References - trap-fish/uav-human-detection GitHub Wiki
[1] T. Singh, H. Gangloff, and M.-T. Pham, “Object counting from aerial remote sensing images: application to wildlife and marine mammals,” June 2023, arXiv:2306.10439 [cs]. [Online]. Available: http://arxiv.org/abs/2306.10439
[2] S. Ecke, J. Dempewolf, J. Frey, A. Schwaller, E. Endres, H.-J. Klemmt, D. Tiede, and T. Seifert, “UAV-Based Forest Health Monitoring: A Systematic Review,” Remote Sensing, vol. 14, no. 13, p. 3205, July 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/13/3205
[3] E. Endres and T. Seifert, “Towards operational UAV-based forest health monitoring: Species identification and crown condition assessment by means of deep learning,” Computers and Electronics in Agriculture, vol. 219, p. 108785, Apr. 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0168169924001765
[4] D. Bafila and R. Singh, “Enhancing precision agriculture: Computer vision-aided farm boundary detection and crop land identification from drone-captured image,” in Proc. 2024 Int. Conf. Comput., Sci. Commun. (ICCSC), Ghaziabad, India, Oct. 2024, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10830320/
[5] M. Shi, D. Zheng, T. Wu, W. Zhang, R. Fu, and K. Huang, “Small object detection algorithm incorporating swin transformer for tea buds,” PLOS ONE, vol. 19, no. 3, p. e0299902, Mar. 2024. [Online]. Available: https://dx.plos.org/10.1371/journal.pone.0299902
[6] A. Farahdel, S. S. Vedaei, and K. Wahid, “An IoT based traffic management system using drone and AI,” in Proc. 2022 14th Int. Conf. Comput. Intell. Commun. Netw. (CICN), Al-Khobar, Saudi Arabia, Dec. 2022, pp. 297–301. [Online]. Available: https://ieeexplore.ieee.org/document/10008357/
[7] A. Khan, S. Gupta, and S. K. Gupta, “Emerging UAV technology for disaster detection, mitigation, response, and preparedness,” J. Field Robot., vol. 39, no. 6, pp. 905–955, Sept. 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/rob.22075
[8] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling, “Detection and tracking meet drones challenge,” arXiv preprint, arXiv:2001.06303 [cs], Oct. 2021. [Online]. Available: http://arxiv.org/abs/2001.06303
[9] A. P. Naidu, H. Gosalia, I. Gakhar, S. S. Rathore, K. Didwania, and U. Verma, “DEAL-YOLO: Drone-based efficient animal localization using YOLO,” arXiv preprint, arXiv:2503.04698 [cs], Mar. 2025. [Online]. Available: http://arxiv.org/abs/2503.04698
[10] S. Jain, S. M, A. M. Einstein, and A. Mahapatra, “Optimal deep learning models for post-flood house detection in drone imagery,” in Proc. 2024 Int. Conf. Signal Process., Comput., Electron., Power Telecommun. (IConSCEPT), Karaikal, India, July 2024, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/10627833/
[11] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint, arXiv:1804.02767 [cs], Apr. 2018. [Online]. Available: http://arxiv.org/abs/1804.02767
[12] M. N. Soorki, H. Aghajari, S. Ahmadinabi, H. B. Babadegani, C. Chaccour, and W. Saad, “Catch me if you can: Deep meta-RL for search-and-rescue using LoRa UAV networks,” IEEE Trans. Mobile Comput., vol. 24, no. 2, pp. 763–778, Feb. 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10694793/
[13] L. Chen, J. Hu, X. Li, F. Quan, and H. Chen, “Onboard real-time object detection for UAV with embedded NPU,” in Proc. 2021 IEEE 11th Annu. Int. Conf. CYBER Technol. Autom., Control, Intell. Syst. (CYBER), Jiaxing, China, July 2021, pp. 192–197. [Online]. Available: https://ieeexplore.ieee.org/document/9588193/
[14] Microsoft, “All about neural processing units (NPUs) - Microsoft Support,” 2024. [Online]. Available: https://support.microsoft.com/en-gb/windows/all-about-neural-processing-units-npus-e77a5637-7705-4915-96c8-0c6a975f9db4
[15] Hailo-AI, “AI processor Hailo-8 for edge devices | Up to 26 TOPS hardware,” 2025. [Online]. Available: https://hailo.ai/products/ai-accelerators/hailo-8-ai-accelerator/
[16] R. Kazantsev, “openvinotoolkit/openvino,” GitHub, May 2025. [Online]. Available: https://github.com/openvinotoolkit/openvino
[17] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8,” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
[18] S. Tang, S. Zhang, and Y. Fang, “HIC-YOLOv5: Improved YOLOv5 for small object detection,” arXiv preprint, arXiv:2309.16393 [cs], Nov. 2023. [Online]. Available: http://arxiv.org/abs/2309.16393
[19] G. Jocher et al., “ultralytics/yolov5: v7.0 - YOLOv5 SOTA realtime instance segmentation,” Zenodo, Nov. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.7347926
[20] V. Q. Nghiem, H. H. Nguyen, and M. S. Hoang, “LEAF-YOLO: Lightweight edge-real-time small object detection on aerial imagery,” Intell. Syst. Appl., vol. 25, p. 200484, Mar. 2025. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2667305325000109
[21] J. Shang, J. Wang, S. Liu, C. Wang, and B. Zheng, “Small target detection algorithm for UAV aerial photography based on improved YOLOv5s,” Electronics, vol. 12, no. 11, p. 2434, May 2023. [Online]. Available: https://www.mdpi.com/2079-9292/12/11/2434
[22] X. Ming, Z. Fei, R. Yang, Y. Xie, D. Deng, J. Li, and F. Niu, “An improved model based on YOLOv8 for tiny object detection in the maritime environment,” in 2024 4th International Symposium on Artificial Intelligence and Intelligent Manufacturing (AIIM). Chengdu, China: IEEE, Dec. 2024, pp. 726–735. [Online]. Available: https://ieeexplore.ieee.org/document/10934508/
[23] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More Features from Cheap Operations,” Mar. 2020, arXiv:1911.11907 [cs]. [Online]. Available: http://arxiv.org/abs/1911.11907
[24] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, June 2023, pp. 7464–7475. [Online]. Available: https://ieeexplore.ieee.org/ document/10204762/
[25] X. Liu, W. Xu, Q. Wang, and M. Zhang, “Energy-Efficient Computing Acceleration of Unmanned Aerial Vehicles Based on a CPU/FPGA/NPU Heterogeneous System,” IEEE Internet of Things Journal, vol. 11, no. 16, pp. 27 126–27 138, Aug. 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10525057/
[26] Y. Yao, Y. Hu, Y. Dang, W. Tao, K. Hu, Q. Huang, Z. Peng, G. Yang, and X. Zhou, “Workload-Aware Performance Model Based Soft Preemptive Real-Time Scheduling for Neural Processing Units,” IEEE Transactions on Parallel and Distributed Systems, vol. 36, no. 6, pp. 1058–1070, June 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10942549/
[27] M. N. Achmadiah, N. Setyawan, A. A. Bryantono, C.-C. Sun, and W.-K. Kuo, “Fast Person Detection Using YOLOX With AI Accelerator For Train Station Safety,” in 2024 International Electronics Symposium (IES). Denpasar, Indonesia: IEEE, Aug. 2024, pp. 504–509. [Online]. Available: https://ieeexplore.ieee.org/document/10665874/
[28] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO Series in 2021,” Aug. 2021, arXiv:2107.08430 [cs]. [Online]. Available: http://arxiv.org/abs/2107.08430
[29] M. N. Achmadiah, A. Ahamad, C.-C. Sun, and W.-K. Kuo, “Energy- Efficient Fast Object Detection on Edge Devices for IoT Systems,” IEEE Internet of Things Journal, pp. 1–1, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10879008/
[30] G. Li, J. Zhang, M. Zhang, and H. Corporaal, “An Efficient FPGA Implementation for Real-Time and Low-Power UAV Object Detection,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS). Austin, TX, USA: IEEE, May 2022, pp. 1387–1391. [Online]. Available: https://ieeexplore.ieee.org/document/9937449/
[31] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong, T. Huang, H. Shi, W.-m. Hwu, and D. Chen, “SkyNet: a Hardware-Efficient Method for Object Detection and Tracking on Embedded Systems,” Feb. 2020, arXiv:1909.09709 [cs]. [Online]. Available: http://arxiv.org/abs/1909.09709
[32] G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available: https://github.com/ultralytics/ultralytics
[33] MiXaiLL76, “Faster-COCO-Eval: Faster interpretation of the original cocoeval,” 2024.
[34] Z. He, K. Wang, T. Fang, L. Su, R. Chen, and X. Fei, “Comprehensive Performance Evaluation of YOLOv11, YOLOv10, YOLOv9, YOLOv8 and YOLOv5 on Object Detection of Power Equipment,” Nov. 2024, arXiv:2411.18871 [cs]. [Online]. Available: http://arxiv.org/abs/2411.18871
[35] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, “Albumentations: Fast and Flexible Image Augmentations,” Information, vol. 11, no. 2, p. 125, Feb. 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/2/125
[36] Hailo-AI, “Hailo-8L Entry-Level AI Accelerator Solutions,” Jan. 2025. [Online]. Available: https://hailo.ai/products/ai-accelerators/hailo-8l-ai-accelerator-for-ai-light-applications/
[37] L. Roeder, “Netron.app,” Jan. 2025. [Online]. Available: https: //netron.app/
[38] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” 2021. [Online]. Available: https://arxiv.org/abs/2103.14030
[39] N. U. A. Tahir, Z. Long, Z. Zhang, M. Asim, and M. ELAffendi, “PVswin-YOLOv8s: UAV-Based Pedestrian and Vehicle Detection for Traffic Management in Smart Cities Using Improved YOLOv8,” Drones, vol. 8, no. 3, p. 84, Feb. 2024. [Online]. Available: https://www.mdpi.com/2504-446X/8/3/84
[40] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Enabling AI at the edge with XNOR-networks,” Communications of the ACM, vol. 63, no. 12, pp. 83–90, Nov. 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3429945
[41] J. Suo, T. Wang, X. Zhang, H. Chen, W. Zhou, and W. Shi, “HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection,” Scientific Data, vol. 10, no. 1, p. 227, Apr. 2023. [Online]. Available: https://www.nature.com/articles/ s41597-023-02066-6