Tensorflow - semchan/DeepLearning GitHub Wiki

Tensorflow install on ubuntu:https://www.leiphone.com/news/201606/ORlQ7uK3TIW8xVGF.html

Linux Version Python version Compiler Build tools tensorflow-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0 tensorflow-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 tensorflow-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 tensorflow-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 tensorflow-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 tensorflow-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 tensorflow-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 tensorflow-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 tensorflow-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 tensorflow-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2

http://blog.csdn.net/class_brick/article/details/72934068

https://yq.aliyun.com/articles/176252

step by step for tensorflow: http://www.tensorfly.cn/tfdoc/get_started/os_setup.html

http://blog.csdn.net/jdbc/article/details/52402302

ImportError: No module named examples.tutorials.mnist

Traceback (most recent call last): File "nearest_neighbor.py", line 14, in from tensorflow.examples.tutorials.mnist import input_data

ImportError: No module named examples.tutorials.mnist

安装的tensorflow升级版本后就OK了, 0.8.0 -> 0.9.0

sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0rc0-cp27-none-linux_x86_64.whl

sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-cp27-none-linux_x86_64.whl

How to use tensorboard?
https://my.oschina.net/yilian/blog/661900

pip install --upgrade tensorflow-gpu

Lirh_china

Tensorflow实例集

这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。

这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。

•项目地址: https://github.com/aymericdamien/TensorFlow-Examples

教程索引

0 - 先决条件

机器学习入门:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb

•MNIST 数据集入门

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb

1 - 入门

Hello World:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb

•代码 https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py

基本操作:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py

2 - 基本模型

最近邻:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py

线性回归:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py

Logistic 回归:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py

3 - 神经网络

多层感知器:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/multilayer_perceptron.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py

卷积神经网络:

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py

循环神经网络(LSTM):

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py

双向循环神经网络(LSTM):

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py

动态循环神经网络(LSTM)

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py

自编码器

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py

4 - 实用技术

保存和恢复模型

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py

图和损失可视化

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py

Tensorboard——高级可视化

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py

5 - 多 GPU

多 GPU 上的基本操作

•笔记: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_MultiGPU/multigpu_basics.ipynb

•代码: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py

数据集

一些案例需要 MNIST 数据集进行训练和测试。不要担心,运行这些案例时,该数据集会被自动下载下来(使用 input_data.py) 。MNIST 是一个手写数字的数据库,查看这个笔记了解关于该数据集的描述: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb

•官方网站: http://yann.lecun.com/exdb/mnist/

更多案例

接下来的示例来自 TFLearn ,这是一个为 TensorFlow 提供了简化的接口的库。你可以看看,这里有很多示例和预构建的运算和层。

•示例: https://github.com/tflearn/tflearn/tree/master/examples

•预构建的运算和层: http://tflearn.org/doc_index/#api

教程

TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。

•笔记:<https://github.com/tflearn/tflearn/blob/master/tutorials/intro/quickstart.md

基础

•线性回归,使用 TFLearn 实现线性回归: https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py

•逻辑运算符。使用 TFLearn 实现逻辑运算符: https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py

•权重保持。保存和还原一个模型: https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py

•微调。在一个新任务上微调一个预训练的模型: https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py

•使用 HDF5。使用 HDF5 处理大型数据集: https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py

•使用 DASK。使用 DASK 处理大型数据集: https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py

计算机视觉

•多层感知器。一种用于 MNIST 分类任务的多层感知实现: https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py

•卷积网络(MNIST)。用于分类 MNIST 数据集的一种卷积神经网络实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py

•卷积网络(CIFAR-10)。用于分类 CIFAR-10 数据集的一种卷积神经网络实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py

•网络中的网络。用于分类 CIFAR-10 数据集的 Network in Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py

•Alexnet。将 Alexnet 应用于 Oxford Flowers 17 分类任务: https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py

•VGGNet。将 VGGNet 应用于 Oxford Flowers 17 分类任务: https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py

•VGGNet Finetuning (Fast Training)。使用一个预训练的 VGG 网络并将其约束到你自己的数据上,以便实现快速训练: https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py

•RNN Pixels。使用 RNN(在像素的序列上)分类图像: https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py

•Highway Network。用于分类 MNIST 数据集的 Highway Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py

•Highway Convolutional Network。用于分类 MNIST 数据集的 Highway Convolutional Network 实现: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py

•Residual Network (MNIST) ( https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py ).。应用于 MNIST 分类任务的一种瓶颈残差网络(bottleneck residual network): https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py

•Residual Network (CIFAR-10)。应用于 CIFAR-10 分类任务的一种残差网络: https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py

•Google Inception(v3)。应用于 Oxford Flowers 17 分类任务的谷歌 Inception v3 网络: https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py

•自编码器。用于 MNIST 手写数字的自编码器: https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py

自然语言处理

•循环神经网络(LSTM),应用 LSTM 到 IMDB 情感数据集分类任务: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py

•双向 RNN(LSTM),将一个双向 LSTM 应用到 IMDB 情感数据集分类任务: https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py

•动态 RNN(LSTM),利用动态 LSTM 从 IMDB 数据集分类可变长度文本: https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py

•城市名称生成,使用 LSTM 网络生成新的美国城市名: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py

•莎士比亚手稿生成,使用 LSTM 网络生成新的莎士比亚手稿: https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py

•Seq2seq,seq2seq 循环网络的教学示例: https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py

•CNN Seq,应用一个 1-D 卷积网络从 IMDB 情感数据集中分类词序列: https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py

强化学习

Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一台机器玩 Atari 游戏: https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py

其他

Recommender-Wide&Deep Network,推荐系统中 wide & deep 网络的教学示例: https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py

Notebooks

•Spiral Classification Problem,对斯坦福 CS231n spiral 分类难题的 TFLearn 实现: https://github.com/tflearn/tflearn/blob/master/examples/notebooks/spiral.ipynb

可延展的 TensorFlow

•层,与 TensorFlow 一起使用 TFLearn 层: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py

•训练器,使用 TFLearn 训练器类训练任何 TensorFlow 图: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py

•Bulit-in Ops,连同 TensorFlow 使用 TFLearn built-in 操作: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py

•Summaries,连同 TensorFlow 使用 TFLearn summarizers: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py

•Variables,连同 TensorFlow 使用 TFLearn Variables: https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py

⚠️ **GitHub.com Fallback** ⚠️