Streaming & Advanced Usage - travisvn/chatterbox-tts-api GitHub Wiki
Streaming TTS API Documentation
🎵 Overview
The Chatterbox TTS API supports real-time audio streaming, allowing clients to receive audio data as it's generated rather than waiting for complete processing. This significantly reduces perceived latency and improves user experience, especially for longer texts.
✨ Key Benefits
- Lower Latency: Start receiving audio before full generation is complete
- Better User Experience: Perceived faster response times for long texts
- Resource Efficiency: Lower memory usage as chunks are processed individually
- Real-time Processing: Audio generation happens progressively
- Interruption Support: Can potentially stop generation mid-stream if needed
- Memory Optimization: Automatic cleanup of processed chunks
🚀 Streaming Endpoints
Basic Streaming
POST /audio/speech/stream
Generate and stream speech audio in real-time using the configured voice sample.
Request Body (JSON):
{
"input": "Text to convert to speech",
"exaggeration": 0.7,
"cfg_weight": 0.4,
"temperature": 0.9,
"streaming_chunk_size": 200,
"streaming_strategy": "sentence"
}
Streaming with Voice Upload
POST /audio/speech/stream/upload
Generate and stream speech audio with optional custom voice file upload.
Request (Multipart Form):
input
(string): Text to convert to speechvoice_file
(file, optional): Custom voice sample fileexaggeration
(float, optional): Emotion intensity (0.25-2.0)cfg_weight
(float, optional): Pace control (0.0-1.0)temperature
(float, optional): Sampling randomness (0.05-5.0)streaming_chunk_size
(int, optional): Characters per streaming chunkstreaming_strategy
(string, optional): Chunking strategy
🎛️ Streaming Parameters
Core TTS Parameters
Parameter | Type | Range | Default | Description |
---|---|---|---|---|
exaggeration |
float | 0.25-2.0 | 0.5 | Emotion intensity |
cfg_weight |
float | 0.0-1.0 | 0.5 | Pace control |
temperature |
float | 0.05-5.0 | 0.8 | Sampling randomness |
Streaming-Specific Parameters
Parameter | Type | Options | Default | Description |
---|---|---|---|---|
streaming_chunk_size |
int | 50-500 | 200 | Characters per streaming chunk |
streaming_strategy |
string | sentence, paragraph, fixed, word | "sentence" | How to break up text for streaming |
streaming_buffer_size |
int | 1-10 | 3 | Number of chunks to buffer |
streaming_quality |
string | fast, balanced, high | "balanced" | Speed vs quality trade-off |
📝 Streaming Strategies
Sentence Strategy (Default)
{
"streaming_strategy": "sentence",
"streaming_chunk_size": 200
}
- Splits at sentence boundaries (
.
,!
,?
) - Respects sentence integrity
- Good balance of latency and naturalness
- Best for: General use, reading content
Paragraph Strategy
{
"streaming_strategy": "paragraph",
"streaming_chunk_size": 400
}
- Splits at paragraph breaks (
\n\n
, double line breaks) - Maintains paragraph context
- Longer chunks, more natural flow
- Best for: Articles, stories, structured content
Fixed Strategy
{
"streaming_strategy": "fixed",
"streaming_chunk_size": 150
}
- Fixed character count chunks
- Predictable timing
- May break mid-sentence
- Best for: Consistent streaming timing, testing
Word Strategy
{
"streaming_strategy": "word",
"streaming_chunk_size": 100
}
- Splits at word boundaries
- Very fine-grained streaming
- Maximum responsiveness
- Best for: Real-time chat, interactive applications
🎯 Quality vs Speed Settings
Fast Mode
{
"streaming_quality": "fast",
"streaming_chunk_size": 100,
"streaming_strategy": "word"
}
- Smaller chunks for faster initial response
- Lower quality synthesis parameters
- Use case: Chat applications, real-time feedback
Balanced Mode (Default)
{
"streaming_quality": "balanced",
"streaming_chunk_size": 200,
"streaming_strategy": "sentence"
}
- Good balance of speed and quality
- Sentence-aware chunking
- Use case: General applications
High Quality Mode
{
"streaming_quality": "high",
"streaming_chunk_size": 300,
"streaming_strategy": "paragraph"
}
- Larger chunks for better context
- Higher quality synthesis
- Use case: Audiobooks, professional content
💻 Usage Examples
Basic cURL Examples
Simple Streaming:
curl -X POST http://localhost:4123/v1/audio/speech/stream \
-H "Content-Type: application/json" \
-d '{"input": "This will stream as it generates!"}' \
--output streaming.wav
Advanced Streaming with Custom Settings:
curl -X POST http://localhost:4123/v1/audio/speech/stream \
-H "Content-Type: application/json" \
-d '{
"input": "Long text that will be streamed efficiently...",
"exaggeration": 0.8,
"streaming_strategy": "sentence",
"streaming_chunk_size": 150,
"streaming_quality": "balanced"
}' \
--output advanced_stream.wav
Real-time Playback:
curl -X POST http://localhost:4123/v1/audio/speech/stream \
-H "Content-Type: application/json" \
-d '{"input": "Play this as it streams!", "streaming_quality": "fast"}' \
| ffplay -f wav -i pipe:0 -autoexit -nodisp
Python Examples
Basic Streaming
import requests
response = requests.post(
"http://localhost:4123/v1/audio/speech/stream",
json={
"input": "This streams as it's generated!",
"streaming_strategy": "sentence",
"streaming_chunk_size": 200
},
stream=True
)
with open("streaming_output.wav", "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print(f"Received chunk: {len(chunk)} bytes")
Advanced Streaming with Progress
import requests
import threading
import time
def stream_with_progress(text, **params):
"""Stream TTS with real-time progress monitoring"""
# Start streaming request
response = requests.post(
"http://localhost:4123/v1/audio/speech/stream",
json={"input": text, **params},
stream=True
)
# Monitor progress in separate thread
def monitor_progress():
while True:
try:
progress = requests.get("http://localhost:4123/v1/status/progress").json()
if progress.get("is_processing"):
print(f"Progress: {progress.get('progress_percentage', 0):.1f}%")
print(f"Step: {progress.get('current_step', '')}")
else:
break
time.sleep(0.5)
except:
break
progress_thread = threading.Thread(target=monitor_progress)
progress_thread.start()
# Stream audio
with open("streaming_output.wav", "wb") as f:
total_bytes = 0
for chunk in response.iter_content(chunk_size=4096):
if chunk:
f.write(chunk)
total_bytes += len(chunk)
print(f"Streamed {total_bytes:,} bytes")
progress_thread.join()
print("Streaming complete!")
# Usage
stream_with_progress(
"This is a long text that demonstrates streaming with progress monitoring.",
streaming_strategy="sentence",
streaming_chunk_size=180,
streaming_quality="balanced"
)
Real-time Playback with pyaudio
import requests
import pyaudio
import wave
import io
import threading
def stream_and_play_realtime(text, **params):
"""Stream TTS and play audio in real-time using pyaudio"""
# Audio settings
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 22050 # Adjust based on your TTS model
# Initialize PyAudio
p = pyaudio.PyAudio()
stream = p.open(
format=FORMAT,
channels=CHANNELS,
rate=RATE,
output=True,
frames_per_buffer=CHUNK
)
# Start streaming request
response = requests.post(
"http://localhost:4123/v1/audio/speech/stream",
json={"input": text, **params},
stream=True
)
# Buffer for WAV processing
audio_buffer = io.BytesIO()
header_processed = False
try:
for chunk in response.iter_content(chunk_size=4096):
if chunk:
audio_buffer.write(chunk)
# Skip WAV header for first chunk
if not header_processed:
audio_buffer.seek(44) # Skip WAV header
header_processed = True
# Read and play audio data
audio_buffer.seek(-len(chunk), 1)
audio_data = audio_buffer.read()
if len(audio_data) >= CHUNK:
stream.write(audio_data[:CHUNK])
finally:
stream.stop_stream()
stream.close()
p.terminate()
# Usage
stream_and_play_realtime(
"This plays in real-time as it streams!",
streaming_quality="fast",
streaming_strategy="word"
)
JavaScript/TypeScript Examples
Basic Streaming
async function streamTTS(text: string, options: any = {}) {
const response = await fetch('/v1/audio/speech/stream', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
input: text,
streaming_strategy: 'sentence',
streaming_chunk_size: 200,
...options,
}),
});
const reader = response.body?.getReader();
const chunks: Uint8Array[] = [];
while (true) {
const { done, value } = await reader!.read();
if (done) break;
chunks.push(value);
console.log(`Received chunk: ${value.length} bytes`);
}
// Combine chunks into final audio
const totalLength = chunks.reduce((sum, chunk) => sum + chunk.length, 0);
const audioData = new Uint8Array(totalLength);
let offset = 0;
for (const chunk of chunks) {
audioData.set(chunk, offset);
offset += chunk.length;
}
return audioData;
}
Real-time Audio Playback
async function streamAndPlayTTS(text: string) {
const audioContext = new AudioContext();
const response = await fetch('/v1/audio/speech/stream', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
input: text,
streaming_quality: 'fast',
}),
});
const reader = response.body?.getReader();
let audioBuffer = new Uint8Array();
while (true) {
const { done, value } = await reader!.read();
if (done) break;
// Append new chunk
const newBuffer = new Uint8Array(audioBuffer.length + value.length);
newBuffer.set(audioBuffer);
newBuffer.set(value, audioBuffer.length);
audioBuffer = newBuffer;
// Try to decode and play if we have enough data
if (audioBuffer.length > 8192) {
try {
const audioData = await audioContext.decodeAudioData(
audioBuffer.buffer.slice()
);
const source = audioContext.createBufferSource();
source.buffer = audioData;
source.connect(audioContext.destination);
source.start();
} catch (e) {
// Not enough data yet, continue streaming
}
}
}
}
📊 Performance Optimization
Choosing Optimal Settings
For Lowest Latency:
{
"streaming_quality": "fast",
"streaming_strategy": "word",
"streaming_chunk_size": 80,
"streaming_buffer_size": 1
}
For Best Quality:
{
"streaming_quality": "high",
"streaming_strategy": "paragraph",
"streaming_chunk_size": 350,
"streaming_buffer_size": 5
}
For Balanced Performance:
{
"streaming_quality": "balanced",
"streaming_strategy": "sentence",
"streaming_chunk_size": 200,
"streaming_buffer_size": 3
}
Memory Optimization
The streaming implementation includes automatic memory management:
- Chunks are processed and freed immediately
- GPU memory is cleared periodically
- Temporary files are cleaned up automatically
- Progress tracking prevents memory leaks
🔄 Progress Monitoring
Real-time Progress API
While streaming is active, you can monitor progress:
curl "http://localhost:4123/v1/status/progress"
Response:
{
"is_processing": true,
"status": "generating_audio",
"current_step": "Streaming audio for chunk 3/8",
"current_chunk": 3,
"total_chunks": 8,
"progress_percentage": 37.5,
"duration_seconds": 2.1,
"estimated_completion": 1704067205.0,
"text_preview": "This is the text being streamed..."
}
Integration with Frontend
// Monitor streaming progress
const monitorStreaming = async () => {
const interval = setInterval(async () => {
try {
const response = await fetch('/v1/status/progress');
const progress = await response.json();
if (progress.is_processing) {
updateProgressBar(progress.progress_percentage);
updateStatus(progress.current_step);
} else {
clearInterval(interval);
onStreamingComplete();
}
} catch (error) {
console.error('Progress monitoring failed:', error);
}
}, 500);
};
🛠️ Troubleshooting
Common Issues
Streaming Stops Unexpectedly:
- Check network stability
- Verify streaming headers are set correctly
- Ensure client supports chunked transfer encoding
Audio Quality Issues:
- Try larger
streaming_chunk_size
- Use "sentence" or "paragraph" strategy
- Increase
streaming_quality
to "balanced" or "high"
High Latency:
- Reduce
streaming_chunk_size
- Use "word" strategy for maximum responsiveness
- Set
streaming_quality
to "fast"
Memory Issues:
- Reduce
streaming_buffer_size
- Use smaller
streaming_chunk_size
- Monitor memory usage via
/memory
endpoint
Debugging Commands
# Test streaming endpoint
curl -v -X POST http://localhost:4123/v1/audio/speech/stream \
-H "Content-Type: application/json" \
-d '{"input": "Test streaming"}' \
--output debug_stream.wav
# Monitor memory during streaming
watch -n 1 'curl -s http://localhost:4123/memory | jq .memory_info'
# Check streaming progress
watch -n 0.5 'curl -s http://localhost:4123/v1/status/progress | jq .'
🔄 Comparison: Streaming vs Standard
When to Use Streaming
Use Streaming When:
- Text length > 500 characters
- Building real-time applications
- Memory usage is a concern
- Users expect immediate audio feedback
- Implementing chat or interactive features
Use Standard When:
- Text length < 200 characters
- Need complete audio file before processing
- Working with simple integrations
- Bandwidth is limited
- Processing batch content
Performance Comparison
Aspect | Standard Generation | Streaming Generation |
---|---|---|
Initial Latency | Full generation time | ~1-2 seconds |
Memory Usage | Peak during concat | Constant low usage |
User Experience | Wait then play | Progressive playback |
Network Usage | Single large transfer | Multiple small chunks |
Complexity | Simple | Moderate |
🚀 Future Enhancements
Planned improvements to the streaming functionality:
- Adaptive Chunking: Automatically adjust chunk size based on content
- Quality Adaptation: Dynamic quality adjustment based on network conditions
- Interruption Support: Ability to stop streaming mid-generation
- Buffer Prediction: Intelligent buffering based on generation speed
- Multi-voice Streaming: Stream different voices for different speakers
- WebSocket Support: Real-time bidirectional streaming
📖 API Reference
For complete API documentation including all endpoints, parameters, and examples, visit:
- Interactive Documentation: http://localhost:4123/docs
- Alternative Documentation: http://localhost:4123/redoc
- OpenAPI Schema: http://localhost:4123/openapi.json
The streaming endpoints are fully documented with request/response schemas, parameter validation, and example payloads.