Data Science & Statistical Modeling Reference Architecture - stanlypoc/AIRA GitHub Wiki
- Definition
A framework for implementing statistical modeling and data science workflows across classical and modern techniques, supporting the full lifecycle from experimentation to production deployment. Covers six core capability domains with vendor-specific implementations.
- Architecture Diagrams
2.1 Classical Statistical Models
2.1.1 Logical Architecture
graph LR
A[Structured Data] --> B[Feature Engineering]
B --> C[Model Training]
C --> D[Validation]
D --> E[Deployment]
2.1.2 Azure
graph LR
A[Azure SQL] --> B[Synapse ML]
B --> C[Linear Regression]
C --> D[MLflow Tracking]
2.1.3 AWS
graph LR
A[Redshift] --> B[SageMaker]
B --> C[GLM]
C --> D[SageMaker Experiments]
2.1.4 GCP
graph LR
A[BigQuery] --> B[Vertex AI]
B --> C[Statsmodels]
C --> D[Vertex ML Metadata]
2.1.5 Open Source
graph LR
A[PostgreSQL] --> B[Scikit-learn]
B --> C[Statsmodels]
C --> D[MLflow]
2.2 Clustering & Dimensionality Reduction 2.2.1 Logical Architecture
graph LR
A[High-Dim Data] --> B[Preprocessing]
B --> C[Algorithm Selection]
C --> D[Visualization]
2.2.2 Azure
graph LR
A[ADLS] --> B[Databricks]
B --> C[K-Means/PCA]
C --> D[Power BI]
2.2.3 AWS
graph LR
A[S3] --> B[EMR]
B --> C[UMAP/t-SNE]
C --> D[QuickSight]
2.2.4 GCP
graph LR
A[BigQuery ML] --> B[Vertex AI]
B --> C[Autoencoder]
C --> D[Looker]
2.2.5 Open Source
graph LR
A[Parquet] --> B[Dask]
B --> C[UMAP]
C --> D[Plotly]
2.3 Time Series Analysis 2.3.1 Logical Architecture
graph LR
A[Time-Stamped Data] --> B[Feature Extraction]
B --> C[Forecasting]
C --> D[Monitoring]
2.3.2 Azure
graph LR
A[Event Hub] --> B[Synapse]
B --> C[Prophet/ARIMA]
C --> D[Azure Monitor]
2.3.3 AWS
graph LR
A[Kinesis] --> B[Redshift ML]
B --> C[DeepAR]
C --> D[CloudWatch]
2.3.4 GCP
graph LR
A[PubSub] --> B[BigQuery ML]
B --> C[TensorFlow Probability]
C --> D[Cloud Monitoring]
2.3.5 Open Source
graph LR
A[Kafka] --> B[Spark]
B --> C[statsforecast]
C --> D[Prometheus]
2.4 Optimization & Simulation 2.4.1 Logical Architecture
graph LR
A[Constraints] --> B[Model Formulation]
B --> C[Solver]
C --> D[Scenario Analysis]
2.4.2 Azure
graph LR
A[Azure ML] --> B[OR-Tools]
B --> C[SimPy]
C --> D[Power BI]
2.4.3 AWS
graph LR
A[SageMaker] --> B[Gurobi]
B --> C[AnyLogic]
C --> D[QuickSight]
2.4.4 GCP
graph LR
A[Vertex AI] --> B[OR-Tools]
B --> C[SimJulia]
C --> D[Looker]
2.4.5 Open Source
graph LR
A[Pyomo] --> B[SciPy]
B --> C[SimPy]
C --> D[Streamlit]
2.5 Specialized Analysis 2.5.1 Logical Architecture
graph LR
A[Domain Data] --> B[Custom Pipelines]
B --> C[Specialized Libraries]
C --> D[Visualization]
2.5.2 Azure
graph LR
A[Purview] --> B[Synapse]
B --> C[Survival Analysis]
C --> D[Power BI]
2.5.3 AWS
graph LR
A[DataZone] --> B[SageMaker]
B --> C[Bayesian Networks]
C --> D[QuickSight]
2.5.4 GCP
graph LR
A[Dataplex] --> B[Vertex AI]
B --> C[Causal Inference]
C --> D[Looker]
2.5.5 Open Source
graph LR
A[Pandas] --> B[PyMC]
B --> C[Lifelines]
C --> D[Plotly]
2.6 Recommender Systems 2.6.1 Logical Architecture
graph LR
A[User-Item Data] --> B[Matrix Factorization]
B --> C[Ranking]
C --> D[AB Testing]
2.6.2 Azure
graph LR
A[Cosmos DB] --> B[Personalizer]
B --> C[Azure ML]
C --> D[App Insights]
2.6.3 AWS
graph LR
A[DynamoDB] --> B[Personalize]
B --> C[SageMaker]
C --> D[CloudWatch]
2.6.4 GCP
graph LR
A[Firestore] --> B[Recommendations AI]
B --> C[Vertex AI]
C --> D[Analytics Hub]
2.6.5 Open Source
graph LR
A[Redis] --> B[LightFM]
B --> C[XGBoost]
C --> D[MLflow]
- Cross-Cutting Concerns
3.1 Security Logical Architecture
graph LR
A[Data] --> B[Access Control]
B --> C[Encryption]
C --> D[Audit]
Azure
graph LR
A[Purview] --> B[RBAC]
B --> C[Key Vault]
C --> D[Log Analytics]
AWS
graph LR
A[Macie] --> B[IAM]
B --> C[KMS]
C --> D[CloudTrail]
GCP
graph LR
A[Data Catalog] --> B[IAM]
B --> C[Cloud KMS]
C --> D[Audit Logs]
Open Source
graph LR
A["Apache Ranger"] --> B[OPA]
B --> C[Vault]
C --> D["Fluentd"]
3.2 Observability Logical Architecture
graph LR
A[Metrics] --> B[Logs]
B --> C[Traces]
C --> D[Alerts]
Azure
graph LR
A[Monitor] --> B[Log Analytics]
B --> C[App Insights]
C --> D[Action Groups]
AWS
graph LR
A[CloudWatch] --> B[OpenSearch]
B --> C[X-Ray]
C --> D[SNS]
GCP
graph LR
A[Cloud Monitoring] --> B[Logging]
B --> C[Trace]
C --> D[Alerting]
Open Source
graph LR
A[Prometheus] --> B[Loki]
B --> C[Jaeger]
C --> D[Alertmanager]
3.3 CI/CD Logical Architecture
graph LR
A[Code] --> B[Build]
B --> C[Test]
C --> D[Deploy]
Azure
graph LR
A[DevOps] --> B[ML Pipelines]
B --> C[Test Frameworks]
C --> D[AKS]
AWS
graph LR
A[CodePipeline] --> B[SageMaker Pipelines]
B --> C[PyTest]
C --> D[EKS]
GCP
graph LR
A[Cloud Build] --> B[Vertex Pipelines]
B --> C[PyTest]
C --> D[GKE]
Open Source
graph LR
A[GitHub Actions] --> B[MLflow Projects]
B --> C[PyTest]
C --> D[Kubeflow]
- Integration Patterns
4.1 Cloud-Native
graph LR
A[Data Lake] --> B[Feature Store]
B --> C[Model Training]
C --> D[Serving]
4.2 Hybrid/Multi-Cloud
graph LR
A[On-Prem] --> B[Cloud Gateway]
B --> C[Unified Catalog]
C --> D[Cross-Cloud Query]
4.3 On-Premises
graph LR
A[Edge Devices] --> B[Local Processing]
B --> C[Sync Service]
C --> D[Central Warehouse]
- Architectural Principles
- Reproducibility: Version data, code, and models
- Scalability: Distributed processing where needed
- Interpretability: Explainable models with tracking
- Modularity: Swappable components
- Automation: CI/CD for model lifecycle
- Governance: Compliant and auditable
- Cost Awareness: Right-size resources
- Implementation Guide:
- Start with logical architecture
- Select vendor stack
- Apply cross-cutting concerns
- Implement integration patterns
- Validate against principles