Action AI - stanlypoc/AIRA GitHub Wiki
Agentic AI Reference Architectures
1. AutoGPT (Autonomous Agents)
Use Case: Self-prompting AI for task automation
Reference Architecture:
- Data Layer:
- Vector DB (Pinecone, Weaviate) + API Gateway (Kong, AWS API Gateway)
- Model Layer:
- LLM Core (GPT-4, Claude 3) + Memory Module (LangChain)
- Orchestration:
- Agent Scheduler (Airflow, Prefect) + Feedback Loop (Human-in-the-loop)
- Application Layer:
- REST API (FastAPI) + UI Dashboard (Streamlit)
Diagram
flowchart TD
subgraph Data_Layer["Data Layer"]
A["Vector DB (Pinecone/Weaviate)"]-->B["API Gateway (Kong/AWS)"]
C["Task Metadata (PostgreSQL)"]
end
subgraph Model_Layer["Model Layer"]
D["LLM Core (GPT-4/Claude)"]-->E["Memory Module (LangChain)"]
F["Feedback Analyzer"]
end
subgraph Orchestration["Orchestration"]
G["Agent Scheduler (Airflow)"]-->H["Task Queue (RabbitMQ)"]
I["Human-in-the-Loop"]
end
subgraph Application["Application"]
J["REST API (FastAPI)"]-->K["UI Dashboard (Streamlit)"]
L["Slack/Teams Bot"]
end
A-->D
B-->J
D-->G
F-->I
H-->J
2. AutoGen (Multi-Agent Collaboration)
Use Case: AI teams working collaboratively
Reference Architecture:
- Data Layer:
- Vector DB (Chroma, Milvus) + Agent State DB (Redis)
- Model Layer:
- Specialist Agents (CodeGen, Research, QA) + Orchestrator Agent (AutoGen)
- Orchestration:
- Agent Communication Bus (RabbitMQ) + Conflict Resolution Engine
- Application Layer:
- Multi-Agent Workspace (Jupyter Notebooks + Discord Bot)
3. GPT Engineer (Code-Generating Agents)
Use Case: AI that writes and deploys code
Reference Architecture:
- Data Layer:
- Code Repo (GitHub, GitLab) + API Docs (Swagger)
- Model Layer:
- Code LLM (GPT-4, CodeLlama) + Code Validator (SonarQube)
- Orchestration:
- CI/CD Pipeline (GitHub Actions) + Auto-Deployer (Terraform)
- Application Layer:
- DevOps Dashboard (Grafana) + CLI Tool
flowchart TD
subgraph Data_Layer["Data Layer"]
A["Code Repository (GitHub)"]-->B["API Docs (Swagger/OpenAPI)"]
C["Dependency Graph (Neo4j)"]
end
subgraph Model_Layer["Model Layer"]
D["Code LLM (GPT-4/CodeLlama)"]-->E["Code Validator (SonarQube)"]
F["Security Scanner (Semgrep)"]
end
subgraph Orchestration["Orchestration"]
G["CI/CD Pipeline (GitHub Actions)"]-->H["Auto-Deployer (Terraform)"]
I["Error Feedback Loop"]
end
subgraph Application["Application Layer"]
J["CLI Interface"]-->K["VSCode Plugin"]
L["PR Review Dashboard"]
end
A-->D
B-->E
D-->G
F-->I
H-->L
Robotics & Embodied AI Reference Architectures
4. Tesla Optimus (Humanoid Robots)
Use Case: General-purpose robotics
Reference Architecture:
- Data Layer:
- Sensor Fusion DB (TimescaleDB) + Edge Compute (NVIDIA Jetson)
- Model Layer:
- Motion Planning (PyTorch RL) + Vision Model (ViT)
- Orchestration:
- ROS 2 (Robot Operating System) + Fleet Manager
- Application Layer:
- Real-Time Control Interface (Custom Tesla OS)
flowchart TD
subgraph Data_Layer["Data Layer"]
A["Sensor Fusion DB (TimescaleDB)"]-->B["Edge Compute (NVIDIA Jetson)"]
C["3D Maps (USD Format)"]
end
subgraph Model_Layer["Model Layer"]
D["Motion Planner (PyTorch RL)"]-->E["Vision Model (ViT)"]
F["Grasping Controller"]
end
subgraph Orchestration["Orchestration"]
G["ROS 2 (Robot OS)"]-->H["Fleet Manager"]
I["Safety Monitor"]
end
subgraph Application["Application"]
J["Real-Time Control UI (Tesla OS)"]-->K["Maintenance Alerts"]
L["Over-the-Air Updates"]
end
A-->D
B-->G
E-->J
F-->I
H-->L
5. RT-2 (Vision-Language-Action Models)
Use Case: Robotics with natural language commands
Reference Architecture:
- Data Layer:
- Vision DB (FAISS) + Robot Telemetry (InfluxDB)
- Model Layer:
- VLM Core (PaLM-E) + Action Translator (PyTorch)
- Orchestration:
- Task Planner (PDDL) + Safety Monitor
- Application Layer:
- Voice Interface (Google Assistant SDK)
Autonomous Systems Reference Architectures
6. Tesla FSD (Self-Driving AI)
Use Case: Autonomous vehicles
Reference Architecture:
- Data Layer:
- Sensor Data Lake (Iceberg) + HD Maps (GeoJSON)
- Model Layer:
- Perception Stack (HydraNet) + Path Planner (PyTorch)
- Orchestration:
- Real-Time Inference Engine (TensorRT) + OTA Updates
- Application Layer:
- Driver UI (React) + Fleet Analytics (Tableau)
flowchart TD
subgraph Data_Layer["Data Layer"]
A["Sensor Data Lake (Iceberg)"]-->B["HD Maps (GeoJSON)"]
C["Telemetry Stream (Kafka)"]
end
subgraph Model_Layer["Model Layer"]
D["Perception Stack (HydraNet)"]-->E["Path Planner (PyTorch)"]
F["Traffic Predictor"]
end
subgraph Orchestration["Orchestration"]
G["Real-Time Inference (TensorRT)"]-->H["OTA Update System"]
I["Fail-Safe Controller"]
end
subgraph Application["Application"]
J["Driver UI (React)"]-->K["Fleet Analytics (Tableau)"]
L["Emergency API"]
end
A-->D
B-->E
F-->G
I-->L
7. Darktrace Antigena (AI Cybersecurity Agents)
Use Case: Autonomous threat response
Reference Architecture:
- Data Layer:
- Threat Intelligence DB (Elasticsearch) + Network Logs (Kafka)
- Model Layer:
- Anomaly Detector (LSTM) + Decision Engine (RL)
- Orchestration:
- Response Automator (SOAR) + Explainability Module
- Application Layer:
- SOC Dashboard (Splunk)
Key Cross-Cutting Components
- Data Layer:
- Feature Stores (Feast, Tecton) for real-time data
- Unified Metadata Catalog (Amundsen)
- Model Layer:
- Model Registry (MLflow)
- Explainability (SHAP, LIME)
- Orchestration:
- Workflow Engine (Kubeflow, Metaflow)
- Agent Communication Protocol (gRPC, WebSockets)
- Application Layer:
- Low-Code UI (Gradio, Dash)
- APIs (FastAPI, GraphQL)
Samsung "Neon 2.0" (Emotional AI Companion)
flowchart TD
subgraph Data_Layer["Data Layer"]
A["User Behavior DB (MongoDB)"]-->B["Emotion Corpus (Multimodal)"]
C["Conversation History (Vector DB)"]
end
subgraph Model_Layer["Model Layer"]
D["LLM Core (GPT-5)"]-->E["Emotion Classifier (PyTorch)"]
F["Micro-Expression Analyzer"]
end
subgraph Orchestration["Orchestration"]
G["Dialog Manager (Rasa)"]-->H["Ethics Guardrails"]
I["Persona Consistency Engine"]
end
subgraph Application["Application Layer"]
J["Holographic Display"]-->K["Mobile App Sync"]
L["API for Smart Home"]
end
A-->E
B-->F
D-->G
I-->J
H-->L
Medtronic "AI Surgeon" (Future Robotics)
flowchart TD
subgraph Data_Layer["Data Layer"]
A["Patient Records (FHIR)"]-->B["Real-Time Sensor Stream (ROS 2)"]
C["Surgical Atlas (3D Volumes)"]
end
subgraph Model_Layer["Model Layer"]
D["Vision Model (MONAI)"]-->E["Haptic Feedback RL"]
F["Procedural Knowledge Graph"]
end
subgraph Orchestration["Orchestration"]
G["Robotic Control (dVRK)"]-->H["Emergency Stop System"]
I["Surgeon Override Interface"]
end
subgraph Application["Application Layer"]
J["AR Surgical HUD"]-->K["Operational Analytics"]
L["FDA Compliance Logger"]
end
A-->D
B-->G
E-->I
F-->J
H-->L