Shale of Northeast Wales. [Doctoral thesis, Durham University] http://etheses.dur.ac.uk/11467/ DM-SED
703 Newport, L.P., Aplin, A.C., Gluyas, J.G., Greenwell, H.C. & Gröcke, D.R. (2016). Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. Marine and Petroleum Geology, 71, 198-210. https://doi.org/10.1016/j.marpetgeo.2015.11.026 DM-SED
182 Nguyen, K., Love, G.D., Zumberge, J.A., Kelly, A.E., Owens, J.D., Rohrssen, M.K., Bates, S.M., Cai, C. & Lyons, T.W. (2019). Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology. https://doi.org/10.1111/gbi.12329 SGP
327 Nieminski, N., Grove, M. & Lowe, D.R. (2019). Provenance of the Neoproterozoic deep-water Zerrissene Group of the Damara Orogen, Namibia, and paleogeographic implications for the closing of the Adamastor Ocean and assembly of the Gondwana supercontinent. Geological Society of America Bulletin, 131, 355-371. https://doi.org/10.1130/B32032.1 SGP
184 Novek, J.M., Dornbos, S.Q. & McHenry, L.J. (2016). Palaeoredox geochemistry and bioturbation levels of the exceptionally preserved early Cambrian Indian Springs biota, Nevada, USA. Lethaia, 49, 604-616. https://doi.org/10.1111/let.12169 SGP
711 Núñez-Useche, F., Canet, C., Barragán, R. & Alfonso, P. (2016). Bioevents and redox conditions around the Cenomanian–Turonian anoxic event in Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 205-226. https://doi.org/10.1016/j.palaeo.2016.01.035 DM-SED
439 O'Brien, B.H. (1988). A study of the Meguma Terrane in Lunenburg County, Nova Scotia. Geological Survey of Canada, Open File, 1823. https://doi.org/10.4095/130496 USGS-CMIBS
494 O'Sullivan, E.M., Nägler, T.F., Turner, E.C., Kamber, B.S., Babechuk, M.G. & O'Hare, S.P. (2022). Mo isotope composition of the 0.85 Ga ocean from coupled carbonate and shale archives: Some implications for pre-Cryogenian oxygenation. Precambrian Research, 378, 106760. https://doi.org/10.1016/j.precamres.2022.106760 SGP
97 Och, L.M. (2011). Biogeochemical cycling through the Neoproterozoic-Cambrian transition in China: an integrated study of redox-sensitive elements. [Doctoral thesis, University College London] https://discovery.ucl.ac.uk/1331900/1/1331900.pdf SGP
53 Och, L.M., Cremonese, L., Shields-Zhou, G.A., Poulton, S.W., Struck, U., Ling, H., Li, D., Chen, X., Manning, C., Thirlwall, M.F., Strauss, H. & Zhu, M. (2016). Palaeoceanographic controls on spatial redox distribution over the Yangtze Platform during the Ediacaran-Cambrian transition. Sedimentology, 63, 378-410. https://doi.org/10.1111/sed.12220 SGP
40 Och, L.M., Shields-Zhou, G.A., Poulton, S.W., Manning, C., Thirlwall, M.F., Li, D., Chen, X., Ling, H., Osborn, T. & Cremonese, L. (2013). Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225, 166-189. https://doi.org/10.1016/j.precamres.2011.10.005 SGP
548 Okubo, J., Kaufman, A.J., Warren, L.V., Evans, M.N., Marroquín, S.M., Varni, M.A., Misi, A., Bahniuk, A.M. & Xiao, S. (2022). The sulfur isotopic consequence of seawater sulfate distillation preserved in the Neoproterozoic Sete Lagoas post-glacial carbonate, eastern Brazil. Journal of the Geological Society, 179, jgs2021-091. https://doi.org/10.1144/jgs2021-091 SGP
318 Olson, S.L., Ostrander, C.M., Gregory, D.D., Roy, M., Anbar, A.D. & Lyons, T.W. (2019). Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth and Planetary Science Letters, 506, 417-427. https://doi.org/10.1016/j.epsl.2018.11.015 SGP
518 Ossa Ossa, F., Bekker, A., Hofmann, A., Poulton, S.W., Ballouard, C. & Schoenberg, R. (2021). Limited expression of the Paleoproterozoic Oklo natural nuclear reactor phenomenon in the aftermath of a widespread deoxygenation event ~2.11–2.06 billion years ago. Chemical Geology, 578, 120315. https://doi.org/10.1016/j.chemgeo.2021.120315 SGP
519 Ossa Ossa, F., Eickmann, B., Hofmann, A., Planavsky, N.J., Asael, D., Pambo, F. & Bekker, A. (2018). Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth and Planetary Science Letters, 486, 70-83. https://doi.org/10.1016/j.epsl.2018.01.009 SGP
257 Ossa Ossa, F., Hofmann, A., Spangenberg, J.E., Poulton, S.W., Stüeken, E.E., Schoenberg, R., Eickmann, B., Wille, M., Butler, M. & Bekker, A. (2019). Limited oxygen production in the Mesoarchean ocean. Proceedings of the National Academy of Sciences, 116, 6647-6652. https://doi.org/10.1073/pnas.1818762116 SGP
255 Ossa Ossa, F., Hofmann, A., Vidal, O., Kramers, J.D., Belyanin, G. & Cavalazzi, B. (2016). Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambrian Research, 281, 414-433. https://doi.org/10.1016/j.precamres.2016.06.009 SGP
256 Ossa Ossa, F., Hofmann, A., Wille, M., Spangenberg, J.E., Bekker, A., Poulton, S.W., Eickmann, B. & Schoenberg, R. (2018). Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth and Planetary Science Letters, 500, 28-40. https://doi.org/10.1016/j.epsl.2018.07.044 SGP
517 Ossa Ossa, F., Spangenberg, J.E., Bekker, A., König, S., Stüeken, E.E., Hofmann, A., Poulton, S.W., Yierpan, A., Varas-Reus, M.I., Eickmann, B., Andersen, M.B. & Schoenberg, R. (2022). Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event. Earth and Planetary Science Letters, 594, 117716. https://doi.org/10.1016/j.epsl.2022.117716 SGP
322 Ostrander, C.M., Kendall, B., Gordon, G.W., Nielsen, S.G., Zheng, W. & Anbar, A.D. (2022). Shale Heavy Metal Isotope Records of Low Environmental O2 Between Two Archean Oxidation Events. Frontiers in Earth Science, 10, 833609. https://doi.org/10.3389/feart.2022.833609 SGP
320 Ostrander, C.M., Kendall, B., Olson, S.L., Lyons, T.W., Gordon, G.W., Romaniello, S.J., Zheng, W., Reinhard, C.T., Roy, M. & Anbar, A.D. (2020). An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chemical Geology, 532, 119391. https://doi.org/10.1016/j.chemgeo.2019.119391 SGP
319 Ostrander, C.M., Nielsen, S.G., Owens, J.D., Kendall, B., Gordon, G.W., Romaniello, S.J. & Anbar, A.D. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12, 186-191. https://doi.org/10.1038/s41561-019-0309-7 SGP
241 Ostrander, C.M., Owens, J.D., Nielsen, S.G., Lyons, T.W., Shu, Y., Chen, X., Sperling, E.A., Jiang, G., Johnston, D.T., Sahoo, S.K. & Anbar, A.D. (2020). Thallium isotope ratios in shales from South China and northwestern Canada suggest widespread O2 accumulation in marine bottom waters was an uncommon occurrence during the Ediacaran Period. Chemical Geology, 557, Article119856. https://doi.org/10.1016/j.chemgeo.2020.119856 SGP
223 Ostrander, C.M., Sahoo, S.K., Kendall, B., Jiang, G., Planavsky, N.J., Lyons, T.W., Nielsen, S.G., Owens, J.D., Gordon, G.W., Romaniello, S.J. & Anbar, A.D. (2019). Multiple negative molybdenum isotope excursions in the Doushantuo Formation (South China) fingerprint complex redox-related processes in the Ediacaran Nanhua Basin. Geochimica et Cosmochimica Acta, 261, 191-209. https://doi.org/10.1016/j.gca.2019.07.016 SGP
321 Ostrander, C.M., Severmann, S., Gordon, G.W., Kendall, B., Lyons, T.W., Zheng, W., Roy, M. & Anbar, A.D. (2022). Significance of 56Fe depletions in late-Archean shales and pyrite. Geochimica et Cosmochimica Acta, 316, 87-104. https://doi.org/10.1016/j.gca.2021.10.013 SGP
104 Pagès, A. & Schmid, S. (2016). Euxinia linked to the Cambrian Drumian carbon isotope excursion (DICE) in Australia: Geochemical and chemostratigraphic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 65-76, 461. https://doi.org/10.1016/j.palaeo.2016.08.008 SGP
362 Paikaray, S., Banerjee, S. & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32, 34-48. https://doi.org/10.1016/j.jseaes.2007.10.002 USGS-CMIBS
261 Paiste, K., Lepland, A., Zerkle, A.L., Kirsimäe, K., Izon, G., Patel, N.K., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A.E., Rychanchik, D.V. & Prave, A.R. (2018). Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia. Chemical Geology, 499, 151-164. https://doi.org/10.1016/j.chemgeo.2018.09.025 SGP
262 Paiste, K., Lepland, A., Zerkle, A.L., Kirsimäe, K., Kreitsmann, T., Mänd, K., Romashkin, A.E., Rychanchik, D.V. & Prave, A.R. (2020). Identifying global vs. basinal controls on Paleoproterozoic organic carbon and sulfur isotope records. Earth-Science Reviews, 207, 103230. https://doi.org/10.1016/j.earscirev.2020.103230 SGP
263 Paiste, K., Pellerin, A., Zerkle, A.L., Kirsimäe, K., Prave, A.R., Romashkin, A.E. & Lepland, A. (2020). The pyrite multiple sulfur isotope record of the 1.98 Ga Zaonega Formation: Evidence for biogeochemical sulfur cycling in a semi-restricted basin. Earth and Planetary Science Letters, 534, 116092. https://doi.org/10.1016/j.epsl.2020.116092 SGP
235 Partin, C.A., Bekker, A., Planavsky, N.J. & Lyons, T.W. (2015). Euxinic conditions recorded in the ca. 1.93 Ga Bravo Lake Formation, Nunavut (Canada): Implications for oceanic redox evolution. Chemical Geology, 417, 148-162. https://doi.org/10.1016/j.chemgeo.2015.09.004 SGP
609 Pašava, J., Barnes, S. & Vymazalová, A. (2003). The use of mantle normalization and metal ratios in the identification of the sources of platinum-group elements in various metal-rich black shales. Mineralium Deposita, 38, 775-783. https://doi.org/10.1007/s00126-003-0366-z USGS-CMIBS
352 Pasava, J., Hladikova, J. & Dobes, P. (1996). Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Economic Geology, 91, 63-79. https://doi.org/10.2113/gsecongeo.91.1.63 USGS-CMIBS
610 Pašava, J., Oszczepalski, S. & Du, A. (2010). Re–Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Mineralium Deposita, 45, 189-199. https://doi.org/10.1007/s00126-009-0269-8 USGS-CMIBS
413 Patočka, F. & Štorch, P. (2004). Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá-Barrandian Unit, Bohemian Massif, Czech Republic). International Journal of Earth Sciences, 93, 728-741. https://doi.org/10.1007/s00531-004-0415-6 USGS-CMIBS
374 Patterson, J.H., Ramsden, A.R., Dale, L.S. & Fardy, J.J. (1986). Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 55, 1-16. https://doi.org/10.1016/0009-2541(86)90123-3 USGS-CMIBS
505 Peek, S. (2012). Geochemical and Radiometric Constraints on the Redox History of Late Ediacaran Oceans. [Doctoral thesis, University of Maryland] http://hdl.handle.net/1903/13272 SGP
248 Peng, J., Fu, Q., Larson, T.E. & Janson, X. (2020). Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the late Paleozoic ice age. Geological Society of America Bulletin, 133, 57-73. https://doi.org/10.1130/B35336.1 SGP
350 Perkins, R.B., Piper, D.Z. & Mason, C.E. (2008). Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 14-29. https://doi.org/10.1016/j.palaeo.2008.04.012 USGS-CMIBS
796 Pevear, D.R. & Grabowski, G.J. (1985). Geology and geochemistry of the Toolebuc Formation, an organic-rich chalk from the Lower Cretaceous of Queensland, Australia. In: Crevello, P.D. & Harris, P.M. (Eds.), Deep-Water Carbonates, SEPM Core Workshop 6 (pp. 303-341). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/cor.85.06.0303 DM-SED
225 Phelps, A.S., Hofmann, M.H. & Hart, B.S. (2018). Facies and stratigraphic architecture of the Upper Devonian–Lower Mississippian Sappington Formation, southwestern Montana: A potential outcrop analog for the Bakken Formation. AAPG Bulletin, 102, 793-815. https://doi.org/10.1306/0627171614817020 SGP
86 Pi, D., Liu, C., Shields-Zhou, G.A. & Jiang, S. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225, 218-229. https://doi.org/10.1016/j.precamres.2011.07.004 SGP
646 Piper, D.Z. (1999). Trace elements and major-element oxides in the Phosphoria Formation at Enoch Valley, Idaho; Permian sources and current reactivities. U.S. Geological Survey Open File Report 99-163. https://doi.org/10.3133/ofr99163 USGS-CMIBS
784 Pitcher, L.L. (2011). The Upper Pennsylvanian Hushpuckney “Core” Black Shale Member from the Swope Formation in Kansas: Rhenium – Osmium Isotope Systematics, and the Highly Siderophile Elements. [Master's thesis, Stony Brook University] DM-SED
36 Planavsky, N.J., McGoldrick, P., Scott, C.T., Li, C., Reinhard, C.T., Kelly, A.E., Chu, X., Bekker, A., Love, G.D. & Lyons, T.W. (2011). Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477, 448-451. https://doi.org/10.1038/nature10327 SGP
237 Planavsky, N.J., Slack, J.F., Cannon, W.F., O'Connell, B., Isson, T.T., Asael, D., Jackson, J.C., Hardisty, D.S., Lyons, T.W. & Bekker, A. (2018). Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chemical Geology, 483, 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028 SGP
302 Playter, T., Corlett, H., Konhauser, K.O., Robbins, L.J., Rohais, S., Crombez, V., Maccormack, K., Rokosh, D., Prenoslo, D., Furlong, C.M., Pawlowicz, J., Gingras, M., Lalonde, S.V., Lyster, S. & Zonneveld, J. (2018). Clinoform identification and correlation in fine-grained sediments: A case study using the Triassic Montney Formation. Sedimentology, 65, 263-302. https://doi.org/10.1111/sed.12403 SGP
215 Podkovyrov, V.N. (2009). Mesoproterozoic Lakhanda Lagerstätte, Siberia: Paleoecology and taphonomy of the microbiota. Precambrian Research, 173, 146-153. https://doi.org/10.1016/j.precamres.2009.04.006 SGP
800 Podkovyrov, V.N., Cullers, R.L. & Kovach, V.P. (2007). The provenance and weathering conditions of Riphean (Mesoproterozoic and Neoproterozoic) shales, siltstones, and sandstones with time, southeastern Russia (Siberia). In: Link, P.K. & Lewis, R.S. (Eds.), Proterozoic Geology of Western North America and Siberia (pp. 227-253). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/pec.07.86.0227 DM-SED
611 Podkovyrov, V.N., Kovach, V.P. & Kotova, L.N. (2002). Mudrocks from the Siberian Hypostratotype of the Riphean and Vendian: Chemistry, Sm–Nd Isotope Systematics of Sources, and Formation Stages. Lithology and Mineral Resources, 37, 344-364. https://doi.org/10.1023/A:1019947406585 USGS-CMIBS
479 Pogge von Strandmann, P.A., Jenkyns, H.C. & Woodfine, R.G. (2013). Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668-672. https://doi.org/10.1038/ngeo1875 SGP
572 Pogge von Strandmann, P.A., Jones, M.T., West, A.Joshua, Murphy, M.J., Stokke, E.W., Tarbuck, G., Wilson, D.J. H., Pearce, C.R. & Schmidt, D.N. (2021). Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum. Science Advances, 7, eabh4224. https://doi.org/10.1126/sciadv.abh4224 SGP
367 Polat, A. & Kerrich, R. (2000). Archean greenstone belt magmatism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Science Letters, 175, 41-54. https://doi.org/10.1016/S0012-821X(99)00283-6 USGS-CMIBS
371 Polat, A., Kerrich, R. & Wyman, D.A. (1998). The late Archean Schreiber–Hemlo and White River–Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction–accretion complexes. Tectonophysics, 289, 295-326. https://doi.org/10.1016/S0040-1951(98)00002-X USGS-CMIBS
714 Polgári, M., Hein, J.R., Bíró, L., Gyollai, I., Németh, T., Sajgó, C., Fekete, J., Schwark, L., Pál-Molnár, E., Hámor-Vidó, M. & Vigh, T. (2016). Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 99-120. https://doi.org/10.1016/j.palaeo.2016.06.030 DM-SED
742 Polufuntikova, L.I. & Fridovsky, V.Yu. (2016). Lithological features, reconstruction of redox setting, and composition of the provenances of the Upper Triassic Kular–Nera shale belt. Russian Journal of Pacific Geology, 10, 218-229. https://doi.org/10.1134/S1819714016030052 DM-SED
612 Poole, F.G. & Claypool, G.E. (1984). Petroleum Source Rock Potential and Crude Oil Correlation in Great Basin. In: Woodward, J., Meissner, F.F. & Clayton, J.L. (Eds.), Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (pp. 179-229). Rocky Mountain Association of Geologists. USGS-CMIBS
154 Porębska, E. & Sawłowicz, Z. (1997). Palaeoceanographic linkage of geochemical and graptolite events across the Silurian–Devonian boundary in Bardzkie Mountains (Southwest Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 343-354. https://doi.org/10.1016/S0031-0182(97)00048-5 SGP
740 Poulton, S.W., Henkel, S., März, C., Urquhart, H., Flögel, S., Kasten, S., Sinninghe Damsté, J.S. & Wagner, T. (2015). A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43, 963-966. https://doi.org/10.1130/G36837.1 DM-SED
614 Prior, G.J., Pawlowicz, J.G. & Hathaway, B. (2006). Geochemical data for mudstones, shales and other Cretaceous rocks of northwestern Alberta 2006-0021. AER/AGS Digital Data. USGS-CMIBS
230 Pruss, S.B., Jones, D.S., Fike, D.A., Tosca, N.J. & Wignall, P.B. (2019). Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland. Geology, 47, 475-478. https://doi.org/10.1130/G45871.1 SGP
702 Pundaree, N., Krishna, A.K., Subramanyam, K.S.V., Sawant, S.S., Kavitha, S., Kalpana, M.S., Patil, D.J. & Dayal, A.M. (2015). Early Eocene carbonaceous shales of Tadkeshwar Formation, Cambay basin, Gujarat, India: Geochemical implications, petrogenesis and tectonics. Marine and Petroleum Geology, 68, 258-268. https://doi.org/10.1016/j.marpetgeo.2015.08.028 DM-SED
578 Qiu, Z., Zou, C., Mills, B.J.W., Xiong, Y., Tao, H., Lu, B., Liu, H., Xiao, W. & Poulton, S.W. (2022). A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction. Communications Earth & Environment, 3, 82. https://doi.org/10.1038/s43247-022-00412-x SGP
156 Quinby-Hunt, M.S., Wilde, P., Orth, C.J. & Berry, W.B.N. (1989). Elemental Geochemistry of Black Shales--Statistical Comparison of Low-Calcic Shales with Other Shales. Metalliferous black shales and related ore deposits; program and abstracts, U.S. Geological Survey Circular 1037. http://www.marscigrp.org/usgs89.html SGP
746 Racka, M., Marynowski, L., Filipiak, P., Sobstel, M., Pisarzowska, A. & Bond, D.P. G. (2010). Anoxic Annulata Events in the Late Famennian of the Holy Cross Mountains (Southern Poland): Geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 549-575. https://doi.org/10.1016/j.palaeo.2010.08.028 DM-SED
25 Raiswell, R. & Canfield, D.E. (1998). Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298, 219-245. https://doi.org/10.2475/ajs.298.3.219 SGP
312 Raiswell, R., Reinhard, C.T., Derkowski, A., Owens, J.D., Bottrell, S.H., Anbar, A.D. & Lyons, T.W. (2011). Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochimica et Cosmochimica Acta, 75, 1072-1087. https://doi.org/10.1016/j.gca.2010.11.013 SGP
524 Ramos, M.E., Giorgioni, M., Walde, D.H., do Carmo, D.A., Fazio, G., Vieira, L.C., Denezine, M., V. Santos, R., Rodrigues Adorno, R. & Lage Guida, L. (2022). New Facies Model and Carbon Isotope Stratigraphy for an Ediacaran Carbonate Platform From South America (Tamengo Formation—Corumbá Group, SW Brazil). Frontiers in Earth Science, 10, 749066. https://doi.org/10.3389/feart.2022.749066 SGP
662 Rantitsch, G., Melcher, F., Meisel, T. & Rainer, T. (2003). Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcareous Alps: hydrothermal versus hydrogenous origin of stratiform manganese deposits. Mineralogy and Petrology, 77, 109-127. https://doi.org/10.1007/s00710-002-0197-0 DM-SED
615 Rashid, S.A. (2005). The geochemistry of Mesoproterozoic clastic sedimentary rocks from the Rautgara Formation, Kumaun Lesser Himalaya : Implications for provenance, mineralogical control and weathering. Current Science, 88, 1832-1836. USGS-CMIBS
370 Rasmy, M. & Basily, A.B. (1983). Spectrographic study of trace elements in some Egyptian black shales associated with phosphate deposits. Chemical Geology, 39, 115-123. https://doi.org/10.1016/0009-2541(83)90075-X USGS-CMIBS
734 Raza, M., Ahmad, A.H.M., Shamim Khan, M. & Khan, F. (2012). Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering. International Geology Review, 54, 111-129. https://doi.org/10.1080/00206814.2010.517044 DM-SED
616 Raza, M., Casshyap, S.M. & Khan, A. (2002). Geochemistry of Mesoproterozoic Lower Vindhyan Shales from Chittaurgarh, southeastern Rajasthan and its bearing on source rock composition, palaeoweathering conditions and tectono-sedimentary environments. Journal of the Geological Society of India, 60, 505-518. USGS-CMIBS
417 Raza, M., Dayal, A.M., Khan, A., Bhardwaj, V.R. & Rais, S. (2010). Geochemistry of lower Vindhyan clastic sedimentary rocks of Northwestern Indian shield: Implications for composition and weathering history of Proterozoic continental crust. Journal of Asian Earth Sciences, 39, 51-61. https://doi.org/10.1016/j.jseaes.2010.02.007 USGS-CMIBS
309 Reinhard, C.T., Raiswell, R., Scott, C.T., Anbar, A.D. & Lyons, T.W. (2009). A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326, 713-716. https://doi.org/10.1126/science.1176711 SGP
564 Remírez, M.N., Gilleaudeau, G.J., Elrick, M., Henderson, M.A., Over, D., Willette, D.C. & Algeo, T.J. (2023). Linking anoxia, biotic events, and basin evolution in the Late Devonian Illinois Basin, North America: A geochemical approach. Marine and Petroleum Geology, 158, 106556. https://doi.org/10.1016/j.marpetgeo.2023.106556 SGP
591 Remírez, M.N., Gilleaudeau, G.J., Gan, T., Kipp, M.A., Tissot, F.L. H., Kaufman, A.J. & Parente, M. (2024). Carbonate uranium isotopes record global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event. Proceedings of the National Academy of Sciences, 121, e2406032121. https://doi.org/10.1073/pnas.2406032121 SGP
723 Revel, M., Ducassou, E., Grousset, F.E., Bernasconi, S.M., Migeon, S., Revillon, S., Mascle, J., Murat, A., Zaragosi, S. & Bosch, D. (2010). 100,000 Years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews, 29, 1342-1362. https://doi.org/10.1016/j.quascirev.2010.02.006 DM-SED
794 Rheams, K.F. & Neathery, T.L. (1984). Characterization and Geochemistry of Devonian Oil Shale: North Alabama, Northwest Georgia, and South-Central Tennessee (A Resource Evaluation) Final Report. Technical Information Center Oak Ridge Tennessee. DM-SED
471 Richiano, S. (2014). Lower Cretaceous anoxic conditions IN the Austral basin, south-western Gondwana, Patagonia Argentina. Journal of South American Earth Sciences, 54, 37-46. https://doi.org/10.1016/j.jsames.2014.04.006 SGP
472 Richiano, S., Gómez-Peral, L.E., Varela, A.N., Gómez Dacal, A.R., Cavarozzi, C.E. & Poiré, D.G. (2019). Geochemical characterization of black shales from the Río Mayer Formation (Early Cretaceous), Austral-Magallanes Basin, Argentina: Provenance response during Gondwana break-up. Journal of South American Earth Sciences, 93, 67-83. https://doi.org/10.1016/j.jsames.2019.04.009 SGP
474 Richiano, S., Varela, A.N., Gómez-Peral, L.E., Cereceda, A. & Poiré, D.G. (2015). Composition of the Lower Cretaceous source rock from the Austral Basin (Río Mayer Formation, Patagonia, Argentina): Regional implication for unconventional reservoirs in the Southern Andes. Marine and Petroleum Geology, 66, 764-790. https://doi.org/10.1016/j.marpetgeo.2015.07.018 SGP
451 Rico, K.I., Sheldon, N.D., Gallagher, T.M. & Chappaz, A. (2019). Redox Chemistry and Molybdenum Burial in a Mesoproterozoic Lake. Geophysical Research Letters, 46, 5871-5878. https://doi.org/10.1029/2019GL083316 SGP
361 Riley, K.W. & Saxby, J.D. (1982). Association of organic matter and vanadium in oil shale from the Toolebuc Formation of the Eromanga Basin, Australia. Chemical Geology, 37, 265-275. https://doi.org/10.1016/0009-2541(82)90082-1 USGS-CMIBS
673 Rimmer, S.M. (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 206, 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029 DM-SED
422 Ritcey, D.H., Evenchick, C.A. & Ratcliffe, K.T. (2006). Geochemical and heavy mineral analyses of the Bowser Lake and Sustut groups, north central British Columbia, Canada. Geological Survey of Canada, Open File, 5072. https://doi.org/10.4095/221569 USGS-CMIBS
560 Ritzer, S.R., Schoepfer, S.D., Bussian, B.A., Farrell, U.C., Fraser, T.A., Henderson, C.M., Kang, J., Mwinde, C.N., Patch, A.D. & Sperling, E.A. (2024). The relationship between total organic carbon and bottom water redox state in North American black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 649, 112266. https://doi.org/10.1016/j.palaeo.2024.112266 SGP
782 Rivera, K.T. (2013). Geologic controls on nitrogen isotopes in marine black shale: a case study of the Woodford Shale, Anadarko Basin, Oklahoma. [Master's thesis, Oklahoma State University] DM-SED
620 Robl, T.L. (1983). Commercial feasibility of Mississippian and Devonian oil shales of Kentucky. Final Report to U.S. Department of Energy, Grant No. DEFG44-80R-410-195, IMMR83/081, University of Kentucky Institute for Mining and Minerals Research, Lexington, Kentucky https://doi.org/10.2172/5394103 USGS-CMIBS
628 Robl, T.L. & Barron, L.S. (1988). The geochemistry of Devonian black shales in central Kentucky and its relationship to inter-basinal correlation and depositional environment. In: McMillan, N.J., Embry, A.F. & Glass, D.J. (Eds.), Devonian of the World; proceedings of the 2nd international symposium on the Devonian System; Volume II, Sedimentation (pp. 377-392). Canadian Society of Petroleum Geologists. USGS-CMIBS
719 Roddaz, M., Debat, P. & Nikiema, S. (2007). Geochemistry of Upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust. Precambrian Research, 159, 197-211. https://doi.org/10.1016/j.precamres.2007.06.008 DM-SED
394 Rogers, N., Staal, C.R., Winchester, J.A. & Fyffe, L.R. (2003). Provenance and Chemical Stratigraphy of the Sedimentary Rocks of the Miramichi, Tetagouche, California Lake, and Fournier Groups, Northern New Brunswick. In: Goodfellow, W.D., McCutcheon, S.R. & Peter, J.M. (Eds.), Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine. Economic Geology Monograph 11. Society of Economic Geologists. https://doi.org/10.5382/Mono.11.07 USGS-CMIBS
465 Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2016). Bulk mineralogy from x-ray diffraction analysis of Alberta stratigraphic units evaluated for shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab-delimited format). 2016-0003. AER/AGS Digital Data. AGS
464 Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2016). Inorganic geochemistry of Alberta geological units for shale- and siltstone-hosted hydrocarbon evaluation (tabular data, tab-delimited format) 2016-0001. AER/AGS Digital Data. AGS
463 Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2017). Bulk rock geochemistry data from x-ray fluorescence analysis of samples from Alberta stratigraphic units evaluated for their shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab-delimited format) 2016-0007. AER/AGS Digital Data. AGS
466 Rokosh, C.D., Crocq, C.S., Pawlowicz, J.G. & Brazzoni, T. (2017). Clay mineral x-ray diffraction analysis results of outcrop samples from Alberta stratigraphic units evaluated for their shale- and siltstone-hosted hydrocarbon resource potential (tabular data, tab delimited format) 2016-0006. AER/AGS Digital Data. AGS
359 Roser, B.P., Coombs, D.S., Korsch, R. & Campbell, J.D. (2002). Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine, 139, 665-685. https://doi.org/10.1017/S0016756802006945 USGS-CMIBS
164 Ross, D.J.K. & Bustin, R.M. (2006). Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 54, 337-365. https://doi.org/10.2113/gscpgbull.54.4.337 SGP
364 Ross, D.J.K. & Bustin, R.M. (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027 USGS-CMIBS
26 Rozanov, A.G., Volkov, I.I. & Yagodinskaya, T.A. (1974). Forms of iron in surface layer of Black Sea sediments. In: Degens, E.T. & Ross, D.A. (Eds.), The Black Sea--Geology, Chemistry, and Biology (pp. 532-541). American Association of Petroleum Geologists. https://doi.org/10.1306/M20377C16 SGP
360 Rudnick, R.L. & Gao, S. (2003). Composition of the Continental Crust. In: Anbar, A.D. & Weis, D. (Eds.), Treatise on Geochemistry Vol. 3 (pp. 1-64). Elsevier. https://doi.org/10.1016/B0-08-043751-6/03016-4 USGS-CMIBS
476 Rugen, E.J., Ineson, J.R. & Frei, R. (2022). Low oxygen seawater and major shifts in the paleoenvironment towards the terminal Ediacaran: Insights from the Portfjeld Formation, North Greenland. Precambrian Research, 379, 106781. https://doi.org/10.1016/j.precamres.2022.106781 SGP
532 Rutledge, R.L., Gilleaudeau, G.J., Remírez, M.N., Kaufman, A.J., Lyons, T.W., Bates, S.M. & Algeo, T.J. (2024). Productivity and organic carbon loading control uranium isotope behavior in ancient reducing settings: Implications for the paleoredox proxy. Geochimica et Cosmochimica Acta, 368, 197-213. https://doi.org/10.1016/j.gca.2024.01.007 SGP
213 Saether, O.M., Xie, R., Aagaard, P., Endre, E., Løken, T. & Rudolph-Lund, K. (2010). Main and trace element content of shales from Ankerskogen (Hamar) and Øvre Slottsgt. (Oslo), Norway. NGU Report 2009.063. https://www.ngu.no/upload/Publikasjoner/Rapporter/2009/2009_063.pdf SGP
67 Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J. & Lyons, T.W. (2003). A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strat, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195, 229-273. https://doi.org/10.1016/S0009-2541(02)00397-2 SGP
488 Sahoo, S.K., Gilleaudeau, G.J., Wilson, K., Hart, B.S., Barnes, B.D., Faison, T., Bowman, A.R., Larson, T.E. & Kaufman, A.J. (2023). Basin-scale reconstruction of euxinia and Late Devonian mass extinctions. Nature, 615, 640-645. https://doi.org/10.1038/s41586-023-05716-2 SGP
52 Sahoo, S.K., Planavsky, N.J., Jiang, G., Kendall, B., Owens, J.D., Wang, X., Shi, X., Anbar, A.D. & Lyons, T.W. (2016). Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology. https://doi.org/10.1111/gbi.12182 SGP
57 Sahoo, S.K., Planavsky, N.J., Kendall, B., Wang, X., Shi, X., Scott, C.T., Anbar, A.D., Lyons, T.W. & Jiang, G. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489, 546-549. https://doi.org/10.1038/nature11445 SGP
783 Salem, N. (2013). Geochemical characterisation of the Pliensbachian-Toarcian boundary during the onset of the Toarcian Oceanic Anoxic Event. North Yorkshire, UK. [Doctoral thesis, Newcastle University] DM-SED
432 Sambasiva Rao, V.V., Sreenivas, B., Balaram, V., Govil, P.K. & Srinivasan, R. (1999). The nature of the Archean upper crust as revealed by the geochemistry of the Proterozoic shales of the Kaladgi basin, Karnataka, southern India. Precambrian Research, 98, 53-65. https://doi.org/10.1016/S0301-9268(99)00038-8 USGS-CMIBS
617 Samson, S.D., Patchett, P., Gehrels, G.E. & Anderson, R.G. (1990). Nd and Sr Isotopic Characterization of the Wrangellia Terrane and Implications for Crustal Growth of the Canadian Cordillera. The Journal of Geology, 98, 749-762. https://doi.org/10.1086/629438 USGS-CMIBS
798 Sandberg, C.A. & Gutschick, R.C. (1984). Distribution, microfauna, and source-rock potential of Mississippian Delle Phosphatic Member of Woodman Formation and equivalents, Utah and adjacent states. In: Woodward, J., Meissner, F.F. & Clayton, J.L. (Eds.), Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (pp. 135-178). Rocky Mountain Association of Geologists. DM-SED
753 Saunders, J.A. & Savrda, C.E. (1993). Geochemistry of the Athens Shale: Implications for the genesis of Mississippi Valley-Type deposits of the Southernmost Appalachians. Southeastern Geology, 33, 161-170. DM-SED
743 Saupé, F. & Vegas, G. (1987). Chemical and mineralogical compositions of black shales (Middle Palaeozoic of the Central Pyrenees, Haute-Garonne, France). Mineralogical Magazine, 51, 357-369. https://doi.org/10.1180/minmag.1987.051.361.03 DM-SED
351 Sawyer, E.W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chemical Geology, 55, 77-95. https://doi.org/10.1016/0009-2541(86)90129-4 USGS-CMIBS
618 Scasso, R. & Bauseh, W. (1989). Mineralogical and Geochemical Characterization of the Ameghino Formation Mudstones (Upper Jurassic, Antarctic Peninsula) and Its Stratigraphieal, Diagenetical and Paleoenvironmental Meaning. Polarforschung, 59, 179-198. USGS-CMIBS
428 Schaller, T., Morford, J.L., Emerson, S.R. & Feely, R.A. (2000). Oxyanions in metalliferous sediments: tracers for paleoseawater metal concentrations? Geochimica et Cosmochimica Acta, 64, 2243-2254. https://doi.org/10.1016/S0016-7037(99)00443-3 USGS-CMIBS
170 Scheller, E.L., Dickson, A.J., Canfield, D.E., Korte, C., Kristiansen, K.K. & Dahl, T.W. (2018). Ocean redox conditions between the snowballs – Geochemical constraints from Arena Formation, East Greenland. Precambrian Research, 319, 173-186. https://doi.org/10.1016/j.precamres.2017.12.009 SGP
145 Schmid, S., Kunzmann, M. & Pagès, A. (2017). Inorganic geochemical evaluation of hydrocarbon source rock potential of Neoproterozoic strata in the Amadeus Basin, Australia. Marine and Petroleum Geology, 86, 1094-1105. https://doi.org/10.1016/j.marpetgeo.2017.07.015 SGP
520 Schobben, M., Foster, W.J., Sleveland, A.R., Zuchuat, V., Svensen, H.H., Planke, S., Bond, D.P. G., Marcelis, F., Newton, R.J., Wignall, P.B. & Poulton, S.W. (2020). A nutrient control on marine anoxia during the end-Permian mass extinction. Nature Geoscience, 13, 640-646. https://doi.org/10.1038/s41561-020-0622-1 SGP
138 Schoepfer, S.D., Algeo, T.J., Ward, P.D., Williford, K.H. & Haggart, J.W. (2016). Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction? Earth and Planetary Science Letters, 451, 138-148. https://doi.org/10.1016/j.epsl.2016.06.050 SGP
111 Schoepfer, S.D., Henderson, C.M., Garrison, G.H. & Ward, P.D. (2012). Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 313-314, 181-188. https://doi.org/10.1016/j.palaeo.2011.10.019 SGP
112 Schoepfer, S.D., Henderson, C.M., Garrison, G.H., Foriel, J., Ward, P.D., Selby, D., Hower, J.C., Algeo, T.J. & Shen, Y. (2013). Termination of a continent-margin upwelling system at the Permian–Triassic boundary (Opal Creek, Alberta, Canada). Global and Planetary Change, 105, 21-35. https://doi.org/10.1016/j.gloplacha.2012.07.005 SGP
286 Schoepfer, S.D., Tobin, T.S., Witts, J.D. & Newton, R.J. (2017). Intermittent euxinia in the high-latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 477, 40-54. https://doi.org/10.1016/j.palaeo.2017.04.013 SGP
165 Schovsbo, N.H. (2003). The geochemistry of Lower Palaeozoic sediments deposited on the margins of Baltica. Bulletin of the Geological Society of Denmark, 50, 11-27. https://doi.org/10.37570/bgsd-2003-50-01 SGP
674 Schulte, P., Scheibner, C. & Speijer, R.P. (2011). Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene Thermal Maximum in the Dababiya Quarry section, Egypt. Chemical Geology, 285, 167-183. https://doi.org/10.1016/j.chemgeo.2011.04.004 DM-SED
814 Schultz, L.G., Tourtelot, H.A., Gill, J.R. & Boerngen, J.G. (1980). Composition and Properties of the Pierre Shale and Equivalent Rocks, Northern Great Plains Region. Geochemistry of the Pierre Shale and Equivalent Rocks of Late Cretaceous Age, USGS Professional Paper 1064-B (pp. 114). U.S. Government Printing Office. https://doi.org/10.3133/pp1064B DM-SED
424 Schultz, R.B. & Coveney, R.M. (1992). Time-dependent changes for Midcontinent Pennsylvania black shales, U.S.A.. Chemical Geology, 99, 83-100. https://doi.org/10.1016/0009-2541(92)90032-Z USGS-CMIBS
619 Schultz, R.B. & Maynard, J. (1989). Midcontinent Virgilian (Upper Pennsylvanian) black shales in eastern Kansas. In: Grauch, R.I. & Leventhal, J.S. (Eds.), Metalliferous black shales and related ore deposits; program and abstracts, U.S. Geological Survey Circular 1037 (pp. 68-78). . USGS-CMIBS
106 Scott, C.T., Slack, J.F. & Kelley, K.D. (2017). The hyper-enrichment of V and Zn in black shales of the Late Devonian-Early Mississippian Bakken formation (USA). Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.01.026 SGP
77 Shaffer, J. (2015). Is the Utica Shale a Valid Estimator of Global Paleoredox Conditions? [Bachelor's thesis, Harvard University] SGP
200 Shaffer, N.R. (1996). Lateral variation in mineralogy and geochemistry of Pennsylvanian black shale sequences related to contemporancous fresh water channels, southwestern Indiana. [Doctoral thesis, Indiana University] SGP
162 Shergold, J.H. (1985). Notes to accompany the Hay River-Mount Whelan Special 1:250 000 Geological Sheet, Southern Georgina Basin. Record 251, Geoscience Australia, Canberra https://pid.geoscience.gov.au/dataset/ga/15163 SGP
690 Siebert, C., Kramers, J.D., Meisel, T., Morel, P. & Nägler, T. (2005). PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta, 69, 1787-1801. https://doi.org/10.1016/j.gca.2004.10.006 DM-SED
368 Sifeta, K., Roser, B.P. & Kimura, J. (2005). Geochemistry, provenance, and tectonic setting of Neoproterozoic metavolcanic and metasedimentary units, Werri area, Northern Ethiopia. Journal of African Earth Sciences, 41, 212-234. https://doi.org/10.1016/j.jafrearsci.2005.04.004 USGS-CMIBS
649 Sinclair, B.J. (1994). Geology and geochemistry of the Que River shale, Western Tasmania. [Bachelor's thesis, University of Tasmania] https://doi.org/10.25959/23211629.v1 USGS-CMIBS
441 Singh, A.K. & Chakraborty, P.P. (2021). Geochemistry and hydrocarbon source rock potential of shales from the Palaeo-Mesoproterozoic Vindhyan Supergroup, central India. Energy Geoscience, S2666759221000585. https://doi.org/10.1016/j.engeos.2021.10.007 SGP
440 Singh, A.K., Chakraborty, P.P. & Sarkar, S. (2018). Redox structure of Vindhyan hydrosphere: clues from total organic carbon, transition metal (Mo, Cr) concentrations and stable isotope (δ13C) chemistry. Current Science, 115, 1334-1341. https://doi.org/10.18520/cs%2Fv115%2Fi7%2F1334-1341 SGP
507 Singh, P., Lu, W., Lu, Z., Jost, A.B., Lau, K.V., Bachan, A., van de Schootbrugge, B. & Payne, J.L. (2023). Reduction in animal abundance and oxygen availability during and after the end‐Triassic mass extinction. Geobiology, 21, 175-192. https://doi.org/10.1111/gbi.12533 SGP
621 Slack, J.F. & Höy, T. (2000). Geochemistry and provenance of clastic metasedimentary rocks of the Aldridge and Fort Steele Formations, Purcell Supergroup, southeastern British Columbia. In: Lydon, J.W. (Ed.), The Geological Environment of the Sullivan Deposit, British Columbia. Geological Association of Canada Mineral Deposits Division, Special Publication No.1 (pp. 180-201). . USGS-CMIBS
291 Slack, J.F., McAleer, R.J., Shanks, W.C. & Dumoulin, J.A. (2021). Diagenetic Barite-Pyrite-Wurtzite Formation and Redox Signatures in Triassic Mudstone, Brooks Range, Northern Alaska. Chemical Geology, 585, 120568. https://doi.org/10.1016/j.chemgeo.2021.120568 SGP
650 Slack, J.F., Schmidt, J.M. & Dumoulin, J.A. (2004). Whole rock geochemical data for paleozoic sedimentary rocks of the western Brooks Range, Alaska. U.S. Geological Survey Open File Report 2004-1371. https://doi.org/10.3133/ofr20041371 USGS-CMIBS
251 Slotznick, S., Sperling, E.A., Tosca, N.J., Miller, A.J., Clayton, K.E., van Helmond, N.A. G. M., Slomp, C.P. & Swanson-Hysell, N.L. (2019). Unraveling the Mineralogical Complexity of Sediment Iron Speciation Using Sequential Extractions. Geochemistry, Geophysics, Geosystems, 21, Articlee2019GC008666. https://doi.org/10.1029/2019GC008666 SGP
172 Slotznick, S., Swanson-Hysell, N.L. & Sperling, E.A. (2018). Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proceedings of the National Academy of Sciences, 115, 12938-12943. https://doi.org/10.1073/pnas.1813493115 SGP
430 Spalletti, L.A., Queralt, I., Matheos, S.D., Colombo, F. & Maggi, J. (2008). Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25, 440-463. https://doi.org/10.1016/j.jsames.2007.08.005 USGS-CMIBS
153 Spencer, D. (1966). Factors Affecting Element Distributions in a Silurian Graptolite Band. Chemical Geology, 1, 221-249. https://doi.org/10.1016/0009-2541(66)90018-0 SGP
117 Sperling, E.A. & Ingle, Jr., J.C. (2006). A Permian–Triassic boundary section at Quinn River Crossing, northwestern Nevada, and implications for the cause of the Early Triassic chert gap on the western Pangean margin. Geological Society of America Bulletin, 118, 733-746. https://doi.org/10.1130/B25803.1 SGP
158 Sperling, E.A. & Stockey, R.G. (2018). The temporal and environmental context of early animal evolution: considering all the ingredients of an ‘explosion’. Integrative and Comparative Biology. https://doi.org/10.1093/icb/icy088 SGP
159 Sperling, E.A., Balthazar, U. & Skovsted, C.B. (2018). On the edge of exceptional preservation: insights into the role of redox state in Burgess Shale-type taphonomic windows from the Mural Formation, Alberta, Canada. Emerging Topics in Life Sciences. https://doi.org/10.1042/ETLS20170163 SGP
20 Sperling, E.A., Carbone, C., Strauss, J.V., Johnston, D.T., Narbonne, G.M. & Macdonald, F.A. (2016). Oxygen, facies, and secular controls on the appearance of Cryogenia and Ediacaran body and trace fossils in the Mackenzie Mountains of northwestern Canada. Geological Society of America Bulletin, 128, 558-575. https://doi.org/10.1130/B31329.1 SGP
23 Sperling, E.A., Halverson, G.P., Knoll, A.H., Macdonald, F.A. & Johnston, D.T. (2013). A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters, 371-372, 143-155. https://doi.org/10.1016/j.epsl.2013.04.003 SGP
264 Sperling, E.A., Melchin, M.J., Fraser, T.A., Stockey, R.G., Farrell, U.C., Bhajan, L., Brunoir, T.N., Cole, D.B., Gill, B.C., Lenz, A.C., Loydell, D.K., Malinowski, J.K., Miller, A.J., Plaza-Torres, S., Bock, B., Rooney, A.D., Tecklenburg, S., Vogel, J.M., Planavsky, N.J. & Strauss, J.V. (2021). A long-term record of early to mid-Paleozoic marine redox change. Science Advances, 7, eabf4382. https://doi.org/10.1126/sciadv.abf4382 SGP
15 Sperling, E.A., Rooney, A.D., Hays, L., Sergeev, V.N., Vorob'eva, N.G., Sergeeva, N.D., Selby, D., Johnston, D.T. & Knoll, A.H. (2014). Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12, 373-386. https://doi.org/10.1111/gbi.12091 SGP
64 Sperling, E.A., Wolock, C.J., Morgan, A.S., Gill, B.C., Kunzmann, M., Halverson, G.P., Macdonald, F.A., Knoll, A.H. & Johnston, D.T. (2015). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523, 451-454. https://doi.org/10.1038/nature14589 SGP
196 Spinks, S.C., Schmid, S. & Pagès, A. (2016). Delayed euxinia in Paleoproterozoic intracontinental seas: Vital havens for the evolution of eukaryotes? Precambrian Research, 287, 108-114. https://doi.org/10.1016/j.precamres.2016.11.002 SGP
493 Spinks, S.C., Sperling, E.A., Thorne, R.L., LaFountain, F., White, A.J., Armstrong, J., Woltering, M. & Tyler, I.M. (2023). Mesoproterozoic surface oxygenation accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga. Geobiology, 21, 28-43. https://doi.org/10.1111/gbi.12524 SGP
582 Sprinkel, D.A. & Waanders, G.L. (2005). Stratigraphy, organic microfossils, and thermal maturation of the Neoproterozoic Uinta Mountain Group in the eastern Uinta Mountains, northeastern Utah. In: Dehler, C.M., Pederson, J.L., Sprinkel, D.A. & Kowallis, B.J. (Eds.), Uinta Mountain Geology (pp. 63-73). Utah Geological Association. SGP
630 Stanley, C.R. & Gemmell, J. (1995). Lithogeochemical exploration for metasomatic alteration zones using Pearce element ratios: Heliyer case study. Studies of VHMS-related alteration: geochemical and mineralogical vectors to ore, AMIRA/ARC project P439, Report 1. http://www.utas.edu.au/__data/assets/pdf_file/0018/270009/P439_01_Nov_1995.pdf USGS-CMIBS
435 Stevenson, R. (1995). Crust and mantle evolution in the Late Archean: Evidence from a Sm-Nd isotopic study of the North Spirit Lake greenstone belt, northwestern Ontario, Canada. Geological Society of America Bulletin, 107, 1458-1467. https://doi.org/10.1130/0016-7606(1995)107<1458:CAMEIT>2.3.CO;2 USGS-CMIBS
253 Strauss, J.V., Fraser, T.A., Melchin, M.J., Allen, T., Malinowski, J.K., Feng, X., Taylor, J.F., Day, J., Gill, B.C. & Sperling, E.A. (2020). The Road River Group of northern Yukon, Canada: early Paleozoic deep-water sedimentation within the Great American Carbonate Bank. Canadian Journal of Earth Sciences, 57, 1193-1219. https://doi.org/10.1139/cjes-2020-0017 SGP
315 Stüeken, E.E., Buick, R. & Anbar, A.D. (2015). Selenium isotopes support free O2 in the latest Archean. Geology, 43, 259-262. https://doi.org/10.1130/G36218.1 SGP
234 Stüeken, E.E., Buick, R. & Lyons, T.W. (2019). Revisiting the depositional environment of the Neoproterozoic Callanna Group, South Australia. Precambrian Research, 334, Article105474. https://doi.org/10.1016/j.precamres.2019.105474 SGP
113 Stüeken, E.E., Foriel, J., Buick, R. & Schoepfer, S.D. (2015). Selenium isotope ratios, redox changes and biological productivity across the end-Permian mass extinction. Chemical Geology, 410, 28-39. https://doi.org/10.1016/j.chemgeo.2015.05.021 SGP
231 Stüeken, E.E., Martinez, A., Love, G.D., Olsen, P.E., Bates, S.M. & Lyons, T.W. (2019). Effects of pH on redox proxies in a Jurassic rift lake: Implications for interpreting environmental records in deep time. Geochimica et Cosmochimica Acta, 252, 240-267. https://doi.org/10.1016/j.gca.2019.03.014 SGP
353 Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K. & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147, 124-147. https://doi.org/10.1016/j.precamres.2006.02.006 USGS-CMIBS
254 Sullivan, N.B., Loydell, D.K., Montgomery, P., Molyneux, S.G., Zalasiewicz, J.A., Ratcliffe, K.T., Campbell, E., Griffiths, J.D. & Lewis, G. (2018). A record of Late Ordovician to Silurian oceanographic events on the margin of Baltica based on new carbon isotope data, elemental geochemistry, and biostratigraphy from two boreholes in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 95-106. https://doi.org/10.1016/j.palaeo.2017.10.016 SGP
198 Sumartojo, J. (1974). A Study of the Mineralogy and Geochemistry of the Tindelpina Shale (Upper Proterozoic) Adelaide Geosyncline, South Australia. [Doctoral thesis, University of Cincinnati] https://scholar.uc.edu/show/pv63g0260 SGP
809 Sun, Y., Wang, W., Lang, X., Guan, C., Ouyang, Q., Pang, K., Li, G., Hu, Y., Shi, H., Zhao, X. & Zhou, C. (2025). A shallow-water oxygen minimum zone in an oligotrophic Tonian basin. Nature Communications, 16, 725. https://doi.org/10.1038/s41467-025-55881-3 SGP
688 Sun, Y.D., Wignall, P.B., Joachimski, M.M., Bond, D.P. G., Grasby, S.E., Lai, X.L., Wang, L.N., Zhang, Z.T. & Sun, S. (2016). Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444, 88-100. https://doi.org/10.1016/j.epsl.2016.03.037 DM-SED
687 Takahashi, S., Yamasaki, S., Ogawa, Y., Kimura, K., Kaiho, K., Yoshida, T. & Tsuchiya, N. (2014). Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth and Planetary Science Letters, 393, 94-104. https://doi.org/10.1016/j.epsl.2014.02.041 DM-SED
709 Tanner, L.H., Kyte, F.T., Richoz, S. & Krystyn, L. (2016). Distribution of iridium and associated geochemistry across the Triassic–Jurassic boundary in sections at Kuhjoch and Kendlbach, Northern Calcareous Alps, Austria. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 13-26. https://doi.org/10.1016/j.palaeo.2016.01.011 DM-SED
495 Tao, J., Zhang, J., Liu, Y., Stüeken, E.E., Dong, Z., Shi, M., Li, P., Zhang, Q. & Poulton, S.W. (2022). A stable and moderate nitrate pool in largely anoxic Mesoproterozoic oceans and implications for eukaryote evolution. Precambrian Research, 381, 106868. https://doi.org/10.1016/j.precamres.2022.106868 SGP
651 Taylor, S.R. & McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell Scientific Publications. USGS-CMIBS
208 Them, T.R., Gill, B.C., Caruthers, A.H., Gerhardt, A.M., Gröcke, D.R., Lyons, T.W., Marroquín, S.M., Nielsen, S.G., Trabucho Alexandre, J.P. & Owens, J.D. (2018). Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proceedings of the National Academy of Sciences, 115, 6596-6601. https://doi.org/10.1073/pnas.1803478115 SGP
206 Them, T.R., Gill, B.C., Caruthers, A.H., Gröcke, D.R., Tulsky, E.T., Martindale, R.C., Poulton, T.P. & Smith, P.L. (2017). High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle. Earth and Planetary Science Letters, 459, 118-126. https://doi.org/10.1016/j.epsl.2016.11.021 SGP
207 Them, T.R., Gill, B.C., Selby, D., Gröcke, D.R., Friedman, R.M. & Owens, J.D. (2017). Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Nature: Scientific Reports, 7, 1-10. https://doi.org/10.1038/s41598-017-05307-y SGP
209 Them, T.R., Jagoe, C.H., Caruthers, A.H., Gill, B.C., Grasby, S.E., Gröcke, D.R., Yin, R. & Owens, J.D. (2019). Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 507, 62-72. https://doi.org/10.1016/j.epsl.2018.11.029 SGP
533 Them, T.R., Owens, J.D., Marroquín, S.M., Caruthers, A.H., Alexandre, J.P. & Gill, B.C. (2022). Reduced Marine Molybdenum Inventory Related to Enhanced Organic Carbon Burial and an Expansion of Reducing Environments in the Toarcian (Early Jurassic) Oceans. AGU Advances, 3, e2022AV000671. https://doi.org/10.1029/2022AV000671 SGP
101 Thompson, W.R. (2013). A Geochemical Assessment of the Utica Shale in the Mohawk Valley of New York: Evidence for Diachronous Deposition and Ramifications for Potential Hydrocarbon Systems. [Bachelor's thesis, Harvard University] SGP
128 Thomson, D., Rainbird, R.H., Planavsky, N.J., Lyons, T.W. & Bekker, A. (2015). Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A record of ocean composition prior to the Cryogenian glaciations. Precambrian Research, 263, 232-245. https://doi.org/10.1016/j.precamres.2015.02.007 SGP
663 Tian, X. & Luo, K. (2017). Distribution and enrichment patterns of selenium in the Ediacaran and early Cambrian strata in the Yangtze Gorges area, South China. Science China Earth Sciences, 60, 1268-1282. https://doi.org/10.1007/s11430-016-9045-1 DM-SED
747 Tian, X., Luo, K. & Zuza, A.V. (2017). The Trace Element Distribution Patterns of Ediacaran‐Early Cambrian Black Shales and the Origin of Selenium in the Guangning Area, Western Guangdong Province, South China. Acta Geologica Sinica - English Edition, 91, 1978-1991. https://doi.org/10.1111/1755-6724.13445 DM-SED
632 Toole, R. (2006). Petrographic and chemical variations through the Goldenville and Halifax formations, Bear River, High Head, and Broad River sections, southwestern Nova Scotia. [Bachelor's thesis, Acadia University] USGS-CMIBS
222 Tostevin, R., Clarkson, M.O., Gangl, S., Shields, G.A., Wood, R.A., Bowyer, F.T., Penny, A.M. & Stirling, C.H. (2019). Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth and Planetary Science Letters, 506, 104-112. https://doi.org/10.1016/j.epsl.2018.10.045 SGP
221 Tostevin, R., He, T., Turchyn, A.V., Wood, R.A., Penny, A.M., Bowyer, F.T., Antler, G. & Shields, G.A. (2017). Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate.. Precambrian Research, 290, 113-125. https://doi.org/10.1016/j.precamres.2017.01.004 SGP
220 Tostevin, R., Wood, R.A., Shields, G.A., Poulton, S.W., Guilbaud, R., Bowyer, F.T., Penny, A.M., He, T., Curtis, A., Hoffmann, K. & Clarkson, M.O. (2016). Low-oxygen waters limited habitable space for early animals. Nature Communications, 7, Article12818. https://doi.org/10.1038/ncomms12818 SGP
592 Trecalli, A., Spangenberg, J.E., Adatte, T., Föllmi, K.B. & Parente, M. (2012). Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event. Earth and Planetary Science Letters, 357-358, 214-225. https://doi.org/10.1016/j.epsl.2012.09.043 SGP
227 Tribovillard, N., Desprairies, A., Lallier-Vergès, E., Bertrand, P., Moureau, N., Ramdani, A. & Ramanampisoa, L. (1994). Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 165-181. https://doi.org/10.1016/0031-0182(94)90028-0 SGP
681 Tribovillard, N., Hatem, E., Averbuch, O., Barbecot, F., Bout-Roumazeilles, V. & Trentesaux, A. (2015). Iron availability as a dominant control on the primary composition and diagenetic overprint of organic-matter-rich rocks. Chemical Geology, 401, 67-82. https://doi.org/10.1016/j.chemgeo.2015.02.026 DM-SED
119 Tripathy, G.R., Hannah, J.L., Stein, H.J. & Yang, G. (2014). Re-Os age and depositional environment for black shales from the Cambrian-Ordovician boundary, Green Point, western Newfoundland. Geochemistry, Geophysics, Geosystems, 15, 1021-1037. https://doi.org/10.1002/2013GC005217 SGP
511 Tu, C., Diamond, C.W., Stüeken, E.E., Cao, M., Pan, W. & Lyons, T.W. (2024). Dynamic evolution of marine productivity, redox, and biogeochemical cycling track local and global controls on Cryogenian sea-level change. Geochimica et Cosmochimica Acta, 365, 114-135. https://doi.org/10.1016/j.gca.2023.12.005 SGP
283 Turner, A.C.E., Algeo, T.J., Peng, Y. & Herrmann, A.D. (2019). Circulation patterns in the Late Pennsylvanian North American Midcontinent Sea inferred from spatial gradients in sediment chemistry and mineralogy. Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 109023. https://doi.org/10.1016/j.palaeo.2018.12.008 SGP
721 Turner, E.C. & Kamber, B.S. (2012). Arctic Bay Formation, Borden Basin, Nunavut (Canada): Basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean. Precambrian Research, 208-211, 1-18. https://doi.org/10.1016/j.precamres.2012.03.006 DM-SED
423 Ugidos, J.M., Armenteros, I., Barba, P., Valladares, M.I. & Colmenero, J.R. (1997). Geochemistry and petrology of recycled orogen-derived sediments: a case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain. Precambrian Research, 84, 163-180. https://doi.org/10.1016/S0301-9268(97)00023-5 USGS-CMIBS
354 Ugidos, J.M., Sánchez-Santos, J.M., Barba, P. & Valladares, M.I. (2010). Upper Neoproterozoic series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical data and statistical results as evidence for a shared homogenised source area. Precambrian Research, 178, 51-58. https://doi.org/10.1016/j.precamres.2010.01.009 USGS-CMIBS
355 Ugidos, J.M., Valladares, M.I., Barba, P. & Ellam, R.M. (2003). The Upper Neoproterozoic–Lower Cambrian of the Central Iberian Zone, Spain: chemical and isotopic (Sm-Nd) evidence that the sedimentary succession records an inverted stratigraphy of its source. Geochimica et Cosmochimica Acta, 67, 2615-2629. https://doi.org/10.1016/S0016-7037(03)00027-9 USGS-CMIBS
357 Ugidos, J.M., Valladares, M.I., Recio, C., Rogers, G., Fallick, A.E. & Stephens, W.E. (1997). Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study. Chemical Geology, 136, 55-70. https://doi.org/10.1016/S0009-2541(96)00138-6 USGS-CMIBS
135 Uhlein, G.J., Uhlein, A., Halverson, G.P., Stevenson, R., Caxito, F.A., Cox, G.M. & Carvalho, J.F.M.G. (2016). The Carrancas Formation, Bambuí Group: A record of pre-Marinoan sedimentation on the southern São Francisco craton, Brazil. Journal of South American Earth Sciences, 71, 1-16. https://doi.org/10.1016/j.jsames.2016.06.009 SGP
627 Van Baalen, M.R. (2006). Geology and geochemistry of metamorphosed black shales in central Maine. In: Gibson, D., Daly, J. & Reusch, D. (Eds.), Guidebook for field trips in western Maine (pp. 217-237). . USGS-CMIBS
459 van de Schootbrugge, B., Payne, J.L., Tomasovych, A., Pross, J., Fiebig, J., Benbrahim, M., Föllmi, K.B. & Quan, T.M. (2008). Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochemistry, Geophysics, Geosystems, 9, n/a-n/a. https://doi.org/10.1029/2007GC001914 SGP
144 Ver Straeten, C.A., Brett, C.E. & Sageman, B.B. (2011). Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 54-73. https://doi.org/10.1016/j.palaeo.2010.10.010 SGP
744 Vine, J.D. & Tourtelot, E.B. (1970). Geochemistry of black shale deposits; a summary report. Economic Geology, 65, 253-272. https://doi.org/10.2113/gsecongeo.65.3.253 DM-SED
199 Voolma, M., Soesoo, A., Hade, S., Hints, R. & Kallaste, T. (2013). Geochemical Heterogeneity of Estonian Graptolite Argillite. Oil Shale, 30, 377-401. https://doi.org/10.3176/oil.2013.3.02 SGP
60 Wallis, E. (2007). The climatic and environmental history of the South Chinese Yangtze Platform during the Neoproterozoic and Early Cambrian: Hydrothermally active and salinity stratified epicontinental basins a key for understanding the "Cambrian Explosion"? [Doctoral thesis, Technische Universität Berlin] https://doi.org/10.14279/depositonce-1565 SGP
575 Wang, C., Dong, Z., Robbins, L.J., Zhang, B., Peng, Z., Tong, X., Zhang, L. & Konhauser, K.O. (2024). A craton-wide geochemical survey of late Archean banded iron formations in China. Earth and Planetary Science Letters, 642, 118879. https://doi.org/10.1016/j.epsl.2024.118879 SGP
41 Wang, J., Chen, D., Yan, D., Wei, H. & Xiang, L. (2012). Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation. Chemical Geology, 306-307, 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005 SGP
47 Wang, X., Shi, X., Zhao, X. & Tang, D. (2015). Increase of seawater Mo inventory and ocean oxygenation during the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 621-631. https://doi.org/10.1016/j.palaeo.2015.09.003 SGP
685 Wang, X., Tang, Y., Jiang, Y., Xie, P., Zhang, S. & Chen, Z. (2017). Mineralogy and geochemistry of an organic- and V-Cr-Mo-U-rich siliceous rock of Late Permian age, western Hubei Province, China. International Journal of Coal Geology, 172, 19-30. https://doi.org/10.1016/j.coal.2016.12.006 DM-SED
551 Wang, X., Zhang, S., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Haxen, E.R., Su, J., Wang, Y. & Canfield, D.E. (2017). Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. American Journal of Science, 317, 861-900. https://doi.org/10.2475/08.2017.01 SGP
552 Wang, X., Zhang, S., Ye, Y., Ma, S., Su, J., Wang, H. & Canfield, D.E. (2023). Nitrogen cycling during the Mesoproterozoic as informed by the 1400 million year old Xiamaling Formation. Earth-Science Reviews, 243, 104499. https://doi.org/10.1016/j.earscirev.2023.104499 SGP
570 Wang, Y., Wignall, P.B., Xiong, Y., Loydell, D.K., Peakall, J., Baas, J.H., Mills, B.J.W. & Poulton, S.W. (2024). Marine redox dynamics and biotic response to the mid-Silurian Ireviken Extinction Event in a mid-shelf setting. Journal of the Geological Society, 181, jgs2023-155. https://doi.org/10.1144/jgs2023-155 SGP
385 Wang, Z. & Li, G. (1991). Barite and witherite deposits in Lower Cambrian shales of South China; stratigraphic distribution and geochemical characterization. Economic Geology, 86, 354-363. https://doi.org/10.2113/gsecongeo.86.2.354 USGS-CMIBS
741 Wani, H. & Mondal, M.M.E. (2011). Evaluation of provenance, tectonic setting, and paleoredox conditions of the Mesoproterozoic–Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales. Lithosphere, 3, 143-154. https://doi.org/10.1130/L74.1 DM-SED
625 Watanabe, Y. (2002). The Late Archean biosphere: Implications of organic and inorganic geochemistry of marine shales and terrestrial paleosols. [Doctoral thesis, The Pennsylvania State University] https://etda.libraries.psu.edu/catalog/5979 USGS-CMIBS
577 Wei, C., Cao, J., Dong, T. & Wang, Y. (2024). Effects of the Emeishan large igneous province (ELIP) and coastal upwelling on paleoenvironment and organic matter accumulation during the Middle Permian (Capitanian), South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 653, 112426. https://doi.org/10.1016/j.palaeo.2024.112426 SGP
724 Wei, H., Algeo, T.J., Yu, H., Wang, J., Guo, C. & Shi, G. (2015). Episodic euxinia in the Changhsingian (late Permian) of South China: Evidence from framboidal pyrite and geochemical data. Sedimentary Geology, 319, 78-97. https://doi.org/10.1016/j.sedgeo.2014.11.008 DM-SED
88 Wen, H., Fan, H., Zhang, Y., Cloquet, C. & Carignan, J. (2015). Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta, 164, 1-16. https://doi.org/10.1016/j.gca.2015.05.008 SGP
68 Werne, J.P., Sageman, B.B., Lyons, T.W. & Hollander, D.J. (2002). An integrated assessment of a "type euxinic" deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. American Journal of Science, 302, 110-143. https://doi.org/10.2475/ajs.302.2.110 SGP
654 White, C.E. (2010). Compilation of geochemical and petrographic data from the western and southern parts of the Goldenville and Halifax groups, Nova Scotia. Nova Scotia Department of Natural Resources Mineral Resources Branch Open File Report ME 2010-1. https://novascotia.ca/natr/meb/pdf/10ofr01.asp USGS-CMIBS
657 White, D.A., Elrick, M., Romaniello, S.J. & Zhang, F. (2018). Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones. Earth and Planetary Science Letters, 503, 68-77. https://doi.org/10.1016/j.epsl.2018.09.020 SGP
678 Wille, M., Nebel, O., Van Kranendonk, M.J., Schoenberg, R., Kleinhanns, I.C. & Ellwood, M.J. (2013). Mo–Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76Ga black shales from the Pilbara, Western Australia. Chemical Geology, 340, 68-76. https://doi.org/10.1016/j.chemgeo.2012.12.018 DM-SED
781 Williams, J.C. (2014). Black Shales of the Neo-Tethys: The Geochemical Record of the End-Permian Crisis. [Doctoral thesis, University of Massachusetts Boston] DM-SED
677 Williams, J.C., Basu, A.R., Bhargava, O.N., Ahluwalia, A.D. & Hannigan, R.E. (2012). Resolving original signatures from a sea of overprint — The geochemistry of the Gungri Shale (Upper Permian, Spiti Valley, India). Chemical Geology, 324-325, 59-72. https://doi.org/10.1016/j.chemgeo.2012.01.020 DM-SED
707 Wójcik-Tabol, P. & Ślączka, A. (2015). Are Early Cretaceous environmental changes recorded in deposits of the Western part of the Silesian Nappe? A geochemical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 293-308. https://doi.org/10.1016/j.palaeo.2014.10.040 DM-SED
492 Woltz, C.R., Porter, S.M., Agić, H., Dehler, C.M., Junium, C.K., Riedman, L.A., Hodgskiss, M.S. W., Wörndle, S. & Halverson, G.P. (2021). Total organic carbon and the preservation of organic-walled microfossils in Precambrian shale. Geology, 49, 556-560. https://doi.org/10.1130/G48116.1 SGP
94 Wood, R.A., Poulton, S.W., Prave, A.R., Hoffmann, K., Clarkson, M.O., Guilbaud, R., Lyne, J.W., Tostevin, R., Bowyer, F.T., Penny, A.M., Curtis, A. & Kasemann, S.A. (2015). Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia. Precambrian Research, 261, 252-271. https://doi.org/10.1016/j.precamres.2015.02.004 SGP
525 Wörndle, S., Crockford, P.W., Kunzmann, M., Bui, T. & Halverson, G.P. (2019). Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through I/[Ca + Mg] ratios. Chemical Geology, 524, 119-135. https://doi.org/10.1016/j.chemgeo.2019.06.015 SGP
534 Worsham, S.R., Holmden, C. & Qing, H. (2013). Preliminary results of a magnesium isotope study of dolomite in Upper Ordovician strata, southeastern Saskatchewan, northern Williston Basin. Summary of Investigations 2013, Volume 1, 2013-4.1, Paper A-9, Sask. Ministry of the Economy http://publications.gov.sk.ca/documents/310/91937-SOI2013V1_A9_Worsham_et_al.pdf SGP
392 Wronkiewicz, D.J. & Condie, K.C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401-2416. https://doi.org/10.1016/0016-7037(87)90293-6 USGS-CMIBS
366 Wronkiewicz, D.J. & Condie, K.C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, 1537-1549. https://doi.org/10.1016/0016-7037(89)90236-6 USGS-CMIBS
147 Xiang, L., Schoepfer, S.D., Shen, S., Cao, C. & Zhang, H. (2017). Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran–Cambrian transition: Evidence from western Zhejiang, South China. Earth and Planetary Science Letters, 464, 84-94. https://doi.org/10.1016/j.epsl.2017.02.012 SGP
197 Xiang, L., Schoepfer, S.D., Zhang, H., Cao, C. & Shen, S. (2018). Evolution of primary producers and productivity across the Ediacaran-Cambrian transition. Precambrian Research, 313, 68-77. https://doi.org/10.1016/j.precamres.2018.05.023 SGP
229 Xiang, L., Schoepfer, S.D., Zhang, H., Chen, Z., Cao, C. & Shen, S. (2020). Deep-water dissolved iron cycling and reservoir size across the Ediacaran-Cambrian transition. Chemical Geology, 541, Article119575. https://doi.org/10.1016/j.chemgeo.2020.119575 SGP
146 Xiang, L., Schoepfer, S.D., Zhang, H., Yuan, D., Cao, C., Zheng, Q., Henderson, C.M. & Shen, S. (2016). Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 59-71. https://doi.org/10.1016/j.palaeo.2015.10.046 SGP
547 Xiao, S., Shen, B., Tang, Q., Kaufman, A.J., Yuan, X., Li, J. & Qian, M. (2014). Biostratigraphic and chemostratigraphic constraints on the age of early Neoproterozoic carbonate successions in North China. Precambrian Research, 246, 208-225. https://doi.org/10.1016/j.precamres.2014.03.004 SGP
516 Xu, L., Lechte, M., Shi, X., Zheng, W., Zhou, L., Huang, K., Zhou, X. & Tang, D. (2024). Large Igneous Province Emplacement Triggered an Oxygenation Event at ∼1.4 Ga: Evidence From Mercury and Paleo‐Productivity Proxies. Geophysical Research Letters, 51, e2023GL106654. https://doi.org/10.1029/2023GL106654 SGP
50 Xu, L., Lehmann, B., Mao, J., Nägler, T.F., Neubert, N., Böttcher, M.E. & Escher, P. (2012). Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319, 45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016 SGP
785 Yamaguchi, K. (2002). Geochemistry of Archean–Paleoproterozoic black shales: the early evolution of the atmosphere, oceans, and biosphere. [Doctoral thesis, The Pennsylvania State University] DM-SED
425 Yamashita, K. & Creaser, R.A. (1999). Geochemical and Nd isotopic constraints for the origin of Late Archean turbidites from the Yellowknife area, Northwest Territories, Canada. Geochimica et Cosmochimica Acta, 63, 2579-2598. https://doi.org/10.1016/S0016-7037(99)00167-2 USGS-CMIBS
755 Yan, D., Chen, D., Wang, Q., Wang, J. & Wang, Z. (2009). Carbon and sulfur isotopic anomalies across the Ordovician–Silurian boundary on the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 274, 32-39. https://doi.org/10.1016/j.palaeo.2008.12.016 DM-SED
356 Yan, Y., Xia, B., Lin, G., Cui, X., Hu, X., Yan, P. & Zhang, F. (2007). Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197, 127-140. https://doi.org/10.1016/j.sedgeo.2006.09.004 USGS-CMIBS
140 Yang, J., Cawood, P.A., Du, Y., Li, W. & Yan, J. (2016). Reconstructing Early Permian tropical climates from chemical weathering indices. Geological Society of America Bulletin, 128, 739-751. https://doi.org/10.1130/B31371.1 SGP
716 Yang, R., Cao, J., Hu, G., Bian, L., Hu, K. & Fu, X. (2017). Marine to brackish depositional environments of the Jurassic–Cretaceous Suowa Formation, Qiangtang Basin (Tibet), China. Palaeogeography, Palaeoclimatology, Palaeoecology, 473, 41-56. https://doi.org/10.1016/j.palaeo.2017.02.031 DM-SED
324 Yang, S., Kendall, B., Lu, X., Zhang, F. & Zheng, W. (2017). Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Research, 298, 187-201. https://doi.org/10.1016/j.precamres.2017.06.016 SGP
514 Yang, X., Mao, J., Li, R., Huang, F., He, C., Zhao, C., Wei, W., Yang, G., Xiong, Y. & Poulton, S.W. (2024). Fluctuating oxygenation and dynamic iron cycling in the late Paleoproterozoic ocean. Earth and Planetary Science Letters, 626, 118554. https://doi.org/10.1016/j.epsl.2023.118554 SGP
508 Ye, M., Zhang, S., Ye, Y., Wu, M. & Wang, X. (2023). Spatial and Temporal Redox Heterogeneity Controlled by a Fe(II), Anoxic Upwelling System in the Early Mesoproterozoic Ocean. Geophysical Research Letters, 50, e2023GL103598. https://doi.org/10.1029/2023GL103598 SGP
682 Yin, R., Xu, L., Lehmann, B., Lepak, R.F., Hurley, J.P., Mao, J., Feng, X. & Hu, R. (2017). Anomalous mercury enrichment in Early Cambrian black shales of South China: Mercury isotopes indicate a seawater source. Chemical Geology, 467, 159-167. https://doi.org/10.1016/j.chemgeo.2017.08.010 DM-SED
738 Young, G.M. (2002). Geochemical investigation of a Neoproterozoic glacial unit: The Mineral Fork Formation in the Wasatch Range, Utah. Geological Society of America Bulletin, 114, 387-399. https://doi.org/10.1130/0016-7606(2002)114<0387:GIOANG>2.0.CO;2 DM-SED
365 Yu, B., Dong, H., Widom, E., Chen, J. & Lin, C. (2009). Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34, 418-436. https://doi.org/10.1016/j.jseaes.2008.07.003 USGS-CMIBS
701 Zeng, S., Wang, J., Fu, X., Chen, W., Feng, X., Wang, D., Song, C. & Wang, Z. (2015). Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Marine and Petroleum Geology, 64, 203-221. https://doi.org/10.1016/j.marpetgeo.2015.02.031 DM-SED
487 Zhang, F., Stockey, R.G., Xiao, S., Shen, S., Dahl, T.W., Wei, G., Cao, M., Li, Z., Kang, J., Cui, Y., Anbar, A.D. & Planavsky, N.J. (2022). Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans. Earth and Planetary Science Letters, 583, 117437. https://doi.org/10.1016/j.epsl.2022.117437 SGP
482 Zhang, J., Li, C., Fang, X., Li, W., Deng, Y., Tu, C., Algeo, T.J., Lyons, T.W. & Zhang, Y. (2022). Progressive expansion of seafloor anoxia in the Middle to Late Ordovician Yangtze Sea: Implications for concurrent decline of invertebrate diversity. Earth and Planetary Science Letters, 598, 117858. https://doi.org/10.1016/j.epsl.2022.117858 SGP
556 Zhang, S., Su, J., Ma, S., Wang, H., Wang, X., He, K., Wang, H. & Canfield, D.E. (2021). Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Research, 357, 106166. https://doi.org/10.1016/j.precamres.2021.106166 SGP
554 Zhang, S., Wang, X., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Costa, M., Connelly, J.N., Zhang, B., Su, J. & Canfield, D.E. (2016). Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences, 113, 1731-1736. https://doi.org/10.1073/pnas.1523449113 SGP
553 Zhang, S., Wang, X., Wang, H., Bjerrum, C.J., Hammarlund, E.U., Haxen, E.R., Wen, H., Ye, Y. & Canfield, D.E. (2019). Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid‐Proterozoic ocean. Geobiology, 17, 225-246. https://doi.org/10.1111/gbi.12337 SGP
555 Zhang, S., Wang, X., Wang, H., Hammarlund, E.U., Su, J., Wang, Y. & Canfield, D.E. (2017). The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences, 14, 2133-2149. https://doi.org/10.5194/bg-14-2133-2017 SGP
497 Zheng, W., Zhou, A., Sahoo, S.K., Nolan, M.R., Ostrander, C.M., Sun, R., Anbar, A.D., Xiao, S. & Chen, J. (2023). Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nature Communications, 14, 3920. https://doi.org/10.1038/s41467-023-39427-z SGP
160 Zhou, C. & Jiang, S. (2009). Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279-286. https://doi.org/10.1016/j.palaeo.2008.10.024 SGP
700 Zhou, L., Friis, H. & Poulsen, M.L. (2015). Geochemical evaluation of the Late Paleocene and Early Eocene shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61, 111-122. https://doi.org/10.1016/j.marpetgeo.2014.12.014 DM-SED
718 Zhou, L., Kang, Z., Wang, Z., Peng, Y. & Xiao, H. (2017). Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159, 376-386. https://doi.org/10.1016/j.petrol.2017.09.047 DM-SED
426 Zhou, L., Wignall, P.B., Su, J., Feng, Q., Xie, S., Zhao, L. & Huang, J. (2012). U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology, 324-325, 99-107. https://doi.org/10.1016/j.chemgeo.2012.03.020 USGS-CMIBS
500 Zhou, X., Liu, Y., Cao, H., Zhong, H. & Li, Y. (2021). Responses of oceanic chemistry to climatic perturbations during the Ordovician-Silurian transition: Implications for geochemical proxies and organic accumulations. Marine and Petroleum Geology, 134, 105341. https://doi.org/10.1016/j.marpetgeo.2021.105341 SGP
576 Zou, C., Qiu, Z., Poulton, S.W., Dong, D., Wang, H., Chen, D., Lu, B., Shi, Z. & Tao, H. (2018). Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46, 535-538. https://doi.org/10.1130/G40121.1 SGP
756 Zuo, J., Tong, J., Zhao, L., Chang, D. & Zhao, R. (2013). Geochemical Environment Restoration of the Lower Yangtze Paleocean in the Early Triassic, Southeastern China. Earth Science-Journal of China University of Geosciences, 38, 441-453. https://doi.org/10.3799/dqkx.2013.044 DM-SED