参考项目地址 - tedrepo/SimDial GitHub Wiki

https://github.com/anitan0925/vaegan

https://github.com/JeremyCCHsu/tf-vaegan

https://github.com/ceteke/tf_vaegan

https://github.com/tedrepo/vaegan

https://github.com/Gilgahex/VAEGAN

https://github.com/YazhouZhang0709/VAEGAN

https://github.com/YazhouZhang0709/VAEGAN

https://github.com/yuyingyeh/tensorflow-implementation-of-VAE-GAN-VAEGAN

基于变分自编码器的生成对抗网络(VEGAN) https://blog.csdn.net/g8015108/article/details/78072439

基于自编码器的生成对抗网络AEGAN https://blog.csdn.net/g8015108/article/details/78041154

对抗自编码 https://blog.csdn.net/touch_dream/article/details/77892215?readlog

https://blog.csdn.net/weixin_41036461/article/details/79802259

http://budzianowski.github.io/

https://github.com/slinderman/pyhsmm_spiketrains

https://github.com/jvkersch/hsmmlearn

https://github.com/albietz/online_hmm

https://github.com/yandexdataschool/nlp_course

https://github.com/yizt/numpy_neural_network

https://github.com/zxsted/Entropy-Regularized-RL 基于好奇心的 rl

https://github.com/zxsted/sac

https://github.com/tedrepo/deep_rl_maml

life long RL Policy and Value Transfer for Lifelong RL https://github.com/david-abel/transfer_rl_icml_2018

rl_abstraction https://github.com/david-abel/rl_abstraction

State Abstractions for Lifelong Reinforcement Learning https://david-abel.github.io/papers/lifelong_sa_icml_18.pdf

maml

https://coladrill.github.io/2018/10/24/%E5%85%83%E5%AD%A6%E4%B9%A0%E7%BB%BC%E8%BF%B0/

https://blog.csdn.net/qq_26564783/article/details/81706497

ICML2018】63篇强化学习论文全解读 https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/81230588

Meta-learning(元学习)和 3D-CNN 总结 https://blog.csdn.net/xzw95/article/details/81783046

强化学习中如何高效地与环境互动?如何从经验中高效学习? http://www.dadejin.com/rr/d/805368.html

超越 DQN 和 A3C:深度強化學習領域近期新進展概覽 https://hk.saowen.com/a/716d323523df0472fdac2d3b94b70c841328c3961d8224a7d6e2f845ef291cb8

python 读取视频,处理后,实时计算帧数fps的方法 https://www.jb51.net/article/143543.htm

MDN

深度学习生成舞蹈影片01之MDN https://cloud.tencent.com/developer/article/1351760

http://cbonnett.github.io/MDN.html

Mixture Density Networks with TensorFlow http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/

学界 | DeepMind新论文提出循环环境模拟器:可适应多种不同环境 http://www.sohu.com/a/134761821_465975

https://github.com/openai/mlsh Meta-Learning Shared Hierarchies

car racing

https://github.com/PDillis/Experiment-CarRacing

https://github.com/hchkaiban/CarRacingRL_DDQN

https://github.com/hchkaiban/CarRacingImitationLearning

https://github.com/PDillis/DQN-CarRacing

https://github.com/PDillis/DQN-CarRacing/blob/master/DQN%20for%20CarRacing.ipynb

https://github.com/CaioCamatta/CarRacing-PolicyGradient

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on. https://github.com/Hironsan/anago

https://github.com/felipessalvatore/self_driving_pi_car

https://github.com/yizt/numpy_neural_network

https://github.com/jojonki/NLP-Corpora#dialog-task-oriented

https://github.com/jojonki?after=Y3Vyc29yOnYyOpK5MjAxNy0xMS0yOVQyMzoyNjozMyswODowMM4GstYn&tab=repositories

https://github.com/zxsted/NPBayesHMM