DAA Swarm - ruvnet/ruv-FANN GitHub Wiki

DAA Swarm - Swarm Coordination Layer Infrastructure

Overview

The DAA Swarm Coordination Layer provides advanced multi-agent orchestration capabilities for distributed autonomous agents. This infrastructure enables sophisticated swarm behaviors including collective decision-making, task coordination, resource sharing, and emergent intelligence patterns.

Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                  DAA SWARM COORDINATION                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                 β”‚
β”‚  🎯 COORDINATION LAYER    πŸ“Š INTELLIGENCE LAYER  πŸ”„ CONSENSUS    β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚ β€’ Task Queue    β”‚     β”‚ β€’ Collective ML β”‚    β”‚ β€’ Byzantine β”‚ β”‚
β”‚  β”‚ β€’ Load Balance  β”‚     β”‚ β€’ Swarm Memory  β”‚    β”‚ β€’ Raft      β”‚ β”‚
β”‚  β”‚ β€’ Resource Mgmt β”‚     β”‚ β€’ Pattern Rec   β”‚    β”‚ β€’ PBFT      β”‚ β”‚
β”‚  β”‚ β€’ Agent Router  β”‚     β”‚ β€’ Emergent Behavior   β”‚ β€’ Recovery  β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                                                                 β”‚
β”‚  🌐 COMMUNICATION        πŸ’Ύ MEMORY SYSTEM        ⚑ PERFORMANCE β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚ β€’ Message Bus   β”‚     β”‚ β€’ Distributed   β”‚    β”‚ β€’ SIMD Ops  β”‚ β”‚
β”‚  β”‚ β€’ Event Stream  β”‚     β”‚ β€’ Replication   β”‚    β”‚ β€’ GPU Accel β”‚ β”‚
β”‚  β”‚ β€’ Gossip Proto  β”‚     β”‚ β€’ Consistency   β”‚    β”‚ β€’ Cache Opt β”‚ β”‚
β”‚  β”‚ β€’ P2P Network   β”‚     β”‚ β€’ Fault Tolerantβ”‚    β”‚ β€’ Parallel  β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Components

1. Swarm Coordinator

Hierarchical Coordination

use daa_swarm::{SwarmCoordinator, AgentRegistry, TaskQueue};
use tokio::sync::{RwLock, broadcast};
use std::collections::HashMap;

pub struct HierarchicalCoordinator {
    agent_registry: Arc<RwLock<AgentRegistry>>,
    task_queue: Arc<TaskQueue>,
    leadership_layer: LeadershipLayer,
    coordination_channel: broadcast::Sender<CoordinationMessage>,
    performance_metrics: SwarmMetrics,
}

impl HierarchicalCoordinator {
    pub async fn new(config: SwarmConfig) -> Result<Self, SwarmError> {
        let (tx, _) = broadcast::channel(1000);
        
        Ok(Self {
            agent_registry: Arc::new(RwLock::new(AgentRegistry::new())),
            task_queue: Arc::new(TaskQueue::with_capacity(10000)),
            leadership_layer: LeadershipLayer::initialize(config.leadership).await?,
            coordination_channel: tx,
            performance_metrics: SwarmMetrics::new(),
        })
    }
    
    pub async fn coordinate_swarm(&self) -> Result<(), SwarmError> {
        loop {
            // Task distribution phase
            self.distribute_tasks().await?;
            
            // Agent health monitoring
            self.monitor_agent_health().await?;
            
            // Performance optimization
            self.optimize_performance().await?;
            
            // Consensus operations
            self.run_consensus_round().await?;
            
            tokio::time::sleep(Duration::from_millis(100)).await;
        }
    }
    
    async fn distribute_tasks(&self) -> Result<(), SwarmError> {
        let available_tasks = self.task_queue.get_pending_tasks(100).await?;
        let agents = self.agent_registry.read().await;
        
        for task in available_tasks {
            let best_agent = agents.find_best_match(&task)?;
            
            if let Some(agent) = best_agent {
                self.assign_task_to_agent(task, agent.id()).await?;
                self.performance_metrics.record_task_assignment();
            } else {
                self.task_queue.requeue_with_delay(task, Duration::from_secs(5)).await?;
            }
        }
        
        Ok(())
    }
}

Mesh Network Coordination

pub struct MeshCoordinator {
    peer_network: P2PNetwork,
    consensus_engine: ConsensusEngine,
    message_router: MessageRouter,
    state_machine: SwarmStateMachine,
}

impl MeshCoordinator {
    pub async fn initialize_mesh(&self, bootstrap_peers: Vec<PeerId>) -> Result<(), MeshError> {
        // Connect to bootstrap peers
        for peer in bootstrap_peers {
            self.peer_network.connect(peer).await?;
        }
        
        // Initialize consensus protocol
        self.consensus_engine.start_consensus().await?;
        
        // Begin message routing
        self.message_router.start_routing().await?;
        
        Ok(())
    }
    
    pub async fn handle_peer_message(&self, message: PeerMessage) -> Result<(), MeshError> {
        match message.message_type {
            MessageType::TaskProposal => {
                let proposal: TaskProposal = message.deserialize()?;
                self.evaluate_task_proposal(proposal).await?;
            }
            MessageType::ConsensusVote => {
                let vote: ConsensusVote = message.deserialize()?;
                self.consensus_engine.process_vote(vote).await?;
            }
            MessageType::StateUpdate => {
                let update: StateUpdate = message.deserialize()?;
                self.state_machine.apply_update(update).await?;
            }
            MessageType::ResourceShare => {
                let share: ResourceShare = message.deserialize()?;
                self.handle_resource_sharing(share).await?;
            }
        }
        
        Ok(())
    }
}

2. Collective Intelligence Engine

Distributed Learning

use ml_models::{FederatedLearning, CollectiveMemory, PatternRecognition};

pub struct CollectiveIntelligence {
    federated_learning: FederatedLearning,
    collective_memory: Arc<RwLock<CollectiveMemory>>,
    pattern_recognition: PatternRecognition,
    knowledge_graph: KnowledgeGraph,
}

impl CollectiveIntelligence {
    pub async fn learn_from_swarm_experience(&mut self, experiences: Vec<AgentExperience>) -> Result<(), LearningError> {
        // Aggregate experiences from all agents
        let aggregated_data = self.aggregate_experiences(experiences).await?;
        
        // Update federated learning model
        let model_update = self.federated_learning.train_round(aggregated_data).await?;
        
        // Distribute model updates to all agents
        self.distribute_model_update(model_update).await?;
        
        // Update collective memory
        self.update_collective_memory(&aggregated_data).await?;
        
        // Identify new patterns
        let patterns = self.pattern_recognition.identify_patterns(&aggregated_data)?;
        self.knowledge_graph.add_patterns(patterns).await?;
        
        Ok(())
    }
    
    pub async fn make_collective_decision(&self, decision_context: DecisionContext) -> Result<CollectiveDecision, DecisionError> {
        // Query collective memory for relevant experiences
        let relevant_experiences = self.collective_memory
            .read()
            .await
            .query_similar_contexts(&decision_context)?;
        
        // Get recommendations from knowledge graph
        let graph_recommendations = self.knowledge_graph
            .get_recommendations(&decision_context)
            .await?;
        
        // Use federated model for prediction
        let model_prediction = self.federated_learning
            .predict(&decision_context)
            .await?;
        
        // Combine all inputs for final decision
        let decision = CollectiveDecision::synthesize(
            relevant_experiences,
            graph_recommendations,
            model_prediction,
        )?;
        
        Ok(decision)
    }
}

Emergent Behavior Monitoring

pub struct EmergentBehaviorMonitor {
    behavior_patterns: HashMap<BehaviorId, BehaviorPattern>,
    emergence_detector: EmergenceDetector,
    complexity_analyzer: ComplexityAnalyzer,
    adaptation_engine: AdaptationEngine,
}

impl EmergentBehaviorMonitor {
    pub async fn monitor_emergence(&mut self) -> Result<(), MonitoringError> {
        let swarm_state = self.collect_swarm_state().await?;
        
        // Detect emerging patterns
        let emerging_patterns = self.emergence_detector
            .detect_patterns(&swarm_state)?;
        
        for pattern in emerging_patterns {
            // Analyze pattern complexity
            let complexity = self.complexity_analyzer
                .analyze_complexity(&pattern)?;
            
            // Check if pattern is beneficial
            if self.is_beneficial_pattern(&pattern, complexity).await? {
                // Reinforce beneficial pattern
                self.adaptation_engine
                    .reinforce_pattern(&pattern)
                    .await?;
            } else {
                // Suppress harmful pattern
                self.adaptation_engine
                    .suppress_pattern(&pattern)
                    .await?;
            }
        }
        
        Ok(())
    }
}

3. Consensus Mechanisms

Byzantine Fault Tolerant Consensus

use consensus::{ByzantineConsensus, Vote, Proposal, ConsensusRound};

pub struct BFTConsensus {
    node_id: NodeId,
    validators: Vec<ValidatorInfo>,
    current_round: ConsensusRound,
    vote_collector: VoteCollector,
    proposal_buffer: ProposalBuffer,
}

impl BFTConsensus {
    pub async fn propose_value(&mut self, value: ConsensusValue) -> Result<(), ConsensusError> {
        let proposal = Proposal {
            round: self.current_round,
            value,
            proposer: self.node_id,
            timestamp: SystemTime::now(),
        };
        
        // Sign proposal with quantum-resistant signature
        let signed_proposal = self.sign_proposal(proposal).await?;
        
        // Broadcast to all validators
        self.broadcast_proposal(signed_proposal).await?;
        
        Ok(())
    }
    
    pub async fn process_proposal(&mut self, proposal: SignedProposal) -> Result<(), ConsensusError> {
        // Validate proposal signature and content
        self.validate_proposal(&proposal).await?;
        
        // Add to proposal buffer
        self.proposal_buffer.add(proposal.clone()).await?;
        
        // Cast vote
        let vote = Vote {
            round: proposal.round,
            value_hash: proposal.value_hash(),
            voter: self.node_id,
            signature: self.sign_vote(&proposal).await?,
        };
        
        // Broadcast vote
        self.broadcast_vote(vote).await?;
        
        Ok(())
    }
    
    pub async fn check_consensus(&mut self) -> Result<Option<ConsensusValue>, ConsensusError> {
        let votes = self.vote_collector.get_votes_for_round(self.current_round).await?;
        
        // Check if we have enough votes (2f + 1 out of 3f + 1)
        let required_votes = (self.validators.len() * 2 / 3) + 1;
        
        for proposal in self.proposal_buffer.get_proposals(self.current_round).await? {
            let votes_for_proposal = votes.iter()
                .filter(|v| v.value_hash == proposal.value_hash())
                .count();
            
            if votes_for_proposal >= required_votes {
                // We have consensus!
                self.finalize_consensus(proposal.value).await?;
                return Ok(Some(proposal.value));
            }
        }
        
        Ok(None)
    }
}

Docker Compose Configuration

Multi-Node Swarm Setup

version: '3.8'

services:
  swarm-coordinator-1:
    build: .
    command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-1"]
    environment:
      - SWARM_MODE=hierarchical
      - COORDINATION_PORT=8090
      - CONSENSUS_ALGORITHM=pbft
      - BOOTSTRAP_PEERS=swarm-coordinator-2:8090,swarm-coordinator-3:8090
    volumes:
      - swarm_data_1:/app/data
      - swarm_logs_1:/app/logs
    networks:
      - swarm-network
    ports:
      - "8090:8090"
      - "9090:9090"  # Metrics
    
  swarm-coordinator-2:
    build: .
    command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-2"]
    environment:
      - SWARM_MODE=hierarchical
      - COORDINATION_PORT=8090
      - CONSENSUS_ALGORITHM=pbft
      - BOOTSTRAP_PEERS=swarm-coordinator-1:8090,swarm-coordinator-3:8090
    volumes:
      - swarm_data_2:/app/data
      - swarm_logs_2:/app/logs
    networks:
      - swarm-network
    ports:
      - "8091:8090"
      - "9091:9090"
    
  swarm-coordinator-3:
    build: .
    command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-3"]
    environment:
      - SWARM_MODE=hierarchical
      - COORDINATION_PORT=8090
      - CONSENSUS_ALGORITHM=pbft
      - BOOTSTRAP_PEERS=swarm-coordinator-1:8090,swarm-coordinator-2:8090
    volumes:
      - swarm_data_3:/app/data
      - swarm_logs_3:/app/logs
    networks:
      - swarm-network
    ports:
      - "8092:8090"
      - "9092:9090"
  
  agent-swarm:
    build: .
    command: ["daa-agent", "--swarm-mode"]
    environment:
      - COORDINATOR_ENDPOINTS=swarm-coordinator-1:8090,swarm-coordinator-2:8090,swarm-coordinator-3:8090
      - AGENT_CAPABILITIES=computation,analysis,learning
      - SWARM_SIZE=50
    networks:
      - swarm-network
    deploy:
      replicas: 50
    depends_on:
      - swarm-coordinator-1
      - swarm-coordinator-2
      - swarm-coordinator-3
  
  redis-cluster:
    image: redis:7-alpine
    command: redis-server --cluster-enabled yes --cluster-config-file nodes.conf
    volumes:
      - redis_data:/data
    networks:
      - swarm-network
    deploy:
      replicas: 6
  
  prometheus:
    image: prom/prometheus:latest
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/etc/prometheus/console_libraries'
      - '--web.console.templates=/etc/prometheus/consoles'
    volumes:
      - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
      - prometheus_data:/prometheus
    networks:
      - swarm-network
    ports:
      - "9093:9090"

networks:
  swarm-network:
    driver: bridge
    ipam:
      config:
        - subnet: 172.21.0.0/16

volumes:
  swarm_data_1:
  swarm_data_2:
  swarm_data_3:
  swarm_logs_1:
  swarm_logs_2:
  swarm_logs_3:
  redis_data:
  prometheus_data:

Kubernetes Deployment

Swarm Coordinator StatefulSet

apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: swarm-coordinator
  namespace: daa-swarm
spec:
  serviceName: swarm-coordinator
  replicas: 3
  selector:
    matchLabels:
      app: swarm-coordinator
  template:
    metadata:
      labels:
        app: swarm-coordinator
    spec:
      containers:
      - name: coordinator
        image: daa-swarm:latest
        command: ["daa-swarm", "--role", "coordinator"]
        resources:
          requests:
            memory: "4Gi"
            cpu: "2000m"
          limits:
            memory: "8Gi"
            cpu: "4000m"
        env:
        - name: NODE_ID
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: SWARM_MODE
          value: "hierarchical"
        - name: CONSENSUS_ALGORITHM
          value: "pbft"
        - name: CLUSTER_PEERS
          value: "swarm-coordinator-0.swarm-coordinator:8090,swarm-coordinator-1.swarm-coordinator:8090,swarm-coordinator-2.swarm-coordinator:8090"
        volumeMounts:
        - name: swarm-data
          mountPath: /app/data
        - name: swarm-config
          mountPath: /app/config
        ports:
        - containerPort: 8090
          name: coordination
        - containerPort: 9090
          name: metrics
        livenessProbe:
          httpGet:
            path: /health
            port: 9090
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: 9090
          initialDelaySeconds: 10
          periodSeconds: 5
      volumes:
      - name: swarm-config
        configMap:
          name: swarm-coordinator-config
  volumeClaimTemplates:
  - metadata:
      name: swarm-data
    spec:
      accessModes: [ "ReadWriteOnce" ]
      resources:
        requests:
          storage: 20Gi

Agent Swarm Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: agent-swarm
  namespace: daa-swarm
spec:
  replicas: 100
  selector:
    matchLabels:
      app: agent-swarm
  template:
    metadata:
      labels:
        app: agent-swarm
    spec:
      containers:
      - name: agent
        image: daa-agent:latest
        command: ["daa-agent", "--swarm-mode"]
        resources:
          requests:
            memory: "1Gi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "1000m"
        env:
        - name: AGENT_ID
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: COORDINATOR_ENDPOINTS
          value: "swarm-coordinator:8090"
        - name: AGENT_CAPABILITIES
          value: "computation,analysis,learning,coordination"
        - name: SWARM_PARTICIPATION
          value: "enabled"
        ports:
        - containerPort: 8080
          name: api
        - containerPort: 8081
          name: p2p
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 20
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          initialDelaySeconds: 5
          periodSeconds: 5

Scaling Strategies

Adaptive Swarm Scaling

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: agent-swarm-hpa
  namespace: daa-swarm
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: agent-swarm
  minReplicas: 50
  maxReplicas: 5000
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 60
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 70
  - type: Pods
    pods:
      metric:
        name: coordination_latency_ms
      target:
        type: AverageValue
        averageValue: "100"
  - type: Pods
    pods:
      metric:
        name: tasks_queued
      target:
        type: AverageValue
        averageValue: "10"
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 50
        periodSeconds: 60
      - type: Pods
        value: 100
        periodSeconds: 60
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

Load Balancing Configuration

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: swarm-traffic
  namespace: daa-swarm
spec:
  hosts:
  - swarm-coordinator
  http:
  - match:
    - headers:
        task-type:
          exact: coordination
    route:
    - destination:
        host: swarm-coordinator
        subset: coordinator-nodes
      weight: 100
  - match:
    - headers:
        task-type:
          exact: consensus
    route:
    - destination:
        host: swarm-coordinator
        subset: consensus-nodes
      weight: 100
  - route:
    - destination:
        host: swarm-coordinator
      weight: 100
---
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
  name: swarm-load-balancing
  namespace: daa-swarm
spec:
  host: swarm-coordinator
  trafficPolicy:
    loadBalancer:
      consistentHash:
        httpHeaderName: "agent-id"
  subsets:
  - name: coordinator-nodes
    labels:
      role: coordinator
  - name: consensus-nodes
    labels:
      role: consensus

Monitoring and Metrics

Swarm Metrics Collection

use prometheus::{Counter, Histogram, IntGauge, IntCounterVec};

pub struct SwarmMetrics {
    // Coordination metrics
    pub agents_active: IntGauge,
    pub tasks_queued: IntGauge,
    pub tasks_completed: Counter,
    pub coordination_latency: Histogram,
    
    // Consensus metrics
    pub consensus_rounds: Counter,
    pub consensus_time: Histogram,
    pub byzantine_failures: Counter,
    
    // Intelligence metrics
    pub learning_iterations: Counter,
    pub pattern_discoveries: Counter,
    pub collective_decisions: Counter,
    
    // Performance metrics
    pub message_throughput: Counter,
    pub bandwidth_usage: IntGauge,
    pub cpu_utilization: IntGauge,
    pub memory_usage: IntGauge,
}

impl SwarmMetrics {
    pub fn record_task_completion(&self, task_type: &str, duration: Duration) {
        self.tasks_completed.inc();
        self.coordination_latency.observe(duration.as_secs_f64());
    }
    
    pub fn record_consensus_round(&self, participants: u32, duration: Duration) {
        self.consensus_rounds.inc();
        self.consensus_time.observe(duration.as_secs_f64());
    }
    
    pub fn record_pattern_discovery(&self, pattern_complexity: f64) {
        self.pattern_discoveries.inc();
        // Additional complexity metrics could be recorded here
    }
}

Alerting Rules

groups:
- name: daa-swarm.rules
  rules:
  - alert: SwarmCoordinationLatencyHigh
    expr: histogram_quantile(0.95, daa_coordination_latency_seconds) > 1.0
    for: 2m
    labels:
      severity: warning
    annotations:
      summary: "High coordination latency in DAA swarm"
      description: "95th percentile coordination latency is {{ $value }}s"
      
  - alert: ConsensusFailureRate
    expr: rate(daa_byzantine_failures_total[5m]) > 0.1
    for: 1m
    labels:
      severity: critical
    annotations:
      summary: "High consensus failure rate"
      description: "Byzantine failure rate is {{ $value }} failures/second"
      
  - alert: SwarmAgentsDown
    expr: daa_agents_active < 10
    for: 30s
    labels:
      severity: critical
    annotations:
      summary: "Too few active agents in swarm"
      description: "Only {{ $value }} agents are active"
      
  - alert: TaskQueueBacklog
    expr: daa_tasks_queued > 1000
    for: 5m
    labels:
      severity: warning
    annotations:
      summary: "Large task queue backlog"
      description: "{{ $value }} tasks are queued"

Security Considerations

Swarm Security Framework

  • Quantum-resistant communication between all swarm components
  • Agent authentication and authorization using cryptographic identities
  • Consensus mechanism security with Byzantine fault tolerance
  • Network isolation with encrypted mesh communication
  • Resource access controls with capability-based security

Threat Mitigation

  • Sybil attack protection through proof-of-stake and reputation systems
  • Eclipse attack prevention with diverse peer connections
  • Consensus manipulation resistance through randomized committee selection
  • Data poisoning detection using statistical anomaly detection
  • Resource exhaustion protection with rate limiting and quotas

This swarm coordination infrastructure provides enterprise-grade multi-agent orchestration with advanced collective intelligence capabilities and robust security measures.

⚠️ **GitHub.com Fallback** ⚠️