APM X C1 (APM883208) - ssvb/tinymembench GitHub Wiki
processor : 0 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 1 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 2 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 3 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 4 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 5 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 6 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0 processor : 7 Features : fp asimd evtstrm CPU implementer : 0x50 CPU architecture: 8 CPU variant : 0x0 CPU part : 0x000 CPU revision : 0
Aarch64:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 1338.1 MB/s C copy backwards (32 byte blocks) : 1346.5 MB/s C copy backwards (64 byte blocks) : 1346.7 MB/s C copy : 5084.8 MB/s C copy prefetched (32 bytes step) : 4857.7 MB/s C copy prefetched (64 bytes step) : 5060.6 MB/s C 2-pass copy : 4099.5 MB/s C 2-pass copy prefetched (32 bytes step) : 3795.2 MB/s C 2-pass copy prefetched (64 bytes step) : 3958.8 MB/s C fill : 17806.8 MB/s C fill (shuffle within 16 byte blocks) : 17799.1 MB/s C fill (shuffle within 32 byte blocks) : 17796.2 MB/s C fill (shuffle within 64 byte blocks) : 17813.2 MB/s --- standard memcpy : 5089.3 MB/s standard memset : 17807.1 MB/s --- NEON LDP/STP copy : 4996.1 MB/s NEON LD1/ST1 copy : 4972.7 MB/s NEON STP fill : 14773.3 MB/s NEON STNP fill : 14772.9 MB/s ARM LDP/STP copy : 5078.7 MB/s ARM STP fill : 17815.0 MB/s ARM STNP fill : 17807.7 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read, [MADV_NOHUGEPAGE] 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 1.7 ns / 2.4 ns 131072 : 3.8 ns / 5.2 ns 262144 : 5.6 ns / 7.6 ns 524288 : 21.8 ns / 31.0 ns 1048576 : 30.0 ns / 37.5 ns 2097152 : 34.3 ns / 39.3 ns 4194304 : 36.8 ns / 40.0 ns 8388608 : 51.2 ns / 64.9 ns 16777216 : 92.5 ns / 127.4 ns 33554432 : 117.5 ns / 154.9 ns 67108864 : 137.2 ns / 178.5 ns block size : single random read / dual random read, [MADV_HUGEPAGE] 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 1.7 ns / 2.4 ns 131072 : 2.5 ns / 3.1 ns 262144 : 3.1 ns / 3.5 ns 524288 : 18.7 ns / 26.8 ns 1048576 : 26.5 ns / 33.2 ns 2097152 : 30.6 ns / 35.0 ns 4194304 : 32.3 ns / 35.6 ns 8388608 : 33.6 ns / 36.5 ns 16777216 : 74.3 ns / 100.7 ns 33554432 : 96.4 ns / 121.8 ns 67108864 : 108.0 ns / 129.8 ns
Aarch32:
tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 827.9 MB/s C copy backwards (32 byte blocks) : 829.3 MB/s C copy backwards (64 byte blocks) : 829.4 MB/s C copy : 4170.0 MB/s C copy prefetched (32 bytes step) : 4251.0 MB/s C copy prefetched (64 bytes step) : 4256.6 MB/s C 2-pass copy : 2868.0 MB/s C 2-pass copy prefetched (32 bytes step) : 2913.5 MB/s C 2-pass copy prefetched (64 bytes step) : 2968.8 MB/s C fill : 17780.4 MB/s C fill (shuffle within 16 byte blocks) : 17755.4 MB/s C fill (shuffle within 32 byte blocks) : 17766.6 MB/s C fill (shuffle within 64 byte blocks) : 17766.1 MB/s --- standard memcpy : 5027.9 MB/s standard memset : 5832.3 MB/s --- NEON read : 7997.5 MB/s NEON read prefetched (32 bytes step) : 7612.7 MB/s NEON read prefetched (64 bytes step) : 7770.8 MB/s NEON read 2 data streams : 7553.9 MB/s NEON read 2 data streams prefetched (32 bytes step) : 9248.6 MB/s NEON read 2 data streams prefetched (64 bytes step) : 8199.4 MB/s NEON copy : 4917.0 MB/s NEON copy prefetched (32 bytes step) : 4768.8 MB/s NEON copy prefetched (64 bytes step) : 4819.3 MB/s NEON unrolled copy : 4925.7 MB/s NEON unrolled copy prefetched (32 bytes step) : 4705.1 MB/s NEON unrolled copy prefetched (64 bytes step) : 4880.1 MB/s NEON copy backwards : 1219.1 MB/s NEON copy backwards prefetched (32 bytes step) : 2922.4 MB/s NEON copy backwards prefetched (64 bytes step) : 2924.5 MB/s NEON 2-pass copy : 3632.8 MB/s NEON 2-pass copy prefetched (32 bytes step) : 3609.9 MB/s NEON 2-pass copy prefetched (64 bytes step) : 3602.6 MB/s NEON unrolled 2-pass copy : 3667.5 MB/s NEON unrolled 2-pass copy prefetched (32 bytes step) : 3433.4 MB/s NEON unrolled 2-pass copy prefetched (64 bytes step) : 3611.2 MB/s NEON fill : 13496.5 MB/s NEON fill backwards : 13496.4 MB/s VFP copy : 4886.0 MB/s VFP 2-pass copy : 3591.7 MB/s ARM fill (STRD) : 16217.4 MB/s ARM fill (STM with 8 registers) : 9262.1 MB/s ARM fill (STM with 4 registers) : 9261.8 MB/s ARM copy prefetched (incr pld) : 4139.1 MB/s ARM copy prefetched (wrap pld) : 4131.2 MB/s ARM 2-pass copy prefetched (incr pld) : 2742.0 MB/s ARM 2-pass copy prefetched (wrap pld) : 2734.0 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read, [MADV_NOHUGEPAGE] 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 1.7 ns / 2.4 ns 131072 : 3.8 ns / 5.2 ns 262144 : 5.6 ns / 7.6 ns 524288 : 21.8 ns / 31.0 ns 1048576 : 29.9 ns / 37.5 ns 2097152 : 34.2 ns / 39.3 ns 4194304 : 36.8 ns / 40.0 ns 8388608 : 49.6 ns / 63.3 ns 16777216 : 92.3 ns / 127.3 ns 33554432 : 117.2 ns / 154.8 ns 67108864 : 136.8 ns / 178.5 ns block size : single random read / dual random read, [MADV_HUGEPAGE] 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 1.7 ns / 2.4 ns 131072 : 2.5 ns / 3.1 ns 262144 : 3.1 ns / 3.5 ns 524288 : 18.6 ns / 26.8 ns 1048576 : 26.5 ns / 33.2 ns 2097152 : 30.5 ns / 35.0 ns 4194304 : 32.7 ns / 35.7 ns 8388608 : 33.6 ns / 36.5 ns 16777216 : 74.5 ns / 100.8 ns 33554432 : 96.7 ns / 121.8 ns 67108864 : 108.4 ns / 129.8 ns