Vehicle Dynamics - soup1997/Study-Alone GitHub Wiki

Motion of a Rigid Body on a Plane Surface

image

Coordinates ํ‘œ๊ธฐ1 ์„ค๋ช…1 ํ‘œ๊ธฐ2 ์„ค๋ช…2
Body fixed $x$ longitudinal position $u$ longitudinal velocity
Body fixed $y$ lateral position $v$ lateral velocity
Body fixed $z$ vertical position $w$ vertical velocity
Body fixed $p$ vertical position $\phi$ roll angle
Body fixed $q$ vertical position $\theta$ pitch angle
Body fixed $r$ vertical position $\psi$ yaw angle
Earth fixed $X$ longitudinal position $U$ longitudinal velocity
Earth fixed $Y$ lateral position $V$ lateral velocity
Earth fixed $Z$ vertical position $W$ vertical velocity

Coordinate Transformation

earth-fixed์™€ body-fixed ์ขŒํ‘œ๊ณ„์˜ ๊ด€๊ณ„๋Š” 3๊ฐœ์˜ rotation term๊ณผ 1๊ฐœ์˜ translation term์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค.
์ผ๋ฐ˜์ ์œผ๋กœ rotation term์˜ ๊ฒฝ์šฐ X(roll), Y(pitch), Z(yaw) ์ถ•์˜ ํšŒ์ „์ˆœ์„œ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค.

image image

Kinematics of Lateral Vehcicle Motion

kinematic model์ด๋ž€ motion์˜ ์˜ํ–ฅ์„ ์ฃผ๋Š” force๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ฑ„ ์˜ค์ง ์ฐจ๋Ÿ‰์˜ linkage(๊ตฌ์กฐ)๋งŒ์„ ๊ฐ€์ง€๊ณ  ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.๋”ฐ๋ผ์„œ ๋‹จ์ˆœํžˆ ๊ธฐํ•˜ํ•™์  ๊ด€๊ณ„๋งŒ์ด ํ•ด๋‹น ์‹œ์Šคํ…œ์„ ๋Œ€ํ‘œํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋งํ•  ์ˆ˜ ์žˆ๋‹ค. lateral motion์—์„œ์˜ ํ•ด์„์„ ์‰ฝ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ๋Œ€ํ‘œ์ ์ธ model์€ bicycle model์ด๋ฉฐ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค.

  1. ์ขŒ/์šฐ์ธก ์ „/ํ›„๋ฅœ์€ ๊ฐ๊ฐ point A, B์—์„œ์˜ ํ•˜๋‚˜์˜ ๋ฐ”ํ€ด๋กœ ํ‘œํ˜„๋œ๋‹ค.
  2. ์ „/ํ›„๋ฅœ ๋ชจ๋‘ ์กฐํ–ฅ์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฐ€์ •์„ ์ „์ œ๋กœ ํ•œ๋‹ค.
  3. ์ฐจ๋Ÿ‰์ด ํ‰๋ฉด์—์„œ์˜ ์›€์ง์ž„๋งŒ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค.

์ด์™€ ๋”๋ถˆ์–ด ์ถ”๊ฐ€์ ์œผ๋กœ ๊ณ ๋ คํ•ด์•ผ ํ•  ์‚ฌํ•ญ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  1. slip angle, $\beta$๋Š” C.G์—์„œ ์ด๋™ํ•˜๋Š” ์†๋„์™€ ์ฐจ๋Ÿ‰์ด ํ–ฅํ•œ ๋ฐฉํ–ฅ ์‚ฌ์ด์˜ ๊ฐ๋„๋ฅผ ์˜๋ฏธํ•œ๋‹ค.
  2. C.G์—์„œ์˜ velocity๋Š” $V$๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค.
  3. $O$๋Š” ๊ฐ ๋ฐ”ํ€ด์˜ ์ˆ˜์ง๋ฐฉํ–ฅ์œผ๋กœ ๊ทธ๋ ค์ง€๋Š” ์ง์„  $\overline{AO}$, $\overline{BO}$์˜ ๊ต์ฐจ์ ์ด๋‹ค.
  4. $R$์€ ์ฐจ๋Ÿ‰์˜ ๊ฒฝ๋กœ์˜ ๋ฐ˜์ง€๋ฆ„์„ ์˜๋ฏธํ•œ๋‹ค. $\overline{OC}$๋กœ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ C.G์—์„œ์˜ velocity $V$๋Š” ์ด์— ์ˆ˜์ง์ด๋‹ค.

image

์œ„์˜ ๊ทธ๋ฆผ๊ณผ ๊ธฐํ•˜ํ•™์  ๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ yaw rate๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  1. ์‚ผ๊ฐํ˜• OCA์— ์‚ฌ์ธ ๋ฒ•์น™์„ ์ ์šฉํ•œ๋‹ค.
  • image
  1. ์‚ผ๊ฐํ˜• OCB์— ์‚ฌ์ธ ๋ฒ•์น™์„ ์ ์šฉํ•œ๋‹ค.
  • image
  1. ๊ฐ๊ฐ 1๋ฒˆ 2๋ฒˆ์‹์— $\frac{l_f}{cos(\delta_f)}, \frac{l_r}{cos(\delta_r)}$ ํ•ญ์„ ์–‘์ชฝ์— ๊ณฑํ•œ๋‹ค.

  2. ์ตœ์ข…์ ์œผ๋กœ ์ „๊ฐœ๋˜๋Š” ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

image image
  1. ์œ„์˜ ์‹์„ ํ•ฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.
  • image
  1. ์ฐจ๋Ÿ‰์˜ ๊ฒฝ๋กœ์˜ ๋ฐ˜์ง€๋ฆ„ $R$์€ ๋‚ฎ์€ ์†๋„๋กœ ์ธํ•ด ์ฒœ์ฒœํžˆ ๋ณ€ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ• ๋•Œ ์ด์— ๋”ฐ๋ผ ์ฐจ๋Ÿ‰์˜ ํšŒ์ „ ๋ณ€ํ™”์œจ์ธ yaw rate๋Š” ์ฐจ๋Ÿ‰์˜ ๊ฐ์†๋„์™€ ๋™์ผํ•ด์•ผํ•œ๋‹ค.
  • $\dot{X} = Vcos(\psi+\beta)$
  • $\dot{Y} = Vsin(\psi+\beta)$
  • $\dot{\psi}=\frac{V}{R}=\frac{Vcos(\beta)}{l_f+l_r}(tan(\delta_f)-tan(\delta_r))$

๊ฒฐ๋ก ์ ์œผ๋กœ $V,\delta_f,\delta_r$ ์ด 3๊ฐœ์˜ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•œ input์„ ํ†ตํ•ด ์ฐจ๋Ÿ‰์˜ yaw rate๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ 3๋ฒˆ์งธ yaw rate์— ๊ด€ํ•œ ์‹์„ ๋ณ€ํ˜•ํ•˜๋ฉด slip angle $\beta$๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

  • $\beta=atan{\frac{l_ftan(\delta_r)+l_rtan(\delta_f)}{l_f+l_r}}$

image

Bicycle Model of Lateral Vehicle Dynamics

๋†’์€ ์†๋„์—์„œ๋Š” ๊ฐ ๋ฐ”ํ€ด์˜ ์†๋„๊ฐ€ ๋ฐ”ํ€ด์˜ ๋ฐฉํ–ฅ์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์—†๋‹ค. ์ด๋กœ ์ธํ•ด geometry๋งŒ์„ ์ด์šฉํ•˜๋Š” kinematic model์ด ์•„๋‹Œ ๋ฐ”ํ€ด์— ๊ฐ€ํ•ด์ง€๋Š” ํšก๋ฐฉํ–ฅ ํž˜์ธ lateral tire forces๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ณ ๋ คํ•˜๋Š” dynamic model์ด ํ•„์š”ํ•œ ๊ฒƒ์ด๋‹ค.

image

์œ„์˜ ๊ทธ๋ฆผ์€ ์ฐจ๋Ÿ‰์˜ bicycle model์—์„œ 2DOF(vehicle lateral position $y$, vehicle yaw angle $\psi$)๋งŒ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค. ๋˜ํ•œ C.G์—์„œ์˜ ์ฐจ๋Ÿ‰์˜ ์†๋„๋Š” $V_x$๋กœ ํ‘œํ˜„ํ•œ๋‹ค.

Lateral Dynamics

๊ฐ€์žฅ๋จผ์ € vehicle lateral dynamics์— ๊ด€ํ•œ ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ด ๋ชจ๋ธ์—์„œ๋Š” ๋„๋กœ์˜ bank angle์— ์˜ํ•œ ํž˜์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋‰ดํ„ด์— ์ œ 2๋ฒ•์น™์—์„œ $y$์ถ•์—์„œ motion์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•˜๋Š” ํž˜์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • $ma_y=F_{yf}+F_{yr}$ ,where $a_y=\frac{d^2y}{dt^2}_{inertial}$

$a_y$๋Š” $y$์ถ• ๋ฐฉํ–ฅ์—์„œ C.G์—์„œ์˜ inertial acceleration๊ฐ’์„ ์˜๋ฏธํ•œ๋‹ค. $F_{yf},F_{yr}$์€ ๊ฐ๊ฐ ์ „๋ฅœ๊ณผ ํ›„๋ฅœ์— ๊ฐ€ํ•ด์ง€๋Š” ํšก๋ฐฉํ–ฅ ํž˜์ด๋‹ค. ์—ฌ๊ธฐ์„œ $a_y$๋Š” ๋‘๊ฐ€์ง€ term์œผ๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

  • $a_y=\ddot{y}+V_x\dot{\psi}$

$a_y$๋Š” y axis๋กœ motion์— ์˜ํ•ด ์ƒ๊ธฐ๋Š” acceleration, $V_x\dot{\psi}$๋Š” centripetal acceleration(๊ตฌ์‹ฌ ๊ฐ€์†๋„)์ด๋‹ค.

๋”ฐ๋ผ์„œ ์ตœ์ข…์ ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ ๋  ์ˆ˜ ์žˆ๋‹ค.

  • $m(\ddot{y}+V_x\dot{\psi})=F_{yf}+F_{yr}$

Yaw Dynamics

z ์ถ•์— ๋Œ€ํ•œ ๋ชจ๋ฉ˜ํŠธ ๊ท ํ˜•์„ ๊ณ ๋ คํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • $I_z\ddot{\psi}=l_fF_{yf}-l_rF_{yr}$

image

์ž‘์€ slip angle์˜ ๊ฒฝ์šฐ์—์„œ ํƒ€์ด์–ด์— ๊ฐ€ํ•ด์ง€๋Š” ํšก๋ฐฉํ–ฅ ํž˜์€ slip angle๊ณผ ๋น„๋ก€ํ•œ๋‹ค. ๋˜ํ•œ slip angle์€ ํƒ€์ด์–ด๊ฐ€ ํ–ฅํ•ด์žˆ๋Š” ๋ฐฉํ–ฅ๊ณผ ์†๋„ ๋ฒกํ„ฐ $V$์˜ ๋ฐฉํ–ฅ์‚ฌ์ด์˜ ์ฐจ์ด ๊ฐ๋„๋ฅผ ์˜๋ฏธํ•˜๊ฒŒ ๋œ๋‹ค. $\delta$๊ฐ€ ์ „๋ฅœ์˜ ์กฐํ–ฅ๊ฐ์„ ์˜๋ฏธํ•  ๋•Œ ์ „/ํ›„๋ฅœ์˜ slip angle์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌํ•ด์ง„๋‹ค.

  • $\alpha_f=\delta-\theta_{vf}$
  • $\alpha_r=-\theta_{vr}$

์ด์— ๋”ฐ๋ผ ์ž‘์€ slip angle์˜ ๊ฒฝ์šฐ์—์„œ ํƒ€์ด์–ด์— ๊ฐ€ํ•ด์ง€๋Š” ํšก๋ฐฉํ–ฅ ํž˜์€ slip angle๊ณผ ๋น„๋ก€ํ•œ๋‹ค๊ณ  ํ•˜์˜€์œผ๋ฏ€๋กœ ์ „๊ฐœ๋˜๋Š” ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๊ณ„์ˆ˜ $2$๋Š” bicycle model์—์„œ ์ „/ํ›„๋ฅœ์˜ ๋ฐ”ํ€ด๋ฅผ 1๊ฐœ๋กœ ์ทจ๊ธ‰ํ–ˆ์œผ๋ฏ€๋กœ $2$๋ฅผ ๊ณฑํ•œ๋‹ค.

  • $F_{yf}=2C_{af}\alpha_f$
  • $F_{yr}=2C_{ar}\alpha_r$

$C_{af},C_{ar}$์€ ๊ฐ ํƒ€์ด์–ด์˜ cornering stifness๋ผ๊ณ  ์นญํ•˜๋ฉฐ slip angle์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌํ•ด์ง„๋‹ค.

  • $tan(\theta_{vf})=\frac{V_y+l_f\dot{\psi}}{V_x}$
  • $tan(\theta_{vr})=\frac{V_y-l_r\dot{\psi}}{V_x}$

small angle approximation์— ์˜ํ•ด $tan(\theta)=\theta$, $V_y=\dot{y}$๋กœ ๊ฐ€์ •ํ•˜๋ฏ€๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

  • $\theta_{vf}=\frac{V_y+l_f\dot{\psi}}{V_x}$
  • $\theta_{vr}=\frac{V_y-l_r\dot{\psi}}{V_x}$

์œ„์˜ ๋ชจ๋“  ์‹์„ ์ข…ํ•ฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด state space model ํ˜•ํƒœ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค.

Dynamicl Model in terms of Error w.r.t Road

Screenshot from 2023-10-04 13-41-02

์—๋Ÿฌ๊ฐ’์„ ์ƒํƒœ ๋ณ€์ˆ˜๋กœ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด automatic lane keeping์„ ์œ„ํ•œ ๊ธฐ๋ณธ ์ƒํƒœ๋ณ€์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ค์ • ๋œ๋‹ค.

  • $x=[y, \dot{y}, \psi, \dot{\psi}]$

๊ฐ๊ฐ body fixed ์ขŒํ‘œ๊ณ„์—์„œ์˜ lateral position, lateral velocity, yaw, yaw rate๊ฐ’์„ ์˜๋ฏธํ•œ๋‹ค. ์ƒํƒœ ๋ฐฉ์ •์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ ํ˜• ์‹œ๋ถˆ๋ณ€ ์‹œ์Šคํ…œ(Linear Time Invariant System)์ด ๋œ๋‹ค.

  • $\dot{x}=Ax+B\delta$

์œ„์˜ ๊ทธ๋ฆผ์—์„œ ์—๋Ÿฌ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•ด๋ณด์ž.

  1. $e_1$: distance of CG of the vehicle from the center line of the lane
  2. $e_2$: orientation error of the vehicle with respect to the road

constant longitudinal velocity๋ฅผ $V_x$, constant radius $R$์ด๋ผ๊ณ  ์„ค์ •ํ•˜๊ณ , $R$์ด ๋งค์šฐ ํฐ ๊ฐ’์„ ๊ฐ€์งˆ ๋•Œ small angle approximation($tan(\theta)=\theta$)์„ ์ ์šฉํ•˜์—ฌ ์š”๊ตฌ๋˜๋Š” $\dot{\psi}$, ์ฆ‰ yaw rate๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • $\dot{\psi}_{des}=\frac{V_x}{R}$
  • $\frac{V_{x}^2}{R}=V_x\dot{\psi}_{des}$

์œ„์˜ ๋‘์‹์„ ์ด์šฉํ•˜์—ฌ ์—๋Ÿฌ ํ…€์„ ์ •์˜ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • $\ddot{e_1}=(\ddot{y}+V_x\dot{\psi})-\frac{V_{x}^2}{R}=\ddot{y}+V_x(\dot{\psi}-\dot{\psi}_{des})$
  • $e_2=\psi-\psi_{des}$

์œ„์—์„œ lateral position error๋ฅผ ๋‘๋ฒˆ ๋ฏธ๋ถ„ํ•œ ํ…€์„ ์ ๋ถ„ํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

  • $\dot{e_1}=\dot{y}+V_x(\psi-\psi_{des})$
  • if $V_x$ is not constant, $\dot{e_1}=\dot{y}+\int{V_xe_2dt}$

์œ„์˜ ๋‘ ์‹์„ lateral dynamics์— ๊ด€ํ•œ ์‹์— ๋Œ€์ž…ํ•˜์—ฌ state space model ํ˜•ํƒœ๋กœ ์ •๋ฆฌํ•˜๋ฉด ์ตœ์ข…์ ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ˜•ํƒœ๋ฅผ ๋ˆ๋‹ค. Screenshot from 2023-10-04 14-25-57

  1. $x=[e_1, \dot{e_1}, e_2, \dot{e_2}]^T$
  2. $\dot{x}=Ax+B_1\delta+B_2\dot{\psi_{des}}+B_3sin(\phi)$

Screenshot from 2023-10-04 14-28-01

Dynamic Model in terms of Yaw Rate and Slip Angle

Screenshot from 2023-10-04 14-29-10

  • Steering angle, $\delta$
  • Vehicle sideslip angle, $\beta$
  • Yaw rate of the vehicle body, $\gamma=\dot{\psi}$

small angle assumptions์— ์˜ํ•ด body slip angle์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋œ๋‹ค.

  • $\beta=\frac{\dot{y}}{V_x}=\frac{1}{V_x}=\frac{1}{V_x}(\dot{e_1}-e_2)$
  • $\frac{d\beta}{dt}=\frac{1}{dt}\frac{\dot{y}}{V_x}=\frac{\ddot{y}}{V_x}$

์œ„์˜ ์‹์„ lateral dynamics์— ์ ์šฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

  • $mV_x(\frac{d\beta}{dt}+\dot{\psi})=mV_x(\frac{d\beta}{dt}+\gamma)=F_{yf}+F_{yr}+F_{bank}$
  • $I_z\ddot{\psi}=I_z\dot{\gamma}=l_fF_{yf}-l_rF_{yr}$

์ด๋•Œ tire์— ๊ฐ€ํ•ด์ง€๋Š” lateral force์™€ ์ „/ํ›„๋ฅœ์˜ slip angle์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

  • $F_{yf}=C_{\alpha f}\alpha_f,\alpha_f=\delta-\theta_{vf}=\delta-\beta-\frac{l_f\gamma}{V_x}$
  • $F_{yr}=C_{\alpha r}\alpha_r, \alpha_r=-\theta_{vr}=-\beta+\frac{l_r\gamma}{V_x}$

์ตœ์ข…์ ์œผ๋กœ lateral dynamics์— ๋”ฐ๋ผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค.

Screenshot from 2023-10-04 16-41-27

From Body Fixed to Global Coordinates

์œ„์— ๊ธฐ์ˆ ํ•œ ๋ชจ๋“  ์‹์˜ ๊ฒฝ์šฐ body fixed ์ขŒํ‘œ๊ณ„์—์„œ ์ •์˜๋œ ๊ฐ’๋“ค์ด๋‹ค. global ์ขŒํ‘œ๊ณ„์—์„œ ์ฐจ๋Ÿ‰์˜ trajectory๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ขŒํ‘œ ๋ณ€ํ™˜์ด ํ•„์š”ํ•˜๋‹ค.

Screenshot from 2023-10-04 13-41-02

์œ„์˜ ๊ทธ๋ฆผ์—์„œ ($X_{des}, Y_{des}$)๋Š” vehicle์˜ lateral axis๋ฅผ ๋”ฐ๋ผ center line์˜ global ์ขŒํ‘œ๋ฅผ ์˜๋ฏธํ•œ๋‹ค.

  • $X=X_{des}-e_1sin(\psi)$
  • $Y=Y_{des}+e_1cos(\psi)$
  • $X_{des}=\int{Vcos(\psi_{des})dt}$
  • $Y_{des}=\int{Vsin(\psi_{des})dt}$
  • $\psi=e_2+\psi_{des}$

์œ„์˜ ์‹์— ๋”ฐ๋ผ ์ฐจ๋Ÿ‰์˜ global coordinate์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ตฌํ•ด์ง„๋‹ค.

Screenshot from 2023-10-04 16-50-05

Analysis of 2 DOF Handling Model

Steady state response (์ •์ƒ์ƒํƒœ ์‘๋‹ต, ์‹œ์Šคํ…œ์ด ๊ถ๊ทน์ ์œผ๋กœ ์ง€ํ–ฅํ•˜๋Š” ์ •์ƒ์ ์ธ ์ƒํƒœ)

  • constant steering input

steady state condition์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์ฐจ๋Ÿ‰์ด ๊ณ ์ •๋œ ์†๋„์™€ ์กฐํ–ฅ๊ฐ์œผ๋กœ ์ฃผํ–‰ํ–ˆ์„ ๋•Œ, radius of turn($R$)์ด constant์ธ ์ƒํƒœ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Š” ์ฐจ๋Ÿ‰์˜ handling ๋™์ž‘์— ๋Œ€ํ•œ ํŠน์„ฑ์„ ํ™•์ธํ•˜๊ธฐ์œ„ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค.

Stability soltuion

  • no steering input

์–ด๋– ํ•œ ์กฐํ–ฅ๊ฐ๋„ ์ž…๋ ฅ๋˜์ง€ ์•Š์•˜์„ ๋•Œ straight running condition์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ํŠนํžˆ, input์ด ์กด์žฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์ •์ƒ์ƒํƒœ ์‘๋‹ต์— ๋„๋‹ฌํ•˜๊ธฐ ๊นŒ์ง€ ๋ฐœ์ƒํ•˜๋Š” ๊ณผ๋„์‘๋‹ต(transient response)๋Š” ์ž‘์€ ์™ธ๋ž€์—๋„ ์˜ํ–ฅ์„ ๋ฐ›๊ฒŒ ๋œ๋‹ค.

Frequency response

  • sinusoidal steering input

์ •ํ˜„ํŒŒ์˜ ์กฐํ–ฅ๊ฐ์„ ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์—ˆ์„ ๋•Œ ์ฐจ๋Ÿ‰์˜ dynamic response๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ„์ ‘์ ์œผ๋กœ frequency renponse๋Š” ์–ด๋– ํ•œ ์กฐํ–ฅ๊ฐ ์ž…๋ ฅ์—๋„ ์ฐจ๋Ÿ‰์˜ ์ „์ฒด์ ์ธ reponse๋ฅผ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. Three solution types are interconnected. steady response is the limiting the value of frequency reponse as frequency is reduced to zero. the expressions defining overall hadling behavior(understeer, oversteer)

Understanding Steady State Cornering

steady state steering angle์„ ์œ„ํ•œ curve of raidus $R$์€ ์–ด๋–ป๊ฒŒ ๋ ๊นŒ? ์ด๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

image

  • $\delta-\alpha_f + \alpha_r = \frac{L}{R}$
  • $\delta = \frac{L}{R}+\alpha_f-\alpha_r$

์ด๋•Œ $\alpha_f, \alpha_r$์€ ๊ฐ ์ „/ํ›„๋ฅœ์˜ slip angle์ด๋‹ค.

  • $F_{yf}+F_{yr}=m\frac{V_x^2}{R}=ma_y$
  • $F_{yf}l_f-F_{yr}l_r=0$

์œ„์˜ ๋‘ ์‹์— ๋”ฐ๋ผ ์ „/ํ›„๋ฅœ์ด ํšก๋ฐฉํ–ฅ์œผ๋กœ ๋ฐ›์€ lateral tire force๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

  • $F_{yr}=m\frac{l_f}{l_f+l_r}\frac{V_x^2}{R}=m_r\frac{V_x^2}{R}$
  • $F_{yf}=m\frac{l_r}{l_f+l_r}\frac{V_x^2}{R}=m_f\frac{V_x^2}{R}$

$m_f, m_r$์€ ๊ฐ ๋ฐ”ํ€ด์— ๊ฐ€ํ•ด์ง€๋Š” vehicle mass์˜ ๋น„์œจ์ด๋‹ค.

Cornering stiffness

slip angle์ด ๋งค์šฐ ์ž‘์„ ๋•Œ lateral tire force๋กœ ํ‘œํ˜„๋˜๋Š” 1์ฐจ ๋ฐฉ์ •์‹์œผ๋กœ ๊ฐ€์ •ํ•œ๋‹ค.

  • $\alpha_f=\frac{F_{yf}}{2C_{af}}=\frac{m_f}{2C_{af}}\frac{V_x^2}{R}$
  • $\alpha_r=\frac{F_{yr}}{2C_{ar}}=\frac{m_r}{2C_{ar}}\frac{V_x^2}{R}$

๋”ฐ๋ผ์„œ steady state steering angle์€ ์ตœ์ข…์ ์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

  • $\delta = \frac{L}{R}+\alpha_f-\alpha_r=\frac{L}{R}+(\frac{m_f}{2C_{af}}-\frac{m_r}{2C_{ar}})\frac{V_x^2}{R}$
  • $\delta = \frac{L}{R}+K_va_y$

์ด ๋•Œ์˜ $K_v$๋ฅผ understeer gradient๋ผ๊ณ  ์นญํ•œ๋‹ค.

๊ฒฐ๋ก ์ ์œผ๋กœ steady state steering angle์€ vehicle velocity์™€ road curvature๊ฐ€ circular road์—์„œ์˜ ์กฐํ–ฅ๊ฐ๊ณผ์˜ ๊ด€๊ณ„์‹์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์ด๋‹ค. ํŠนํžˆ๋‚˜ understeer gradient์˜ ๊ฒฝ์šฐ neutral steer๋ฅผ ์œ„ํ•œ ์กฐํ–ฅ๊ฐ์˜ magnitude์™€ direction์„ ๊ฒฐ์ •ํ•œ๋‹ค.

Neutral steer

  • $K_v=0, \alpha_f=\alpha_r$

์ „/ํ›„๋ฅœ์˜ slip angle์ด ๊ฐ™์•„ $K_v=0$์ด ๋˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด ์ƒํ™ฉ์˜ ๊ฒฝ์šฐ constant radius turn์„ ์‹œํ–‰ํ•  ๋•Œ, vehicle velocity๊ฐ€ ๋ณ€ํ™”ํ•จ์— ๋”ฐ๋ผ steering angle์— ๋Œ€ํ•œ ๋ณ€ํ™”๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ์ฆ‰, curve radius์™€ wheel base์—๋งŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์ด๋‹ค.

Understeer

  • $K_v>0, \alpha_f>\alpha_r$

์ „๋ฅœ์˜ slip angle์ด ํ›„๋ฅœ์˜ slip angle ๋ณด๋‹ค ์ปค $K_v>0$์ด ๋˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด ์ƒํ™ฉ์˜ ๊ฒฝ์šฐ constant radius turn์„ ์‹œํ–‰ํ•  ๋•Œ, vehicle velocity๊ฐ€ ๋ณ€ํ™”ํ•จ์— ๋”ฐ๋ผ $K_v$์˜ ๋น„๋ก€ํ•˜์—ฌ steering angle์ด ์ฆ๊ฐ€ํ•˜๋Š” ํ˜„์ƒ์ด๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ์ด ์†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์กฐํ–ฅ๊ฐ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ์ด ํ•ฉ๋ฆฌ์ ์ด๋ผ ์ƒ๊ฐํ•˜๋ฏ€๋กœ ๋Œ€๋ถ€๋ถ„์˜ ์ฐจ๋Ÿ‰์€ understeer ํŠน์„ฑ์„ ๋„๋„๋ก ์„ค๊ณ„๋œ๋‹ค.

Oversteer

  • $K_v<0, \alpha_f<\alpha_r$ ์ „๋ฅœ์˜ slip angle์ด ํ›„๋ฅœ์˜ slip angle ๋ณด๋‹ค ์ž‘์•„ $K_v<0$์ด ๋˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ์ด ์ƒํ™ฉ์˜ ๊ฒฝ์šฐ constant radius turn์„ ์‹œํ–‰ํ•  ๋•Œ, vehicle velocity๊ฐ€ ๋ณ€ํ™”ํ•จ์— ๋”ฐ๋ผ $K_v$์˜ ๋น„๋ก€ํ•˜์—ฌ steering angle์ด ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์ด๋‹ค. ์ฃผ๋กœ ๊ฒฝ์ฃผ์šฉ ์ฐจ๋Ÿ‰๋“ค์ด oversteer ํŠน์„ฑ์„ ๋„๋„๋ก ์„ค๊ณ„๋œ๋‹ค.

image

์œ„์˜ ๊ทธ๋ž˜ํ”„์—์„œ critical speed๋Š” oversteer ํŠน์„ฑ์„ ๋„๋Š” ์ฐจ๋Ÿ‰์ด ์†๋„๊ฐ€ ์ฆ๊ฐ€ํ•  ์ˆ˜๋ก ์˜คํžˆ๋ ค ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ์กฐํ–ฅ์„ ์ฃผ๊ธฐ ์ง์ „์˜ ์†๋„์ด๋‹ค.

  • $V_{crit}=\sqrt{\frac{L}{-K_v}}=\sqrt{\frac{2L^2C_{af}C_{ar}}{m(l_fC_{af}-l_rC_{ar})}}$