mean field method - socrateslab/zh GitHub Wiki
平均场理论,是一类把环境对物体的作用平均化,以减小单体加和时存在的涨落影响,从而获得一个物理模型最主要的物理信息的方法,它广泛应用于力学、凝聚态体系的复杂系统、磁学和结构相变的研究之中,是一种广泛应用于小的平均涨落情况下真实物理系统的较低阶近似的数学处理方法。
http://www.jianshu.com/p/97f674267d3e
本部分来自:https://en.wikipedia.org/wiki/Mean_field_theory
Consider the Ising model on a <math> d </math>-dimensional cubic lattice. The Hamiltonian is given by
- <math> H = -J \sum_{\langle i,j\rangle} s_i s_{j} - h \sum_i s_i</math>
Let us transform our spin variable by introducing the fluctuation from its mean value <math> m_i \equiv \langle s_i\rangle </math>. We may rewrite the Hamiltonian:
- <math> H = -J \sum_{\langle i,j \rangle} (m_i + \delta s_i ) (m_j + \delta s_j) - h \sum_i s_i</math>
The mean-field approximation consists of neglecting this second order fluctuation term. These fluctuations are enhanced at low dimensions, making MFT a better approximation for high dimensions.
- <math> H \approx H^{MF} \equiv -J \sum_{\langle i,j \rangle} (m_i m_j +m_i \delta s_j + m_j \delta s_i ) - h \sum_i s_i</math>
- <math> H^{MF} = -J \sum_{\langle i,j \rangle} \left( m^2 + 2m(s_i-m) \right) - h \sum_i s_i</math>
- <math> H^{MF}= \frac{J m^2 N z}{2}- \underbrace{(h+m J z)}_{h^{\mathrm{eff}}} \sum_i s_i </math>
Substituting this Hamiltonian into the partition function, and solving the effective 1D problem, we obtain
- <math> Z = e^{-\beta J m^2 N z /2} \left[2]^{N} </math>
We thus have two equations between <math>m</math> and <math>h^{\mathrm{eff}}</math>, allowing us to determine <math>m</math> as a function of temperature. This leads to the following observation:
- for temperatures greater than a certain value <math>T_c</math>, the only solution is <math>m=0</math>. The system is paramagnetic.
- for <math>T < T_c</math>, there are two non-zero solutions: <math> m = \pm m_0 </math>. The system is ferromagnetic.
- 初始状态有<math>m_0</math>个节点
- 1. 增长原则:每次加入一个节点i (加入时间记为<math>t_i</math>), 每个节点的加入带来m条边,2m个度的增加
- 其中老节点分到的度数是m,新加入的那一个节点分到的度数为m
- 那么到时间t的时候,网络的总节点数是<math>m_0 + t</math>,网络的总度数为<math>2mt</math>。
- 2. 优先链接原则:每一次从m条边中占有一条边的概率正比于节点的度<math>k_i</math>
- 那么显然,加入的越早(<math>t_i</math>越小)越容易获得更多的链接数。
- 从时间0开始,每一个时间步系统中的节点度<math>k_i</math>是不断增加的。
<math>k_i</math>在一个时间步获得一个度的概率表示为<math>\prod (k_i) </math>, 那么有:
<math>\prod (k_i) = \frac{k_i}{\sum k_i} = \frac{k_i}{2mt}</math>
一个时间步,<math>k_i</math>随t的变化率可以表达为:
<math>\frac{\partial k_i}{\partial t} = \Delta k \prod (k_i) = m \frac{k_i}{2mt} = \frac{k_i}{2t}</math>
<math>\frac{\partial k_i}{k_i} = \frac{\partial t}{2t}</math>
<math>\int \frac{1}{k_i} d k_i = \int \frac{1}{2t} dt</math>
积分结果为:
<math>k_i =(Ct) ^ {0.5}</math> 公式(1)
此时,根据模型的初始条件,每个新加入节点获得的度是m:
<math>k_i(t_i) = m </math> 代入公式(1)
可以得到<math>C = m^{2}/t_i</math> 公式(2)
代入公式(1),得到:
<math>k_i = m (\frac{t}{t_i})^{0.5}</math> 公式(3)
对于一个节点i,其加入网络的时间<math>t_i</math>是固定的,我们可以观察其度<math>k_i</math>随着时间的幂律关系。
当我们思考一个累积概率分布的时候,我们想要的是<math>k_i(t) < k</math>的概率:<math>P(k_i(t) < k) </math>
由公式(3),可以知道:
<math>P(k_i(t) < k) = P( m (\frac{t}{t_i})^{0.5} < k ) = P( t_i > \frac{m^2 t}{k^2} ) = 1 - P(t_i \leqslant \frac{m^2 t}{k^2} )</math> 公式(4)
在初始状态<math> t = 0</math>, 有<math>m_0</math>个节点,那么<math>t_{m_0} = 0</math>
假设我们将节点加入的时间步是均匀的,那么<math>t_i</math>的概率是一个常数:
<math>P(t_i) = \frac{1}{m_0 + t}</math> 公式(5)
- 设连续型随机变量X的概率密度函数为 <math>f(x)=1/(b-a),a≤x≤b </math>, 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。
- 若[x1,x2]是[a,b]的任一子区间,则 <math>P{x_1≤x≤x_2}=(x_2-x_1)/(b-a)</math>
<math>P(k_i(t) < k) = 1 - \frac{m^2 t}{k^2 (m_0 + t)} </math> 公式(6)
对累积概率函数求微分,就可以到达概率密度函数:
<math>P( k ) = \frac{\partial P(k_i(t) < k)}{\partial k} = \frac{2m^2 t}{m_0 + k} \frac{1}{k^3}</math> 公式(7)
也就是说:<math>\gamma = 3</math>, 与m无关。
Barabasi (1999) Emergence of scaling in random networks.Science-509-12.[1]
Barabasi (1999) Mean-field theory for scale-free random networks. PA.[2]
Albert & Barabasi (2002) Statistical mechanics of complex networks. RMP.[3]
Barabasi将采用平均场的方法称为Continuum theory:
The continuum approach introduced by Baraba´si and Albert (1999)[4] and Baraba´si, Albert, and Jeong (1999)[5] calculates the time dependence of the degree <math>k_i</math> of a given node i. This degree will increase every time a new node enters the system and links to node i, the probability of this process being <math>\prod(k_i)</math>. Assuming that <math>k_i</math> is a continuous real variable, the rate at which <math>k_i</math> changes is expected to be proportional to <math>\prod(k_i)</math>. Consequently <math>k_i</math> satisfies the dynamical equation:
- Barabasi (1999) Emergence of scaling in random networks.Science-509-12.pdf
- 2.0 2.1 Barabasi (1999) Mean-field theory for scale-free random networks. PA.pdf
- Albert & Barabasi (2002) Statistical mechanics of complex networks. RMP.pdf