Getting Started - travisvn/chatterbox-tts-api GitHub Wiki

Getting Started

Welcome to Chatterbox TTS API!
Follow these steps to install, configure, and launch your own local, OpenAI-compatible text-to-speech API.


Quick Start

Local Installation

Option A: Using uv (Recommended - Faster & Better Dependencies)

# Clone the repository
git clone https://github.com/travisvn/chatterbox-tts-api
cd chatterbox-tts-api

# Install uv if you haven't already
curl -LsSf https://astral.sh/uv/install.sh | sh

# Install dependencies with uv (automatically creates venv)
uv sync

# Copy and customize environment variables
cp .env.example .env

# Start the API with FastAPI
uv run uvicorn app.main:app --host 0.0.0.0 --port 4123
# Or use the main script
uv run main.py

💡 Why uv? Users report better compatibility with chatterbox-tts, 25-40% faster installs, and superior dependency resolution. See migration guide →

Option B: Using pip (Traditional)

# Clone the repository
git clone https://github.com/travisvn/chatterbox-tts-api
cd chatterbox-tts-api

# Setup environment — using Python 3.11
python -m venv .venv
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Copy and customize environment variables
cp .env.example .env

# Add your voice sample (or use the provided one)
# cp your-voice.mp3 voice-sample.mp3

# Start the API with FastAPI
uvicorn app.main:app --host 0.0.0.0 --port 4123
# Or use the main script
python main.py

Ran into issues? Check the troubleshooting section

Docker (Recommended)

# Clone and start with Docker Compose
git clone https://github.com/travisvn/chatterbox-tts-api
cd chatterbox-tts-api

# Use Docker-optimized environment variables
cp .env.example.docker .env  # Docker-specific paths, ready to use
# Or: cp .env.example .env    # Local development paths, needs customization

# Choose your deployment method:

# API Only (default)
docker compose -f docker/docker-compose.yml up -d             # Standard (pip-based)
docker compose -f docker/docker-compose.uv.yml up -d          # uv-optimized (faster builds)
docker compose -f docker/docker-compose.gpu.yml up -d         # Standard + GPU
docker compose -f docker/docker-compose.uv.gpu.yml up -d      # uv + GPU (recommended for GPU users)
docker compose -f docker/docker-compose.cpu.yml up -d         # CPU-only

# API + Frontend (add --profile frontend to any of the above)
docker compose -f docker/docker-compose.yml --profile frontend up -d             # Standard + Frontend
docker compose -f docker/docker-compose.gpu.yml --profile frontend up -d         # GPU + Frontend
docker compose -f docker/docker-compose.uv.gpu.yml --profile frontend up -d      # uv + GPU + Frontend

# Watch the logs as it initializes (the first use of TTS takes the longest)
docker logs chatterbox-tts-api -f

# Test the API
curl -X POST http://localhost:4123/v1/audio/speech \
  -H "Content-Type: application/json" \
  -d '{"input": "Hello from Chatterbox TTS!"}' \
  --output test.wav
🚀 Running with the Web UI (Full Stack)

This project includes an optional React-based web UI. Use Docker Compose profiles to easily opt in or out of the frontend:

With Docker Compose Profiles

# API only (default behavior)
docker compose -f docker/docker-compose.yml up -d

# API + Frontend + Web UI (with --profile frontend)
docker compose -f docker/docker-compose.yml --profile frontend up -d

# Or use the convenient helper script for fullstack:
python start.py fullstack

# Same pattern works with all deployment variants:
docker compose -f docker/docker-compose.gpu.yml --profile frontend up -d    # GPU + Frontend
docker compose -f docker/docker-compose.uv.yml --profile frontend up -d     # uv + Frontend
docker compose -f docker/docker-compose.cpu.yml --profile frontend up -d    # CPU + Frontend
⚠️ **GitHub.com Fallback** ⚠️