DAA Swarm - ruvnet/ruv-FANN GitHub Wiki
The DAA Swarm Coordination Layer provides advanced multi-agent orchestration capabilities for distributed autonomous agents. This infrastructure enables sophisticated swarm behaviors including collective decision-making, task coordination, resource sharing, and emergent intelligence patterns.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β DAA SWARM COORDINATION β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β π― COORDINATION LAYER π INTELLIGENCE LAYER π CONSENSUS β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββ β
β β β’ Task Queue β β β’ Collective ML β β β’ Byzantine β β
β β β’ Load Balance β β β’ Swarm Memory β β β’ Raft β β
β β β’ Resource Mgmt β β β’ Pattern Rec β β β’ PBFT β β
β β β’ Agent Router β β β’ Emergent Behavior β β’ Recovery β β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββ β
β β
β π COMMUNICATION πΎ MEMORY SYSTEM β‘ PERFORMANCE β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββ β
β β β’ Message Bus β β β’ Distributed β β β’ SIMD Ops β β
β β β’ Event Stream β β β’ Replication β β β’ GPU Accel β β
β β β’ Gossip Proto β β β’ Consistency β β β’ Cache Opt β β
β β β’ P2P Network β β β’ Fault Tolerantβ β β’ Parallel β β
β βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
use daa_swarm::{SwarmCoordinator, AgentRegistry, TaskQueue};
use tokio::sync::{RwLock, broadcast};
use std::collections::HashMap;
pub struct HierarchicalCoordinator {
agent_registry: Arc<RwLock<AgentRegistry>>,
task_queue: Arc<TaskQueue>,
leadership_layer: LeadershipLayer,
coordination_channel: broadcast::Sender<CoordinationMessage>,
performance_metrics: SwarmMetrics,
}
impl HierarchicalCoordinator {
pub async fn new(config: SwarmConfig) -> Result<Self, SwarmError> {
let (tx, _) = broadcast::channel(1000);
Ok(Self {
agent_registry: Arc::new(RwLock::new(AgentRegistry::new())),
task_queue: Arc::new(TaskQueue::with_capacity(10000)),
leadership_layer: LeadershipLayer::initialize(config.leadership).await?,
coordination_channel: tx,
performance_metrics: SwarmMetrics::new(),
})
}
pub async fn coordinate_swarm(&self) -> Result<(), SwarmError> {
loop {
// Task distribution phase
self.distribute_tasks().await?;
// Agent health monitoring
self.monitor_agent_health().await?;
// Performance optimization
self.optimize_performance().await?;
// Consensus operations
self.run_consensus_round().await?;
tokio::time::sleep(Duration::from_millis(100)).await;
}
}
async fn distribute_tasks(&self) -> Result<(), SwarmError> {
let available_tasks = self.task_queue.get_pending_tasks(100).await?;
let agents = self.agent_registry.read().await;
for task in available_tasks {
let best_agent = agents.find_best_match(&task)?;
if let Some(agent) = best_agent {
self.assign_task_to_agent(task, agent.id()).await?;
self.performance_metrics.record_task_assignment();
} else {
self.task_queue.requeue_with_delay(task, Duration::from_secs(5)).await?;
}
}
Ok(())
}
}
pub struct MeshCoordinator {
peer_network: P2PNetwork,
consensus_engine: ConsensusEngine,
message_router: MessageRouter,
state_machine: SwarmStateMachine,
}
impl MeshCoordinator {
pub async fn initialize_mesh(&self, bootstrap_peers: Vec<PeerId>) -> Result<(), MeshError> {
// Connect to bootstrap peers
for peer in bootstrap_peers {
self.peer_network.connect(peer).await?;
}
// Initialize consensus protocol
self.consensus_engine.start_consensus().await?;
// Begin message routing
self.message_router.start_routing().await?;
Ok(())
}
pub async fn handle_peer_message(&self, message: PeerMessage) -> Result<(), MeshError> {
match message.message_type {
MessageType::TaskProposal => {
let proposal: TaskProposal = message.deserialize()?;
self.evaluate_task_proposal(proposal).await?;
}
MessageType::ConsensusVote => {
let vote: ConsensusVote = message.deserialize()?;
self.consensus_engine.process_vote(vote).await?;
}
MessageType::StateUpdate => {
let update: StateUpdate = message.deserialize()?;
self.state_machine.apply_update(update).await?;
}
MessageType::ResourceShare => {
let share: ResourceShare = message.deserialize()?;
self.handle_resource_sharing(share).await?;
}
}
Ok(())
}
}
use ml_models::{FederatedLearning, CollectiveMemory, PatternRecognition};
pub struct CollectiveIntelligence {
federated_learning: FederatedLearning,
collective_memory: Arc<RwLock<CollectiveMemory>>,
pattern_recognition: PatternRecognition,
knowledge_graph: KnowledgeGraph,
}
impl CollectiveIntelligence {
pub async fn learn_from_swarm_experience(&mut self, experiences: Vec<AgentExperience>) -> Result<(), LearningError> {
// Aggregate experiences from all agents
let aggregated_data = self.aggregate_experiences(experiences).await?;
// Update federated learning model
let model_update = self.federated_learning.train_round(aggregated_data).await?;
// Distribute model updates to all agents
self.distribute_model_update(model_update).await?;
// Update collective memory
self.update_collective_memory(&aggregated_data).await?;
// Identify new patterns
let patterns = self.pattern_recognition.identify_patterns(&aggregated_data)?;
self.knowledge_graph.add_patterns(patterns).await?;
Ok(())
}
pub async fn make_collective_decision(&self, decision_context: DecisionContext) -> Result<CollectiveDecision, DecisionError> {
// Query collective memory for relevant experiences
let relevant_experiences = self.collective_memory
.read()
.await
.query_similar_contexts(&decision_context)?;
// Get recommendations from knowledge graph
let graph_recommendations = self.knowledge_graph
.get_recommendations(&decision_context)
.await?;
// Use federated model for prediction
let model_prediction = self.federated_learning
.predict(&decision_context)
.await?;
// Combine all inputs for final decision
let decision = CollectiveDecision::synthesize(
relevant_experiences,
graph_recommendations,
model_prediction,
)?;
Ok(decision)
}
}
pub struct EmergentBehaviorMonitor {
behavior_patterns: HashMap<BehaviorId, BehaviorPattern>,
emergence_detector: EmergenceDetector,
complexity_analyzer: ComplexityAnalyzer,
adaptation_engine: AdaptationEngine,
}
impl EmergentBehaviorMonitor {
pub async fn monitor_emergence(&mut self) -> Result<(), MonitoringError> {
let swarm_state = self.collect_swarm_state().await?;
// Detect emerging patterns
let emerging_patterns = self.emergence_detector
.detect_patterns(&swarm_state)?;
for pattern in emerging_patterns {
// Analyze pattern complexity
let complexity = self.complexity_analyzer
.analyze_complexity(&pattern)?;
// Check if pattern is beneficial
if self.is_beneficial_pattern(&pattern, complexity).await? {
// Reinforce beneficial pattern
self.adaptation_engine
.reinforce_pattern(&pattern)
.await?;
} else {
// Suppress harmful pattern
self.adaptation_engine
.suppress_pattern(&pattern)
.await?;
}
}
Ok(())
}
}
use consensus::{ByzantineConsensus, Vote, Proposal, ConsensusRound};
pub struct BFTConsensus {
node_id: NodeId,
validators: Vec<ValidatorInfo>,
current_round: ConsensusRound,
vote_collector: VoteCollector,
proposal_buffer: ProposalBuffer,
}
impl BFTConsensus {
pub async fn propose_value(&mut self, value: ConsensusValue) -> Result<(), ConsensusError> {
let proposal = Proposal {
round: self.current_round,
value,
proposer: self.node_id,
timestamp: SystemTime::now(),
};
// Sign proposal with quantum-resistant signature
let signed_proposal = self.sign_proposal(proposal).await?;
// Broadcast to all validators
self.broadcast_proposal(signed_proposal).await?;
Ok(())
}
pub async fn process_proposal(&mut self, proposal: SignedProposal) -> Result<(), ConsensusError> {
// Validate proposal signature and content
self.validate_proposal(&proposal).await?;
// Add to proposal buffer
self.proposal_buffer.add(proposal.clone()).await?;
// Cast vote
let vote = Vote {
round: proposal.round,
value_hash: proposal.value_hash(),
voter: self.node_id,
signature: self.sign_vote(&proposal).await?,
};
// Broadcast vote
self.broadcast_vote(vote).await?;
Ok(())
}
pub async fn check_consensus(&mut self) -> Result<Option<ConsensusValue>, ConsensusError> {
let votes = self.vote_collector.get_votes_for_round(self.current_round).await?;
// Check if we have enough votes (2f + 1 out of 3f + 1)
let required_votes = (self.validators.len() * 2 / 3) + 1;
for proposal in self.proposal_buffer.get_proposals(self.current_round).await? {
let votes_for_proposal = votes.iter()
.filter(|v| v.value_hash == proposal.value_hash())
.count();
if votes_for_proposal >= required_votes {
// We have consensus!
self.finalize_consensus(proposal.value).await?;
return Ok(Some(proposal.value));
}
}
Ok(None)
}
}
version: '3.8'
services:
swarm-coordinator-1:
build: .
command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-1"]
environment:
- SWARM_MODE=hierarchical
- COORDINATION_PORT=8090
- CONSENSUS_ALGORITHM=pbft
- BOOTSTRAP_PEERS=swarm-coordinator-2:8090,swarm-coordinator-3:8090
volumes:
- swarm_data_1:/app/data
- swarm_logs_1:/app/logs
networks:
- swarm-network
ports:
- "8090:8090"
- "9090:9090" # Metrics
swarm-coordinator-2:
build: .
command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-2"]
environment:
- SWARM_MODE=hierarchical
- COORDINATION_PORT=8090
- CONSENSUS_ALGORITHM=pbft
- BOOTSTRAP_PEERS=swarm-coordinator-1:8090,swarm-coordinator-3:8090
volumes:
- swarm_data_2:/app/data
- swarm_logs_2:/app/logs
networks:
- swarm-network
ports:
- "8091:8090"
- "9091:9090"
swarm-coordinator-3:
build: .
command: ["daa-swarm", "--role", "coordinator", "--node-id", "coord-3"]
environment:
- SWARM_MODE=hierarchical
- COORDINATION_PORT=8090
- CONSENSUS_ALGORITHM=pbft
- BOOTSTRAP_PEERS=swarm-coordinator-1:8090,swarm-coordinator-2:8090
volumes:
- swarm_data_3:/app/data
- swarm_logs_3:/app/logs
networks:
- swarm-network
ports:
- "8092:8090"
- "9092:9090"
agent-swarm:
build: .
command: ["daa-agent", "--swarm-mode"]
environment:
- COORDINATOR_ENDPOINTS=swarm-coordinator-1:8090,swarm-coordinator-2:8090,swarm-coordinator-3:8090
- AGENT_CAPABILITIES=computation,analysis,learning
- SWARM_SIZE=50
networks:
- swarm-network
deploy:
replicas: 50
depends_on:
- swarm-coordinator-1
- swarm-coordinator-2
- swarm-coordinator-3
redis-cluster:
image: redis:7-alpine
command: redis-server --cluster-enabled yes --cluster-config-file nodes.conf
volumes:
- redis_data:/data
networks:
- swarm-network
deploy:
replicas: 6
prometheus:
image: prom/prometheus:latest
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--storage.tsdb.path=/prometheus'
- '--web.console.libraries=/etc/prometheus/console_libraries'
- '--web.console.templates=/etc/prometheus/consoles'
volumes:
- ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
- prometheus_data:/prometheus
networks:
- swarm-network
ports:
- "9093:9090"
networks:
swarm-network:
driver: bridge
ipam:
config:
- subnet: 172.21.0.0/16
volumes:
swarm_data_1:
swarm_data_2:
swarm_data_3:
swarm_logs_1:
swarm_logs_2:
swarm_logs_3:
redis_data:
prometheus_data:
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: swarm-coordinator
namespace: daa-swarm
spec:
serviceName: swarm-coordinator
replicas: 3
selector:
matchLabels:
app: swarm-coordinator
template:
metadata:
labels:
app: swarm-coordinator
spec:
containers:
- name: coordinator
image: daa-swarm:latest
command: ["daa-swarm", "--role", "coordinator"]
resources:
requests:
memory: "4Gi"
cpu: "2000m"
limits:
memory: "8Gi"
cpu: "4000m"
env:
- name: NODE_ID
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: SWARM_MODE
value: "hierarchical"
- name: CONSENSUS_ALGORITHM
value: "pbft"
- name: CLUSTER_PEERS
value: "swarm-coordinator-0.swarm-coordinator:8090,swarm-coordinator-1.swarm-coordinator:8090,swarm-coordinator-2.swarm-coordinator:8090"
volumeMounts:
- name: swarm-data
mountPath: /app/data
- name: swarm-config
mountPath: /app/config
ports:
- containerPort: 8090
name: coordination
- containerPort: 9090
name: metrics
livenessProbe:
httpGet:
path: /health
port: 9090
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 9090
initialDelaySeconds: 10
periodSeconds: 5
volumes:
- name: swarm-config
configMap:
name: swarm-coordinator-config
volumeClaimTemplates:
- metadata:
name: swarm-data
spec:
accessModes: [ "ReadWriteOnce" ]
resources:
requests:
storage: 20Gi
apiVersion: apps/v1
kind: Deployment
metadata:
name: agent-swarm
namespace: daa-swarm
spec:
replicas: 100
selector:
matchLabels:
app: agent-swarm
template:
metadata:
labels:
app: agent-swarm
spec:
containers:
- name: agent
image: daa-agent:latest
command: ["daa-agent", "--swarm-mode"]
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
env:
- name: AGENT_ID
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: COORDINATOR_ENDPOINTS
value: "swarm-coordinator:8090"
- name: AGENT_CAPABILITIES
value: "computation,analysis,learning,coordination"
- name: SWARM_PARTICIPATION
value: "enabled"
ports:
- containerPort: 8080
name: api
- containerPort: 8081
name: p2p
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 20
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: agent-swarm-hpa
namespace: daa-swarm
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: agent-swarm
minReplicas: 50
maxReplicas: 5000
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 60
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: coordination_latency_ms
target:
type: AverageValue
averageValue: "100"
- type: Pods
pods:
metric:
name: tasks_queued
target:
type: AverageValue
averageValue: "10"
behavior:
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 50
periodSeconds: 60
- type: Pods
value: 100
periodSeconds: 60
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
name: swarm-traffic
namespace: daa-swarm
spec:
hosts:
- swarm-coordinator
http:
- match:
- headers:
task-type:
exact: coordination
route:
- destination:
host: swarm-coordinator
subset: coordinator-nodes
weight: 100
- match:
- headers:
task-type:
exact: consensus
route:
- destination:
host: swarm-coordinator
subset: consensus-nodes
weight: 100
- route:
- destination:
host: swarm-coordinator
weight: 100
---
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
name: swarm-load-balancing
namespace: daa-swarm
spec:
host: swarm-coordinator
trafficPolicy:
loadBalancer:
consistentHash:
httpHeaderName: "agent-id"
subsets:
- name: coordinator-nodes
labels:
role: coordinator
- name: consensus-nodes
labels:
role: consensus
use prometheus::{Counter, Histogram, IntGauge, IntCounterVec};
pub struct SwarmMetrics {
// Coordination metrics
pub agents_active: IntGauge,
pub tasks_queued: IntGauge,
pub tasks_completed: Counter,
pub coordination_latency: Histogram,
// Consensus metrics
pub consensus_rounds: Counter,
pub consensus_time: Histogram,
pub byzantine_failures: Counter,
// Intelligence metrics
pub learning_iterations: Counter,
pub pattern_discoveries: Counter,
pub collective_decisions: Counter,
// Performance metrics
pub message_throughput: Counter,
pub bandwidth_usage: IntGauge,
pub cpu_utilization: IntGauge,
pub memory_usage: IntGauge,
}
impl SwarmMetrics {
pub fn record_task_completion(&self, task_type: &str, duration: Duration) {
self.tasks_completed.inc();
self.coordination_latency.observe(duration.as_secs_f64());
}
pub fn record_consensus_round(&self, participants: u32, duration: Duration) {
self.consensus_rounds.inc();
self.consensus_time.observe(duration.as_secs_f64());
}
pub fn record_pattern_discovery(&self, pattern_complexity: f64) {
self.pattern_discoveries.inc();
// Additional complexity metrics could be recorded here
}
}
groups:
- name: daa-swarm.rules
rules:
- alert: SwarmCoordinationLatencyHigh
expr: histogram_quantile(0.95, daa_coordination_latency_seconds) > 1.0
for: 2m
labels:
severity: warning
annotations:
summary: "High coordination latency in DAA swarm"
description: "95th percentile coordination latency is {{ $value }}s"
- alert: ConsensusFailureRate
expr: rate(daa_byzantine_failures_total[5m]) > 0.1
for: 1m
labels:
severity: critical
annotations:
summary: "High consensus failure rate"
description: "Byzantine failure rate is {{ $value }} failures/second"
- alert: SwarmAgentsDown
expr: daa_agents_active < 10
for: 30s
labels:
severity: critical
annotations:
summary: "Too few active agents in swarm"
description: "Only {{ $value }} agents are active"
- alert: TaskQueueBacklog
expr: daa_tasks_queued > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "Large task queue backlog"
description: "{{ $value }} tasks are queued"
- Quantum-resistant communication between all swarm components
- Agent authentication and authorization using cryptographic identities
- Consensus mechanism security with Byzantine fault tolerance
- Network isolation with encrypted mesh communication
- Resource access controls with capability-based security
- Sybil attack protection through proof-of-stake and reputation systems
- Eclipse attack prevention with diverse peer connections
- Consensus manipulation resistance through randomized committee selection
- Data poisoning detection using statistical anomaly detection
- Resource exhaustion protection with rate limiting and quotas
This swarm coordination infrastructure provides enterprise-grade multi-agent orchestration with advanced collective intelligence capabilities and robust security measures.