AMD Ryzen 7 1700 Eight Core Processor - ssvb/tinymembench GitHub Wiki
$ LANG=C lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 1
Model name: AMD Ryzen 7 1700 Eight-Core Processor
Stepping: 1
CPU MHz: 1374.879
CPU max MHz: 3000,0000
CPU min MHz: 1550,0000
BogoMIPS: 5988.11
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0-15
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate sme ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 6429.4 MB/s (0.4%)
C copy backwards (32 byte blocks) : 6459.5 MB/s (0.2%)
C copy backwards (64 byte blocks) : 6415.0 MB/s
C copy : 6552.4 MB/s (0.2%)
C copy prefetched (32 bytes step) : 6743.3 MB/s
C copy prefetched (64 bytes step) : 6750.5 MB/s (0.2%)
C 2-pass copy : 5700.8 MB/s (0.6%)
C 2-pass copy prefetched (32 bytes step) : 6152.7 MB/s (0.5%)
C 2-pass copy prefetched (64 bytes step) : 6163.2 MB/s (0.4%)
C fill : 8169.0 MB/s (0.5%)
C fill (shuffle within 16 byte blocks) : 8201.3 MB/s (0.2%)
C fill (shuffle within 32 byte blocks) : 8212.2 MB/s (0.2%)
C fill (shuffle within 64 byte blocks) : 8223.1 MB/s (0.3%)
---
standard memcpy : 12211.8 MB/s (0.2%)
standard memset : 9763.2 MB/s (0.2%)
---
MOVSB copy : 6920.0 MB/s
MOVSD copy : 6941.0 MB/s (0.2%)
SSE2 copy : 7470.9 MB/s (0.2%)
SSE2 nontemporal copy : 12440.1 MB/s
SSE2 copy prefetched (32 bytes step) : 7369.8 MB/s (0.2%)
SSE2 copy prefetched (64 bytes step) : 7356.2 MB/s (0.1%)
SSE2 nontemporal copy prefetched (32 bytes step) : 12895.1 MB/s (0.2%)
SSE2 nontemporal copy prefetched (64 bytes step) : 12867.9 MB/s
SSE2 2-pass copy : 6520.4 MB/s (0.3%)
SSE2 2-pass copy prefetched (32 bytes step) : 6701.7 MB/s
SSE2 2-pass copy prefetched (64 bytes step) : 6661.7 MB/s
SSE2 2-pass nontemporal copy : 4282.8 MB/s
SSE2 fill : 9786.7 MB/s (0.3%)
SSE2 nontemporal fill : 33444.4 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read, [MADV_NOHUGEPAGE]
1024 : 0.0 ns / 0.1 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.1 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.1 ns / 0.0 ns
65536 : 2.0 ns / 2.9 ns
131072 : 3.0 ns / 3.4 ns
262144 : 3.5 ns / 3.9 ns
524288 : 5.8 ns / 6.7 ns
1048576 : 9.2 ns / 10.9 ns
2097152 : 11.2 ns / 12.4 ns
4194304 : 12.5 ns / 13.4 ns
8388608 : 26.7 ns / 37.0 ns
16777216 : 65.4 ns / 88.0 ns
33554432 : 85.9 ns / 105.8 ns
67108864 : 100.4 ns / 113.8 ns
block size : single random read / dual random read, [MADV_HUGEPAGE]
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 1.9 ns / 2.5 ns
131072 : 2.8 ns / 3.3 ns
262144 : 3.5 ns / 3.7 ns
524288 : 3.6 ns / 3.8 ns
1048576 : 7.4 ns / 9.0 ns
2097152 : 9.1 ns / 10.5 ns
4194304 : 9.6 ns / 10.7 ns
8388608 : 17.4 ns / 22.6 ns
16777216 : 55.5 ns / 77.3 ns
33554432 : 75.9 ns / 94.2 ns
67108864 : 86.6 ns / 99.2 ns