Advanced Tutorials - ruvnet/ruv-FANN GitHub Wiki
This page contains comprehensive, in-depth tutorials for advanced RUV-FANN features and implementation techniques. These tutorials assume familiarity with the basic concepts and are designed for developers looking to build production-grade AI systems.
- Building Custom Neural Architectures
- Implementing Distributed Swarms
- Performance Optimization Techniques
- Custom SIMD Kernels
- Production Deployment Strategies
- Real-time AI Systems
Learn to create sophisticated neural architectures using Cartan matrix mathematics for optimal information flow and gradient propagation.
use micro_cartan_attn::{CartanAttention, CartanConfig};
use ndarray::{Array2, Array3};
// Define a custom Cartan-based layer
#[derive(Debug, Clone)]
pub struct AdvancedCartanLayer {
cartan_matrix: Array2<f32>,
attention: CartanAttention,
feedforward: FeedForward,
layer_norm: LayerNorm,
dropout_rate: f32,
}
impl AdvancedCartanLayer {
pub fn new(config: &CartanConfig) -> Self {
// Initialize with custom Cartan matrix for your domain
let cartan_matrix = Self::create_domain_specific_matrix(config);
Self {
cartan_matrix,
attention: CartanAttention::new(config),
feedforward: FeedForward::new(config.hidden_size, config.intermediate_size),
layer_norm: LayerNorm::new(config.hidden_size),
dropout_rate: config.dropout_rate,
}
}
fn create_domain_specific_matrix(config: &CartanConfig) -> Array2<f32> {
// Create specialized Cartan matrix based on your problem domain
let size = config.cartan_rank;
let mut matrix = Array2::zeros((size, size));
// Example: A₃ Cartan matrix for 4D rotational symmetries
for i in 0..size {
for j in 0..size {
if i == j {
matrix[[i, j]] = 2.0;
} else if (i as i32 - j as i32).abs() == 1 {
matrix[[i, j]] = -1.0;
}
}
}
matrix
}
pub fn forward(&mut self, input: &Array3<f32>) -> Array3<f32> {
// Multi-head attention with Cartan structure
let attention_output = self.attention.forward_with_matrix(input, &self.cartan_matrix);
// Residual connection and layer normalization
let normalized = self.layer_norm.forward(&(input + &attention_output));
// Feed-forward network
let ff_output = self.feedforward.forward(&normalized);
// Final residual connection
normalized + ff_output
}
}
// Build complex architectures by composing layers
pub struct CustomNeuralArchitecture {
embedding: EmbeddingLayer,
cartan_layers: Vec<AdvancedCartanLayer>,
output_projection: Linear,
architecture_type: ArchitectureType,
}
#[derive(Debug, Clone)]
pub enum ArchitectureType {
Encoder,
Decoder,
EncoderDecoder,
Custom(String),
}
impl CustomNeuralArchitecture {
pub fn build_transformer_variant(config: &ArchitectureConfig) -> Self {
let mut layers = Vec::new();
for i in 0..config.num_layers {
let layer_config = CartanConfig {
cartan_rank: config.cartan_rank,
hidden_size: config.hidden_size,
num_attention_heads: config.num_heads,
layer_index: i,
..Default::default()
};
layers.push(AdvancedCartanLayer::new(&layer_config));
}
Self {
embedding: EmbeddingLayer::new(config.vocab_size, config.hidden_size),
cartan_layers: layers,
output_projection: Linear::new(config.hidden_size, config.output_size),
architecture_type: ArchitectureType::Encoder,
}
}
pub fn forward_with_gradient_checkpointing(&mut self, input: &Array2<i32>) -> Array2<f32> {
let mut hidden = self.embedding.forward(input);
// Process through Cartan layers with gradient checkpointing
for (i, layer) in self.cartan_layers.iter_mut().enumerate() {
if i % 2 == 0 {
// Checkpoint every other layer to save memory
hidden = checkpoint(|| layer.forward(&hidden));
} else {
hidden = layer.forward(&hidden);
}
}
self.output_projection.forward(&hidden)
}
}
pub struct AdaptiveCartanTrainer {
base_matrices: HashMap<String, Array2<f32>>,
adaptation_rate: f32,
performance_history: VecDeque<f32>,
}
impl AdaptiveCartanTrainer {
pub fn adapt_matrix_during_training(
&mut self,
layer_name: &str,
gradient_info: &GradientInfo,
loss: f32,
) -> Array2<f32> {
let base_matrix = self.base_matrices.get(layer_name).unwrap();
// Analyze gradient flow patterns
let gradient_condition = gradient_info.compute_condition_number();
// Adapt matrix based on training dynamics
if gradient_condition > 100.0 {
// Poor conditioning - increase off-diagonal suppression
self.strengthen_diagonal(base_matrix)
} else if loss > self.performance_history.back().unwrap_or(&f32::INFINITY) {
// Performance degrading - explore different structure
self.introduce_structural_variation(base_matrix)
} else {
base_matrix.clone()
}
}
fn strengthen_diagonal(&self, matrix: &Array2<f32>) -> Array2<f32> {
let mut adapted = matrix.clone();
let diagonal_boost = 0.1;
for i in 0..matrix.nrows() {
adapted[[i, i]] += diagonal_boost;
}
adapted
}
fn introduce_structural_variation(&self, matrix: &Array2<f32>) -> Array2<f32> {
// Introduce controlled structural changes
let mut adapted = matrix.clone();
let variation_strength = 0.05;
// Add small random perturbations to explore nearby structures
for i in 0..matrix.nrows() {
for j in 0..matrix.ncols() {
if i != j {
let perturbation = (rand::random::<f32>() - 0.5) * variation_strength;
adapted[[i, j]] += perturbation;
}
}
}
adapted
}
}
use micro_swarm::{SwarmCoordinator, NodeId, TaskPriority};
use std::collections::HashMap;
use tokio::sync::mpsc;
pub struct HierarchicalSwarm {
coordinator: SwarmCoordinator,
regional_leaders: HashMap<String, NodeId>,
load_balancer: DynamicLoadBalancer,
fault_detector: ByzantineFaultDetector,
}
impl HierarchicalSwarm {
pub async fn new(regions: Vec<String>, nodes_per_region: usize) -> Self {
let mut coordinator = SwarmCoordinator::new();
let mut regional_leaders = HashMap::new();
// Create hierarchical structure
for region in ®ions {
let leader_id = coordinator.spawn_leader_node(region).await;
regional_leaders.insert(region.clone(), leader_id);
// Spawn worker nodes under each leader
for i in 0..nodes_per_region {
let worker_id = coordinator.spawn_worker_node(&leader_id).await;
coordinator.register_hierarchy(leader_id, worker_id).await;
}
}
Self {
coordinator,
regional_leaders,
load_balancer: DynamicLoadBalancer::new(),
fault_detector: ByzantineFaultDetector::new(),
}
}
pub async fn distribute_computation(
&mut self,
computation: ComputationGraph,
) -> Result<ComputationResult, SwarmError> {
// Analyze computation requirements
let requirements = self.analyze_computation_requirements(&computation);
// Create execution plan with fault tolerance
let execution_plan = self.create_fault_tolerant_plan(requirements).await?;
// Execute with real-time monitoring
self.execute_with_monitoring(execution_plan).await
}
async fn create_fault_tolerant_plan(
&self,
requirements: ComputationRequirements,
) -> Result<ExecutionPlan, SwarmError> {
let mut plan = ExecutionPlan::new();
// Assign tasks with replication for fault tolerance
for task in requirements.tasks {
let primary_region = self.load_balancer.select_optimal_region(&task);
let backup_regions = self.select_backup_regions(&primary_region, 2);
plan.add_replicated_task(task, primary_region, backup_regions);
}
// Add Byzantine fault detection checkpoints
plan.add_consensus_checkpoints(self.fault_detector.checkpoint_interval());
Ok(plan)
}
}
pub struct MeshSwarmNetwork {
nodes: HashMap<NodeId, MeshNode>,
gossip_protocol: GossipProtocol,
routing_table: DistributedRoutingTable,
message_queue: PriorityQueue<SwarmMessage>,
}
impl MeshSwarmNetwork {
pub async fn bootstrap_network(initial_nodes: Vec<NodeConfig>) -> Self {
let mut network = Self::new();
// Bootstrap initial connectivity
for node_config in initial_nodes {
let node = MeshNode::new(node_config).await;
network.add_node(node).await;
}
// Establish initial connections using gossip
network.gossip_protocol.bootstrap_connections().await;
network
}
pub async fn execute_distributed_learning(
&mut self,
model: &DistributedModel,
training_data: &[TrainingBatch],
) -> Result<ModelWeights, SwarmError> {
// Partition data across nodes
let data_partitions = self.partition_training_data(training_data);
// Initialize federated learning round
let mut global_weights = model.get_weights();
let num_rounds = 10;
for round in 0..num_rounds {
// Broadcast current global weights
self.broadcast_weights(&global_weights).await?;
// Each node trains locally
let local_updates = self.collect_local_updates(&data_partitions).await?;
// Aggregate updates using Byzantine-resilient averaging
global_weights = self.byzantine_resilient_averaging(local_updates)?;
// Update routing table based on node performance
self.update_routing_based_on_performance().await;
}
Ok(global_weights)
}
async fn byzantine_resilient_averaging(
&self,
updates: Vec<LocalUpdate>,
) -> Result<ModelWeights, SwarmError> {
// Use Krum algorithm for Byzantine-resilient aggregation
let krum_parameter = (updates.len() as f32 * 0.66) as usize;
let mut distances = Vec::new();
for (i, update_i) in updates.iter().enumerate() {
let mut node_distances = Vec::new();
for (j, update_j) in updates.iter().enumerate() {
if i != j {
let distance = self.compute_weight_distance(&update_i.weights, &update_j.weights);
node_distances.push((j, distance));
}
}
// Sort by distance and sum k closest
node_distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
let sum_distance: f32 = node_distances.iter()
.take(krum_parameter)
.map(|(_, dist)| dist)
.sum();
distances.push((i, sum_distance));
}
// Select update with minimum sum of distances
distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
let selected_update = &updates[distances[0].0];
Ok(selected_update.weights.clone())
}
}
pub struct PBFTConsensus {
node_id: NodeId,
view_number: u64,
sequence_number: u64,
primary_id: NodeId,
message_log: MessageLog,
state_machine: StateMachine,
timer: ConsensusTimer,
}
impl PBFTConsensus {
pub async fn propose_value(&mut self, value: ConsensusValue) -> Result<(), ConsensusError> {
if self.node_id != self.primary_id {
return Err(ConsensusError::NotPrimary);
}
// Phase 1: Pre-prepare
let pre_prepare = PrePrepareMessage {
view: self.view_number,
sequence: self.sequence_number,
value: value.clone(),
primary_signature: self.sign_message(&value),
};
self.broadcast_to_all(ConsensusMessage::PrePrepare(pre_prepare)).await?;
self.sequence_number += 1;
Ok(())
}
pub async fn handle_pre_prepare(
&mut self,
msg: PrePrepareMessage,
) -> Result<(), ConsensusError> {
// Validate message
if !self.validate_pre_prepare(&msg) {
return Err(ConsensusError::InvalidMessage);
}
// Phase 2: Prepare
let prepare = PrepareMessage {
view: msg.view,
sequence: msg.sequence,
value_hash: self.hash_value(&msg.value),
node_signature: self.sign_prepare(&msg),
};
self.broadcast_to_all(ConsensusMessage::Prepare(prepare)).await?;
self.message_log.add_prepare(msg.sequence, prepare);
// Check if we have enough prepare messages
if self.message_log.count_prepares(msg.sequence) >= self.required_prepares() {
self.send_commit(msg.sequence, msg.value).await?;
}
Ok(())
}
async fn send_commit(&mut self, sequence: u64, value: ConsensusValue) -> Result<(), ConsensusError> {
let commit = CommitMessage {
view: self.view_number,
sequence,
value_hash: self.hash_value(&value),
node_signature: self.sign_commit(&value),
};
self.broadcast_to_all(ConsensusMessage::Commit(commit)).await?;
self.message_log.add_commit(sequence, commit);
// Check if we can execute
if self.message_log.count_commits(sequence) >= self.required_commits() {
self.execute_value(value).await?;
}
Ok(())
}
fn required_prepares(&self) -> usize {
// Need 2f+1 prepare messages where f is max Byzantine nodes
(self.total_nodes() * 2 + 2) / 3
}
fn required_commits(&self) -> usize {
// Need 2f+1 commit messages
(self.total_nodes() * 2 + 2) / 3
}
}
use std::collections::HashMap;
use micro_core::memory::MemoryPool;
pub struct SmartCheckpointer {
checkpoint_strategy: CheckpointStrategy,
memory_budget: usize,
computation_cost_model: ComputationCostModel,
recomputation_cache: HashMap<LayerId, CachedComputation>,
}
#[derive(Debug, Clone)]
pub enum CheckpointStrategy {
Every(usize), // Checkpoint every N layers
Adaptive(f32), // Adaptive based on memory pressure
CostOptimal, // Minimize time-memory tradeoff
Custom(Box<dyn Fn(usize, usize) -> bool>), // Custom strategy
}
impl SmartCheckpointer {
pub fn new(memory_budget_mb: usize) -> Self {
Self {
checkpoint_strategy: CheckpointStrategy::CostOptimal,
memory_budget: memory_budget_mb * 1024 * 1024, // Convert to bytes
computation_cost_model: ComputationCostModel::new(),
recomputation_cache: HashMap::new(),
}
}
pub fn should_checkpoint(
&self,
layer_id: LayerId,
current_memory_usage: usize,
forward_cost: f32,
) -> bool {
match &self.checkpoint_strategy {
CheckpointStrategy::Every(n) => layer_id.index() % n == 0,
CheckpointStrategy::Adaptive(threshold) => {
let memory_pressure = current_memory_usage as f32 / self.memory_budget as f32;
memory_pressure > *threshold
},
CheckpointStrategy::CostOptimal => {
self.compute_optimal_checkpoint_decision(layer_id, current_memory_usage, forward_cost)
},
CheckpointStrategy::Custom(func) => {
func(layer_id.index(), current_memory_usage)
},
}
}
fn compute_optimal_checkpoint_decision(
&self,
layer_id: LayerId,
current_memory: usize,
forward_cost: f32,
) -> bool {
// Chen et al. optimal checkpointing strategy
// Minimize: memory_cost + recomputation_cost
let remaining_layers = self.estimate_remaining_layers(layer_id);
let memory_if_checkpoint = self.estimate_memory_after_checkpoint(current_memory);
let memory_if_no_checkpoint = current_memory + self.estimate_activation_size(layer_id);
let recomputation_cost = forward_cost * self.estimate_recomputation_probability(layer_id);
let memory_savings = memory_if_no_checkpoint - memory_if_checkpoint;
// Checkpoint if memory savings justify recomputation cost
let memory_value = memory_savings as f32 / self.memory_budget as f32;
memory_value > recomputation_cost * 0.1 // Tunable parameter
}
pub fn forward_with_checkpointing<F, T>(
&mut self,
layers: &[F],
input: T,
memory_pool: &mut MemoryPool,
) -> T
where
F: Fn(T) -> T + Clone,
T: Clone,
{
let mut activations = Vec::new();
let mut current = input;
// Forward pass with selective checkpointing
for (i, layer) in layers.iter().enumerate() {
let layer_id = LayerId::new(i);
let memory_usage = memory_pool.current_usage();
let forward_cost = self.computation_cost_model.estimate_cost(layer_id);
if self.should_checkpoint(layer_id, memory_usage, forward_cost) {
// Store activation for this layer
activations.push((i, current.clone()));
current = layer(current);
} else {
// Don't store, will recompute if needed
current = layer(current);
}
}
current
}
pub fn backward_with_recomputation<F, T>(
&mut self,
layers: &[F],
stored_activations: &[(usize, T)],
gradient: T,
) -> Vec<T>
where
F: Fn(T) -> T + Clone,
T: Clone,
{
let mut gradients = Vec::new();
let mut current_grad = gradient;
// Backward pass with smart recomputation
for i in (0..layers.len()).rev() {
let layer_id = LayerId::new(i);
// Check if we have stored activation
if let Some((_, activation)) = stored_activations.iter().find(|(idx, _)| *idx == i) {
// Use stored activation
let layer_grad = self.compute_layer_gradient(&layers[i], activation, ¤t_grad);
gradients.push(layer_grad.clone());
current_grad = layer_grad;
} else {
// Recompute activation
let activation = self.recompute_activation(layers, i);
let layer_grad = self.compute_layer_gradient(&layers[i], &activation, ¤t_grad);
gradients.push(layer_grad.clone());
current_grad = layer_grad;
}
}
gradients.reverse();
gradients
}
}
pub struct MixedPrecisionTrainer {
loss_scaler: DynamicLossScaler,
fp16_layers: HashSet<LayerId>,
gradient_clipper: GradientClipper,
overflow_detector: OverflowDetector,
}
impl MixedPrecisionTrainer {
pub fn new() -> Self {
Self {
loss_scaler: DynamicLossScaler::new(2.0_f32.powi(15)), // Initial scale
fp16_layers: HashSet::new(),
gradient_clipper: GradientClipper::new(1.0),
overflow_detector: OverflowDetector::new(),
}
}
pub fn train_step(
&mut self,
model: &mut Model,
batch: &TrainingBatch,
) -> Result<TrainingMetrics, TrainingError> {
// Forward pass in mixed precision
let loss = self.forward_mixed_precision(model, batch)?;
// Scale loss to prevent underflow
let scaled_loss = self.loss_scaler.scale_loss(loss);
// Backward pass
let scaled_gradients = self.backward_pass(model, scaled_loss)?;
// Unscale gradients and check for overflow
let gradients = self.loss_scaler.unscale_gradients(scaled_gradients)?;
if self.overflow_detector.has_overflow(&gradients) {
// Skip update and reduce loss scale
self.loss_scaler.reduce_scale();
return Ok(TrainingMetrics::overflow_step());
}
// Clip gradients
let clipped_gradients = self.gradient_clipper.clip(gradients);
// Apply gradients
model.apply_gradients(clipped_gradients)?;
// Increase loss scale if stable
self.loss_scaler.maybe_increase_scale();
Ok(TrainingMetrics::successful_step(loss))
}
fn forward_mixed_precision(
&self,
model: &Model,
batch: &TrainingBatch,
) -> Result<f32, TrainingError> {
let mut current = batch.inputs.clone();
for (i, layer) in model.layers.iter().enumerate() {
let layer_id = LayerId::new(i);
if self.fp16_layers.contains(&layer_id) {
// Convert to FP16 for computation
current = current.to_half_precision();
current = layer.forward(current);
// Convert back to FP32 for numerical stability
current = current.to_single_precision();
} else {
// Keep in FP32
current = layer.forward(current);
}
}
let loss = model.compute_loss(¤t, &batch.targets);
Ok(loss)
}
pub fn auto_select_fp16_layers(&mut self, model: &Model) {
// Automatically select which layers to use FP16 based on sensitivity analysis
for (i, layer) in model.layers.iter().enumerate() {
let layer_id = LayerId::new(i);
// Check if layer is suitable for FP16
if self.is_fp16_suitable(layer) {
self.fp16_layers.insert(layer_id);
}
}
}
fn is_fp16_suitable(&self, layer: &Layer) -> bool {
match layer.layer_type() {
LayerType::Linear | LayerType::Convolution => true,
LayerType::LayerNorm | LayerType::BatchNorm => false, // Keep in FP32 for stability
LayerType::Attention => true, // Can use FP16 for most attention operations
LayerType::Embedding => false, // Keep embeddings in FP32
_ => false,
}
}
}
pub struct DynamicLossScaler {
scale: f32,
growth_factor: f32,
backoff_factor: f32,
growth_interval: usize,
steps_since_overflow: usize,
}
impl DynamicLossScaler {
pub fn new(initial_scale: f32) -> Self {
Self {
scale: initial_scale,
growth_factor: 2.0,
backoff_factor: 0.5,
growth_interval: 2000,
steps_since_overflow: 0,
}
}
pub fn scale_loss(&self, loss: f32) -> f32 {
loss * self.scale
}
pub fn unscale_gradients(&self, gradients: Vec<Tensor>) -> Result<Vec<Tensor>, TrainingError> {
let mut unscaled = Vec::new();
for grad in gradients {
let unscaled_grad = grad / self.scale;
unscaled.push(unscaled_grad);
}
Ok(unscaled)
}
pub fn reduce_scale(&mut self) {
self.scale *= self.backoff_factor;
self.steps_since_overflow = 0;
// Ensure scale doesn't become too small
if self.scale < 1.0 {
self.scale = 1.0;
}
}
pub fn maybe_increase_scale(&mut self) {
self.steps_since_overflow += 1;
if self.steps_since_overflow >= self.growth_interval {
self.scale *= self.growth_factor;
self.steps_since_overflow = 0;
// Cap maximum scale
if self.scale > 2.0_f32.powi(24) {
self.scale = 2.0_f32.powi(24);
}
}
}
}
use std::sync::Arc;
use tokio::sync::RwLock;
pub struct CompressedDataParallel {
world_size: usize,
rank: usize,
compression_method: CompressionMethod,
communication_backend: CommunicationBackend,
gradient_buffer: Arc<RwLock<GradientBuffer>>,
error_feedback: ErrorFeedback,
}
#[derive(Debug, Clone)]
pub enum CompressionMethod {
TopK(usize), // Keep top K gradients
RandomK(usize), // Random sparsification
Quantization { bits: u8 }, // Quantize to N bits
SignSGD, // Sign-based compression
PowerSGD { rank: usize }, // Low-rank approximation
Hybrid(Vec<CompressionMethod>), // Adaptive combination
}
impl CompressedDataParallel {
pub async fn new(
world_size: usize,
rank: usize,
compression_method: CompressionMethod,
) -> Self {
Self {
world_size,
rank,
compression_method,
communication_backend: CommunicationBackend::new(world_size, rank).await,
gradient_buffer: Arc::new(RwLock::new(GradientBuffer::new())),
error_feedback: ErrorFeedback::new(),
}
}
pub async fn all_reduce_compressed(
&mut self,
gradients: Vec<Tensor>,
) -> Result<Vec<Tensor>, DistributedError> {
// Compress gradients
let compressed = self.compress_gradients(gradients).await?;
// All-reduce compressed gradients
let reduced_compressed = self.communication_backend
.all_reduce_compressed(compressed).await?;
// Decompress and apply error feedback
let decompressed = self.decompress_gradients(reduced_compressed).await?;
let corrected = self.error_feedback.apply_correction(decompressed);
Ok(corrected)
}
async fn compress_gradients(
&self,
gradients: Vec<Tensor>,
) -> Result<CompressedGradients, CompressionError> {
match &self.compression_method {
CompressionMethod::TopK(k) => {
self.compress_topk(gradients, *k).await
},
CompressionMethod::RandomK(k) => {
self.compress_randomk(gradients, *k).await
},
CompressionMethod::Quantization { bits } => {
self.compress_quantize(gradients, *bits).await
},
CompressionMethod::SignSGD => {
self.compress_sign(gradients).await
},
CompressionMethod::PowerSGD { rank } => {
self.compress_powersgd(gradients, *rank).await
},
CompressionMethod::Hybrid(methods) => {
self.compress_adaptive(gradients, methods).await
},
}
}
async fn compress_topk(
&self,
gradients: Vec<Tensor>,
k: usize,
) -> Result<CompressedGradients, CompressionError> {
let mut compressed = CompressedGradients::new();
for (i, grad) in gradients.into_iter().enumerate() {
// Flatten gradient
let flat_grad = grad.flatten();
let grad_size = flat_grad.len();
// Find top-K elements by magnitude
let mut indexed_values: Vec<(usize, f32)> = flat_grad
.into_iter()
.enumerate()
.map(|(idx, val)| (idx, val))
.collect();
// Sort by absolute value, descending
indexed_values.sort_by(|a, b| b.1.abs().partial_cmp(&a.1.abs()).unwrap());
// Keep only top-K
indexed_values.truncate(k);
// Store as sparse representation
let indices: Vec<u32> = indexed_values.iter().map(|(idx, _)| *idx as u32).collect();
let values: Vec<f32> = indexed_values.iter().map(|(_, val)| *val).collect();
compressed.add_sparse_tensor(i, SparseGradient {
indices,
values,
shape: grad.shape().to_vec(),
compression_ratio: k as f32 / grad_size as f32,
});
}
Ok(compressed)
}
async fn compress_powersgd(
&self,
gradients: Vec<Tensor>,
rank: usize,
) -> Result<CompressedGradients, CompressionError> {
let mut compressed = CompressedGradients::new();
for (i, grad) in gradients.into_iter().enumerate() {
// Reshape gradient to matrix
let matrix = grad.as_matrix();
let (m, n) = matrix.dim();
if rank >= std::cmp::min(m, n) {
// Rank too large, use original gradient
compressed.add_dense_tensor(i, grad);
continue;
}
// Compute SVD approximation
let (u, s, vt) = matrix.svd()?;
// Keep only top 'rank' components
let u_compressed = u.slice(s![.., ..rank]);
let s_compressed = s.slice(s![..rank]);
let vt_compressed = vt.slice(s![..rank, ..]);
// Store low-rank factors
compressed.add_lowrank_tensor(i, LowRankGradient {
u: u_compressed.to_owned(),
s: s_compressed.to_owned(),
vt: vt_compressed.to_owned(),
original_shape: grad.shape().to_vec(),
compression_ratio: (2 * rank * (m + n)) as f32 / (m * n) as f32,
});
}
Ok(compressed)
}
async fn compress_adaptive(
&self,
gradients: Vec<Tensor>,
methods: &[CompressionMethod],
) -> Result<CompressedGradients, CompressionError> {
// Choose compression method adaptively based on gradient properties
let mut compressed = CompressedGradients::new();
for (i, grad) in gradients.into_iter().enumerate() {
let grad_stats = self.compute_gradient_statistics(&grad);
let best_method = self.select_best_compression_method(&grad_stats, methods);
// Apply selected compression method
let single_grad_compressed = match best_method {
CompressionMethod::TopK(k) => {
self.compress_topk(vec![grad], k).await?.get_tensor(0).unwrap()
},
CompressionMethod::Quantization { bits } => {
self.compress_quantize(vec![grad], bits).await?.get_tensor(0).unwrap()
},
// ... other methods
_ => return Err(CompressionError::UnsupportedMethod),
};
compressed.add_tensor(i, single_grad_compressed);
}
Ok(compressed)
}
fn compute_gradient_statistics(&self, grad: &Tensor) -> GradientStatistics {
let flat = grad.flatten();
let mean = flat.iter().sum::<f32>() / flat.len() as f32;
let variance = flat.iter()
.map(|x| (x - mean).powi(2))
.sum::<f32>() / flat.len() as f32;
let sparsity = flat.iter().filter(|&&x| x.abs() < 1e-6).count() as f32 / flat.len() as f32;
GradientStatistics {
mean,
variance,
sparsity,
l2_norm: flat.iter().map(|x| x.powi(2)).sum::<f32>().sqrt(),
size: flat.len(),
}
}
fn select_best_compression_method(
&self,
stats: &GradientStatistics,
available_methods: &[CompressionMethod],
) -> CompressionMethod {
// Simple heuristic-based selection
if stats.sparsity > 0.9 {
// Very sparse - use TopK
CompressionMethod::TopK((stats.size as f32 * 0.01) as usize)
} else if stats.variance < 0.1 {
// Low variance - quantization works well
CompressionMethod::Quantization { bits: 8 }
} else {
// Default to PowerSGD for dense gradients
CompressionMethod::PowerSGD { rank: 4 }
}
}
}
use std::arch::x86_64::*;
pub struct SIMDCartanKernel {
simd_width: usize,
use_avx512: bool,
use_fma: bool,
}
impl SIMDCartanKernel {
pub fn new() -> Self {
Self {
simd_width: Self::detect_simd_width(),
use_avx512: Self::has_avx512(),
use_fma: Self::has_fma(),
}
}
fn detect_simd_width() -> usize {
if Self::has_avx512() {
16 // 512 bits / 32 bits per f32
} else if Self::has_avx2() {
8 // 256 bits / 32 bits per f32
} else {
4 // 128 bits / 32 bits per f32 (SSE)
}
}
pub unsafe fn cartan_matrix_vector_multiply(
&self,
cartan_matrix: &[f32],
vector: &[f32],
result: &mut [f32],
n: usize,
) {
if self.use_avx512 {
self.cartan_matvec_avx512(cartan_matrix, vector, result, n);
} else if Self::has_avx2() {
self.cartan_matvec_avx2(cartan_matrix, vector, result, n);
} else {
self.cartan_matvec_sse(cartan_matrix, vector, result, n);
}
}
#[target_feature(enable = "avx512f")]
unsafe fn cartan_matvec_avx512(
&self,
matrix: &[f32],
vector: &[f32],
result: &mut [f32],
n: usize,
) {
let simd_width = 16;
let remainder = n % simd_width;
let vectorized_size = n - remainder;
for i in 0..n {
let mut sum = _mm512_setzero_ps();
// Process 16 elements at a time
for j in (0..vectorized_size).step_by(simd_width) {
let matrix_row = &matrix[i * n + j..];
let vec_chunk = &vector[j..];
let m_vec = _mm512_loadu_ps(matrix_row.as_ptr());
let v_vec = _mm512_loadu_ps(vec_chunk.as_ptr());
if self.use_fma {
sum = _mm512_fmadd_ps(m_vec, v_vec, sum);
} else {
let prod = _mm512_mul_ps(m_vec, v_vec);
sum = _mm512_add_ps(sum, prod);
}
}
// Horizontal sum of the vector
let mut sum_scalar = self.horizontal_sum_avx512(sum);
// Handle remainder elements
for j in vectorized_size..n {
sum_scalar += matrix[i * n + j] * vector[j];
}
result[i] = sum_scalar;
}
}
#[target_feature(enable = "avx2")]
unsafe fn cartan_matvec_avx2(
&self,
matrix: &[f32],
vector: &[f32],
result: &mut [f32],
n: usize,
) {
let simd_width = 8;
let remainder = n % simd_width;
let vectorized_size = n - remainder;
for i in 0..n {
let mut sum = _mm256_setzero_ps();
// Process 8 elements at a time
for j in (0..vectorized_size).step_by(simd_width) {
let matrix_row = &matrix[i * n + j..];
let vec_chunk = &vector[j..];
let m_vec = _mm256_loadu_ps(matrix_row.as_ptr());
let v_vec = _mm256_loadu_ps(vec_chunk.as_ptr());
if self.use_fma {
sum = _mm256_fmadd_ps(m_vec, v_vec, sum);
} else {
let prod = _mm256_mul_ps(m_vec, v_vec);
sum = _mm256_add_ps(sum, prod);
}
}
// Horizontal sum
let mut sum_scalar = self.horizontal_sum_avx2(sum);
// Handle remainder
for j in vectorized_size..n {
sum_scalar += matrix[i * n + j] * vector[j];
}
result[i] = sum_scalar;
}
}
unsafe fn horizontal_sum_avx512(&self, vec: __m512) -> f32 {
let sum256_low = _mm512_castps512_ps256(vec);
let sum256_high = _mm512_extractf32x8_ps(vec, 1);
let sum256 = _mm256_add_ps(sum256_low, sum256_high);
self.horizontal_sum_avx2(sum256)
}
unsafe fn horizontal_sum_avx2(&self, vec: __m256) -> f32 {
let sum128_low = _mm256_castps256_ps128(vec);
let sum128_high = _mm256_extractf128_ps(vec, 1);
let sum128 = _mm_add_ps(sum128_low, sum128_high);
let sum64 = _mm_hadd_ps(sum128, sum128);
let sum32 = _mm_hadd_ps(sum64, sum64);
_mm_cvtss_f32(sum32)
}
fn has_avx512() -> bool {
is_x86_feature_detected!("avx512f")
}
fn has_avx2() -> bool {
is_x86_feature_detected!("avx2")
}
fn has_fma() -> bool {
is_x86_feature_detected!("fma")
}
}
pub struct SIMDAttentionKernel {
kernel: SIMDCartanKernel,
softmax_kernel: SIMDSoftmaxKernel,
cache: AttentionCache,
}
impl SIMDAttentionKernel {
pub unsafe fn multi_head_attention_forward(
&mut self,
query: &[f32], // [batch_size, seq_len, d_model]
key: &[f32], // [batch_size, seq_len, d_model]
value: &[f32], // [batch_size, seq_len, d_model]
output: &mut [f32], // [batch_size, seq_len, d_model]
params: &AttentionParams,
) {
let batch_size = params.batch_size;
let seq_len = params.seq_len;
let d_model = params.d_model;
let num_heads = params.num_heads;
let d_k = d_model / num_heads;
// Allocate temporary buffers
let mut q_proj = vec![0.0f32; batch_size * seq_len * d_model];
let mut k_proj = vec![0.0f32; batch_size * seq_len * d_model];
let mut v_proj = vec![0.0f32; batch_size * seq_len * d_model];
let mut attention_scores = vec![0.0f32; batch_size * num_heads * seq_len * seq_len];
let mut attention_probs = vec![0.0f32; batch_size * num_heads * seq_len * seq_len];
let mut context = vec![0.0f32; batch_size * seq_len * d_model];
// Project Q, K, V
self.kernel.cartan_matrix_vector_multiply(
¶ms.w_q,
query,
&mut q_proj,
d_model,
);
self.kernel.cartan_matrix_vector_multiply(
¶ms.w_k,
key,
&mut k_proj,
d_model,
);
self.kernel.cartan_matrix_vector_multiply(
¶ms.w_v,
value,
&mut v_proj,
d_model,
);
// Compute attention for each head
for batch in 0..batch_size {
for head in 0..num_heads {
let q_head_offset = batch * seq_len * d_model + head * d_k;
let k_head_offset = batch * seq_len * d_model + head * d_k;
let v_head_offset = batch * seq_len * d_model + head * d_k;
let score_offset = batch * num_heads * seq_len * seq_len +
head * seq_len * seq_len;
// Q * K^T
self.compute_attention_scores(
&q_proj[q_head_offset..],
&k_proj[k_head_offset..],
&mut attention_scores[score_offset..],
seq_len,
d_k,
);
// Apply scaling
let scale = 1.0 / (d_k as f32).sqrt();
self.scale_attention_scores(
&mut attention_scores[score_offset..],
seq_len * seq_len,
scale,
);
// Softmax
self.softmax_kernel.softmax_2d(
&attention_scores[score_offset..],
&mut attention_probs[score_offset..],
seq_len,
seq_len,
);
// Attention * V
self.apply_attention_to_values(
&attention_probs[score_offset..],
&v_proj[v_head_offset..],
&mut context[batch * seq_len * d_model + head * d_k..],
seq_len,
d_k,
);
}
}
// Final projection
self.kernel.cartan_matrix_vector_multiply(
¶ms.w_o,
&context,
output,
d_model,
);
}
#[target_feature(enable = "avx2")]
unsafe fn compute_attention_scores(
&self,
query: &[f32], // [seq_len, d_k]
key: &[f32], // [seq_len, d_k]
scores: &mut [f32], // [seq_len, seq_len]
seq_len: usize,
d_k: usize,
) {
for i in 0..seq_len {
for j in 0..seq_len {
let mut score = _mm256_setzero_ps();
let simd_width = 8;
let remainder = d_k % simd_width;
let vectorized_size = d_k - remainder;
// Vectorized dot product
for k in (0..vectorized_size).step_by(simd_width) {
let q_vec = _mm256_loadu_ps(&query[i * d_k + k]);
let k_vec = _mm256_loadu_ps(&key[j * d_k + k]);
score = _mm256_fmadd_ps(q_vec, k_vec, score);
}
// Horizontal sum
let mut score_scalar = self.kernel.horizontal_sum_avx2(score);
// Handle remainder
for k in vectorized_size..d_k {
score_scalar += query[i * d_k + k] * key[j * d_k + k];
}
scores[i * seq_len + j] = score_scalar;
}
}
}
#[target_feature(enable = "avx2")]
unsafe fn scale_attention_scores(
&self,
scores: &mut [f32],
len: usize,
scale: f32,
) {
let scale_vec = _mm256_set1_ps(scale);
let simd_width = 8;
let remainder = len % simd_width;
let vectorized_size = len - remainder;
// Vectorized scaling
for i in (0..vectorized_size).step_by(simd_width) {
let score_vec = _mm256_loadu_ps(&scores[i]);
let scaled = _mm256_mul_ps(score_vec, scale_vec);
_mm256_storeu_ps(&mut scores[i], scaled);
}
// Handle remainder
for i in vectorized_size..len {
scores[i] *= scale;
}
}
}
use wasm_bindgen::prelude::*;
#[cfg(target_arch = "wasm32")]
use std::arch::wasm32::*;
#[wasm_bindgen]
pub struct WasmCartanKernel {
use_simd: bool,
}
#[wasm_bindgen]
impl WasmCartanKernel {
#[wasm_bindgen(constructor)]
pub fn new() -> Self {
Self {
use_simd: Self::has_simd_support(),
}
}
fn has_simd_support() -> bool {
#[cfg(target_arch = "wasm32")]
{
// Check if SIMD is available in WASM
std::arch::is_wasm_feature_detected!("simd128")
}
#[cfg(not(target_arch = "wasm32"))]
{
false
}
}
#[wasm_bindgen]
pub fn cartan_attention_forward(
&self,
query: &[f32],
key: &[f32],
value: &[f32],
cartan_matrix: &[f32],
output: &mut [f32],
seq_len: usize,
d_model: usize,
) -> Result<(), JsValue> {
#[cfg(target_arch = "wasm32")]
{
if self.use_simd {
unsafe {
self.cartan_attention_simd(
query, key, value, cartan_matrix, output, seq_len, d_model
)?;
}
} else {
self.cartan_attention_scalar(
query, key, value, cartan_matrix, output, seq_len, d_model
)?;
}
}
#[cfg(not(target_arch = "wasm32"))]
{
return Err(JsValue::from_str("WASM-only function"));
}
Ok(())
}
#[cfg(target_arch = "wasm32")]
unsafe fn cartan_attention_simd(
&self,
query: &[f32],
key: &[f32],
value: &[f32],
cartan_matrix: &[f32],
output: &mut [f32],
seq_len: usize,
d_model: usize,
) -> Result<(), JsValue> {
let simd_width = 4; // WASM SIMD is 128-bit
// Apply Cartan structure to attention computation
for i in 0..seq_len {
for j in 0..seq_len {
let mut attention_weight = v128_const(0.0, 0.0, 0.0, 0.0);
// Vectorized attention computation with Cartan matrix
for k in (0..d_model).step_by(simd_width) {
let q_vec = v128_load(&query[i * d_model + k] as *const f32);
let k_vec = v128_load(&key[j * d_model + k] as *const f32);
let cartan_vec = v128_load(&cartan_matrix[k] as *const f32);
// Apply Cartan transformation: C * (Q · K)
let qk_product = f32x4_mul(q_vec, k_vec);
let cartan_weighted = f32x4_mul(qk_product, cartan_vec);
attention_weight = f32x4_add(attention_weight, cartan_weighted);
}
// Horizontal sum for final attention weight
let weight_scalar = self.horizontal_sum_wasm_simd(attention_weight);
// Apply attention weight to values
for k in (0..d_model).step_by(simd_width) {
let v_vec = v128_load(&value[j * d_model + k] as *const f32);
let weight_vec = f32x4_splat(weight_scalar);
let weighted_value = f32x4_mul(v_vec, weight_vec);
// Accumulate in output
let current_output = v128_load(&output[i * d_model + k] as *const f32);
let new_output = f32x4_add(current_output, weighted_value);
v128_store(&mut output[i * d_model + k] as *mut f32, new_output);
}
}
}
Ok(())
}
#[cfg(target_arch = "wasm32")]
fn horizontal_sum_wasm_simd(&self, vec: v128) -> f32 {
// Extract individual lanes and sum them
let lane0 = f32x4_extract_lane::<0>(vec);
let lane1 = f32x4_extract_lane::<1>(vec);
let lane2 = f32x4_extract_lane::<2>(vec);
let lane3 = f32x4_extract_lane::<3>(vec);
lane0 + lane1 + lane2 + lane3
}
fn cartan_attention_scalar(
&self,
query: &[f32],
key: &[f32],
value: &[f32],
cartan_matrix: &[f32],
output: &mut [f32],
seq_len: usize,
d_model: usize,
) -> Result<(), JsValue> {
// Fallback scalar implementation
for i in 0..seq_len {
for j in 0..seq_len {
let mut attention_weight = 0.0;
for k in 0..d_model {
let qk_product = query[i * d_model + k] * key[j * d_model + k];
attention_weight += cartan_matrix[k] * qk_product;
}
for k in 0..d_model {
output[i * d_model + k] += attention_weight * value[j * d_model + k];
}
}
}
Ok(())
}
}
// JavaScript interface for web deployment
#[wasm_bindgen]
extern "C" {
#[wasm_bindgen(js_namespace = console)]
fn log(s: &str);
#[wasm_bindgen(js_namespace = performance)]
fn now() -> f64;
}
#[wasm_bindgen]
pub struct WasmPerformanceProfiler {
start_time: f64,
checkpoints: Vec<(String, f64)>,
}
#[wasm_bindgen]
impl WasmPerformanceProfiler {
#[wasm_bindgen(constructor)]
pub fn new() -> Self {
Self {
start_time: now(),
checkpoints: Vec::new(),
}
}
#[wasm_bindgen]
pub fn checkpoint(&mut self, name: &str) {
let current_time = now();
self.checkpoints.push((name.to_string(), current_time - self.start_time));
}
#[wasm_bindgen]
pub fn get_report(&self) -> String {
let mut report = String::from("Performance Report:\n");
for (name, time) in &self.checkpoints {
report.push_str(&format!("{}: {:.2}ms\n", name, time));
}
report
}
}
# production-deployment.yaml
apiVersion: v1
kind: Namespace
metadata:
name: ruv-fann-prod
labels:
name: ruv-fann-prod
environment: production
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: cartan-inference-service
namespace: ruv-fann-prod
labels:
app: cartan-inference
tier: inference
spec:
replicas: 5
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 2
maxUnavailable: 1
selector:
matchLabels:
app: cartan-inference
template:
metadata:
labels:
app: cartan-inference
version: v2.0.0
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/path: "/metrics"
spec:
serviceAccountName: ruv-fann-service-account
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 2000
containers:
- name: cartan-inference
image: ruv-fann/cartan-inference:v2.0.0
ports:
- containerPort: 8080
name: http
protocol: TCP
- containerPort: 9090
name: grpc
protocol: TCP
env:
- name: RUST_LOG
value: "info"
- name: MODEL_PATH
value: "/models/cartan-large"
- name: BATCH_SIZE
value: "32"
- name: NUM_WORKERS
value: "4"
- name: ENABLE_SIMD
value: "true"
- name: CARTAN_RANK
value: "8"
resources:
requests:
memory: "2Gi"
cpu: "1000m"
nvidia.com/gpu: "1"
limits:
memory: "4Gi"
cpu: "2000m"
nvidia.com/gpu: "1"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
timeoutSeconds: 5
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 3
volumeMounts:
- name: model-storage
mountPath: /models
readOnly: true
- name: config
mountPath: /config
readOnly: true
- name: tmp
mountPath: /tmp
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-storage-pvc
- name: config
configMap:
name: cartan-config
- name: tmp
emptyDir:
sizeLimit: 1Gi
nodeSelector:
node-type: gpu-optimized
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values: ["cartan-inference"]
topologyKey: "kubernetes.io/hostname"
---
apiVersion: v1
kind: Service
metadata:
name: cartan-inference-service
namespace: ruv-fann-prod
labels:
app: cartan-inference
spec:
type: ClusterIP
ports:
- port: 80
targetPort: 8080
protocol: TCP
name: http
- port: 9090
targetPort: 9090
protocol: TCP
name: grpc
selector:
app: cartan-inference
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: cartan-inference-ingress
namespace: ruv-fann-prod
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/rewrite-target: /
nginx.ingress.kubernetes.io/ssl-redirect: "true"
nginx.ingress.kubernetes.io/rate-limit: "100"
nginx.ingress.kubernetes.io/rate-limit-window: "1m"
cert-manager.io/cluster-issuer: letsencrypt-prod
spec:
tls:
- hosts:
- api.ruv-fann.com
secretName: ruv-fann-tls
rules:
- host: api.ruv-fann.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: cartan-inference-service
port:
number: 80
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: cartan-inference-hpa
namespace: ruv-fann-prod
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: cartan-inference-service
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: inference_requests_per_second
target:
type: AverageValue
averageValue: "50"
behavior:
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 100
periodSeconds: 15
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
use prometheus::{Counter, Histogram, Gauge, Registry};
use tracing::{info, warn, error, debug};
use opentelemetry::trace::{TraceProvider, Tracer};
use serde_json::json;
pub struct ProductionMetrics {
requests_total: Counter,
request_duration: Histogram,
active_connections: Gauge,
model_memory_usage: Gauge,
gpu_utilization: Gauge,
inference_latency: Histogram,
error_rate: Counter,
throughput: Gauge,
}
impl ProductionMetrics {
pub fn new(registry: &Registry) -> Self {
let requests_total = Counter::new(
"cartan_requests_total",
"Total number of inference requests"
).unwrap();
let request_duration = Histogram::with_opts(
prometheus::HistogramOpts::new(
"cartan_request_duration_seconds",
"Request duration in seconds"
).buckets(vec![0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0])
).unwrap();
let active_connections = Gauge::new(
"cartan_active_connections",
"Number of active connections"
).unwrap();
let model_memory_usage = Gauge::new(
"cartan_model_memory_bytes",
"Model memory usage in bytes"
).unwrap();
let gpu_utilization = Gauge::new(
"cartan_gpu_utilization_percent",
"GPU utilization percentage"
).unwrap();
let inference_latency = Histogram::with_opts(
prometheus::HistogramOpts::new(
"cartan_inference_latency_seconds",
"Inference latency in seconds"
).buckets(vec![0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1])
).unwrap();
let error_rate = Counter::new(
"cartan_errors_total",
"Total number of errors"
).unwrap();
let throughput = Gauge::new(
"cartan_throughput_rps",
"Requests per second throughput"
).unwrap();
// Register all metrics
registry.register(Box::new(requests_total.clone())).unwrap();
registry.register(Box::new(request_duration.clone())).unwrap();
registry.register(Box::new(active_connections.clone())).unwrap();
registry.register(Box::new(model_memory_usage.clone())).unwrap();
registry.register(Box::new(gpu_utilization.clone())).unwrap();
registry.register(Box::new(inference_latency.clone())).unwrap();
registry.register(Box::new(error_rate.clone())).unwrap();
registry.register(Box::new(throughput.clone())).unwrap();
Self {
requests_total,
request_duration,
active_connections,
model_memory_usage,
gpu_utilization,
inference_latency,
error_rate,
throughput,
}
}
pub fn record_request(&self, duration: f64, success: bool) {
self.requests_total.inc();
self.request_duration.observe(duration);
if !success {
self.error_rate.inc();
}
}
pub fn update_system_metrics(&self, system_info: &SystemInfo) {
self.model_memory_usage.set(system_info.model_memory_bytes as f64);
self.gpu_utilization.set(system_info.gpu_utilization_percent);
self.active_connections.set(system_info.active_connections as f64);
self.throughput.set(system_info.requests_per_second);
}
}
pub struct ProductionInferenceService {
models: HashMap<String, Arc<CartanModel>>,
metrics: ProductionMetrics,
tracer: Box<dyn Tracer + Send + Sync>,
circuit_breaker: CircuitBreaker,
rate_limiter: RateLimiter,
health_checker: HealthChecker,
}
impl ProductionInferenceService {
pub async fn serve_inference(
&self,
request: InferenceRequest,
) -> Result<InferenceResponse, ServiceError> {
let start_time = std::time::Instant::now();
let span = self.tracer.start("inference_request");
// Rate limiting
if !self.rate_limiter.try_acquire().await {
self.metrics.error_rate.inc();
return Err(ServiceError::RateLimited);
}
// Circuit breaker check
if !self.circuit_breaker.is_available() {
self.metrics.error_rate.inc();
warn!("Circuit breaker open, rejecting request");
return Err(ServiceError::CircuitBreakerOpen);
}
// Input validation
if let Err(e) = self.validate_request(&request) {
self.metrics.error_rate.inc();
error!("Invalid request: {:?}", e);
return Err(ServiceError::InvalidRequest(e));
}
let result = async {
// Get model
let model = self.models.get(&request.model_name)
.ok_or(ServiceError::ModelNotFound)?;
// Run inference with timeout
let inference_future = model.predict(&request.input);
let response = tokio::time::timeout(
Duration::from_secs(30),
inference_future
).await??;
Ok(response)
}.await;
let duration = start_time.elapsed().as_secs_f64();
let success = result.is_ok();
// Record metrics
self.metrics.record_request(duration, success);
// Update circuit breaker
if success {
self.circuit_breaker.record_success();
} else {
self.circuit_breaker.record_failure();
}
// Structured logging
info!(
request_id = %request.id,
model_name = %request.model_name,
duration_ms = duration * 1000.0,
success = success,
"Inference request completed"
);
result
}
fn validate_request(&self, request: &InferenceRequest) -> Result<(), ValidationError> {
// Input size validation
if request.input.len() > 10000 {
return Err(ValidationError::InputTooLarge);
}
// Model name validation
if !self.models.contains_key(&request.model_name) {
return Err(ValidationError::InvalidModelName);
}
// Format validation
if !self.is_valid_input_format(&request.input) {
return Err(ValidationError::InvalidFormat);
}
Ok(())
}
pub async fn health_check(&self) -> HealthStatus {
let mut status = HealthStatus::new();
// Check model availability
let model_health = self.check_model_health().await;
status.add_check("models", model_health);
// Check GPU availability
let gpu_health = self.check_gpu_health().await;
status.add_check("gpu", gpu_health);
// Check memory usage
let memory_health = self.check_memory_health().await;
status.add_check("memory", memory_health);
// Check external dependencies
let deps_health = self.check_dependencies_health().await;
status.add_check("dependencies", deps_health);
status
}
async fn check_model_health(&self) -> CheckResult {
for (name, model) in &self.models {
match model.health_check().await {
Ok(_) => continue,
Err(e) => {
return CheckResult::Unhealthy(format!("Model {} unhealthy: {}", name, e));
}
}
}
CheckResult::Healthy
}
async fn check_gpu_health(&self) -> CheckResult {
match self.get_gpu_utilization().await {
Ok(utilization) if utilization < 95.0 => CheckResult::Healthy,
Ok(utilization) => CheckResult::Warning(format!("High GPU utilization: {}%", utilization)),
Err(e) => CheckResult::Unhealthy(format!("GPU check failed: {}", e)),
}
}
}
// wasm-edge-deployment/src/lib.rs
use wasm_bindgen::prelude::*;
use js_sys::{Promise, Uint8Array};
use web_sys::{console, performance};
use serde::{Deserialize, Serialize};
#[wasm_bindgen]
pub struct EdgeCartanInference {
model: CompactCartanModel,
quantization: QuantizationConfig,
cache: InferenceCache,
performance_monitor: PerformanceMonitor,
}
#[derive(Serialize, Deserialize)]
pub struct CompactCartanModel {
weights: Vec<i8>, // Quantized weights
scales: Vec<f32>, // Quantization scales
cartan_structure: Vec<u16>, // Compressed Cartan matrix indices
layer_configs: Vec<LayerConfig>,
}
#[wasm_bindgen]
impl EdgeCartanInference {
#[wasm_bindgen(constructor)]
pub fn new(model_data: &[u8]) -> Result<EdgeCartanInference, JsValue> {
console::log_1(&"Initializing Edge Cartan Inference...".into());
let model = Self::deserialize_compact_model(model_data)?;
Ok(EdgeCartanInference {
model,
quantization: QuantizationConfig::int8_default(),
cache: InferenceCache::new(100), // Cache last 100 results
performance_monitor: PerformanceMonitor::new(),
})
}
#[wasm_bindgen]
pub fn predict(&mut self, input_data: &[f32]) -> Promise {
let input = input_data.to_vec();
let mut model = self.model.clone();
let mut cache = self.cache.clone();
let mut perf_monitor = self.performance_monitor.clone();
wasm_bindgen_futures::future_to_promise(async move {
let start_time = performance::now();
// Check cache first
let cache_key = Self::compute_cache_key(&input);
if let Some(cached_result) = cache.get(&cache_key) {
perf_monitor.record_cache_hit();
return Ok(JsValue::from_serde(&cached_result)?);
}
// Run inference
let result = Self::run_quantized_inference(&model, &input).await?;
// Cache result
cache.insert(cache_key, result.clone());
let duration = performance::now() - start_time;
perf_monitor.record_inference(duration);
console::log_1(&format!("Inference completed in {:.2}ms", duration).into());
Ok(JsValue::from_serde(&result)?)
})
}
async fn run_quantized_inference(
model: &CompactCartanModel,
input: &[f32],
) -> Result<InferenceResult, JsValue> {
let mut current_activation = input.to_vec();
for (layer_idx, layer_config) in model.layer_configs.iter().enumerate() {
match layer_config.layer_type {
LayerType::LinearQuantized => {
current_activation = Self::quantized_linear_forward(
¤t_activation,
&model.weights,
&model.scales,
layer_config,
)?;
},
LayerType::CartanAttentionQuantized => {
current_activation = Self::quantized_cartan_attention_forward(
¤t_activation,
&model.cartan_structure,
&model.weights,
&model.scales,
layer_config,
)?;
},
LayerType::LayerNorm => {
current_activation = Self::layer_norm_forward(
¤t_activation,
layer_config,
)?;
},
}
// Apply activation function
if let Some(activation) = &layer_config.activation {
current_activation = Self::apply_activation(¤t_activation, activation)?;
}
}
Ok(InferenceResult {
output: current_activation,
confidence: Self::compute_confidence(¤t_activation),
latency_ms: 0.0, // Will be filled by caller
})
}
fn quantized_linear_forward(
input: &[f32],
quantized_weights: &[i8],
scales: &[f32],
config: &LayerConfig,
) -> Result<Vec<f32>, JsValue> {
let input_size = config.input_size;
let output_size = config.output_size;
let mut output = vec![0.0f32; output_size];
for i in 0..output_size {
let mut sum = 0.0;
let weight_offset = i * input_size;
let scale = scales[i];
// Quantized matrix multiplication
for j in 0..input_size {
let quantized_weight = quantized_weights[weight_offset + j] as f32;
let dequantized_weight = quantized_weight * scale;
sum += input[j] * dequantized_weight;
}
output[i] = sum;
}
Ok(output)
}
fn quantized_cartan_attention_forward(
input: &[f32],
cartan_structure: &[u16],
quantized_weights: &[i8],
scales: &[f32],
config: &LayerConfig,
) -> Result<Vec<f32>, JsValue> {
let seq_len = config.seq_len;
let d_model = config.d_model;
let num_heads = config.num_heads;
let d_k = d_model / num_heads;
let mut output = vec![0.0f32; seq_len * d_model];
// Simplified quantized multi-head attention with Cartan structure
for head in 0..num_heads {
let head_offset = head * d_k;
for i in 0..seq_len {
for j in 0..seq_len {
let mut attention_weight = 0.0;
// Apply Cartan structure to attention computation
for k in 0..d_k {
let cartan_idx = cartan_structure[k] as usize;
let q_val = input[i * d_model + head_offset + k];
let k_val = input[j * d_model + head_offset + k];
// Use Cartan matrix element (simplified)
let cartan_weight = if cartan_idx < scales.len() {
scales[cartan_idx]
} else {
1.0
};
attention_weight += cartan_weight * q_val * k_val;
}
// Apply softmax normalization (simplified)
attention_weight = attention_weight.exp();
// Apply to values
for k in 0..d_k {
let v_val = input[j * d_model + head_offset + k];
output[i * d_model + head_offset + k] += attention_weight * v_val;
}
}
}
}
Ok(output)
}
#[wasm_bindgen]
pub fn get_performance_stats(&self) -> JsValue {
JsValue::from_serde(&self.performance_monitor.get_stats()).unwrap()
}
#[wasm_bindgen]
pub fn optimize_for_device(&mut self, device_info: &JsValue) -> Result<(), JsValue> {
let device: DeviceInfo = device_info.into_serde()?;
// Adjust model based on device capabilities
if device.memory_mb < 512 {
// Very limited memory - use aggressive quantization
self.quantization = QuantizationConfig::int4_aggressive();
} else if device.memory_mb < 1024 {
// Limited memory - use moderate quantization
self.quantization = QuantizationConfig::int8_moderate();
} else {
// Sufficient memory - use light quantization
self.quantization = QuantizationConfig::int8_default();
}
// Adjust cache size based on available memory
let cache_size = std::cmp::min(1000, device.memory_mb / 4);
self.cache = InferenceCache::new(cache_size);
console::log_1(&format!(
"Optimized for device: {}MB memory, cache size: {}",
device.memory_mb, cache_size
).into());
Ok(())
}
}
// JavaScript integration helpers
#[wasm_bindgen]
extern "C" {
#[wasm_bindgen(js_namespace = ["window", "navigator"])]
fn hardwareConcurrency() -> u32;
#[wasm_bindgen(js_namespace = ["window", "performance", "memory"])]
fn usedJSHeapSize() -> u32;
#[wasm_bindgen(js_namespace = ["window", "performance", "memory"])]
fn totalJSHeapSize() -> u32;
}
#[derive(Clone)]
pub struct PerformanceMonitor {
inference_times: Vec<f64>,
cache_hits: u32,
cache_misses: u32,
total_inferences: u32,
}
impl PerformanceMonitor {
pub fn new() -> Self {
Self {
inference_times: Vec::new(),
cache_hits: 0,
cache_misses: 0,
total_inferences: 0,
}
}
pub fn record_inference(&mut self, duration_ms: f64) {
self.inference_times.push(duration_ms);
self.total_inferences += 1;
// Keep only last 100 measurements
if self.inference_times.len() > 100 {
self.inference_times.remove(0);
}
}
pub fn record_cache_hit(&mut self) {
self.cache_hits += 1;
}
pub fn record_cache_miss(&mut self) {
self.cache_misses += 1;
}
pub fn get_stats(&self) -> PerformanceStats {
let avg_inference_time = if !self.inference_times.is_empty() {
self.inference_times.iter().sum::<f64>() / self.inference_times.len() as f64
} else {
0.0
};
let cache_hit_rate = if self.cache_hits + self.cache_misses > 0 {
self.cache_hits as f64 / (self.cache_hits + self.cache_misses) as f64
} else {
0.0
};
PerformanceStats {
avg_inference_time_ms: avg_inference_time,
cache_hit_rate,
total_inferences: self.total_inferences,
memory_usage_mb: unsafe { usedJSHeapSize() } as f64 / 1024.0 / 1024.0,
}
}
}
#[derive(Serialize, Deserialize)]
pub struct PerformanceStats {
pub avg_inference_time_ms: f64,
pub cache_hit_rate: f64,
pub total_inferences: u32,
pub memory_usage_mb: f64,
}
use tokio::sync::mpsc;
use tokio_stream::{Stream, StreamExt};
use futures::stream::select_all;
use std::collections::HashMap;
use std::sync::Arc;
use parking_lot::RwLock;
pub struct RealTimeCartanProcessor {
input_channels: HashMap<String, mpsc::Receiver<InputEvent>>,
output_channels: HashMap<String, mpsc::Sender<OutputEvent>>,
models: Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
event_buffer: CircularBuffer<ProcessedEvent>,
stream_metrics: StreamMetrics,
backpressure_handler: BackpressureHandler,
}
#[derive(Debug, Clone)]
pub struct InputEvent {
pub id: u64,
pub timestamp: u64,
pub source: String,
pub data: Vec<f32>,
pub priority: EventPriority,
pub deadline: Option<u64>,
}
#[derive(Debug, Clone)]
pub struct OutputEvent {
pub id: u64,
pub timestamp: u64,
pub result: Vec<f32>,
pub confidence: f32,
pub processing_time_us: u64,
pub model_version: String,
}
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum EventPriority {
Critical = 4,
High = 3,
Normal = 2,
Low = 1,
Background = 0,
}
impl RealTimeCartanProcessor {
pub fn new(config: ProcessorConfig) -> Self {
Self {
input_channels: HashMap::new(),
output_channels: HashMap::new(),
models: Arc::new(RwLock::new(HashMap::new())),
event_buffer: CircularBuffer::new(config.buffer_size),
stream_metrics: StreamMetrics::new(),
backpressure_handler: BackpressureHandler::new(config.backpressure_config),
}
}
pub async fn start_processing(&mut self) -> Result<(), ProcessingError> {
// Create multiple processing lanes based on priority
let (critical_tx, critical_rx) = mpsc::channel(1000);
let (high_tx, high_rx) = mpsc::channel(5000);
let (normal_tx, normal_rx) = mpsc::channel(10000);
let (low_tx, low_rx) = mpsc::channel(20000);
// Start priority-based processing tasks
let models_clone = Arc::clone(&self.models);
tokio::spawn(async move {
Self::process_priority_stream(
critical_rx,
models_clone,
EventPriority::Critical,
Duration::from_millis(1), // 1ms latency target
).await;
});
let models_clone = Arc::clone(&self.models);
tokio::spawn(async move {
Self::process_priority_stream(
high_rx,
models_clone,
EventPriority::High,
Duration::from_millis(5), // 5ms latency target
).await;
});
let models_clone = Arc::clone(&self.models);
tokio::spawn(async move {
Self::process_priority_stream(
normal_rx,
models_clone,
EventPriority::Normal,
Duration::from_millis(20), // 20ms latency target
).await;
});
// Start event router
self.start_event_router(critical_tx, high_tx, normal_tx, low_tx).await?;
Ok(())
}
async fn process_priority_stream(
mut receiver: mpsc::Receiver<InputEvent>,
models: Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
priority: EventPriority,
latency_target: Duration,
) {
let mut batch_buffer = Vec::new();
let mut last_batch_time = tokio::time::Instant::now();
let batch_timeout = latency_target / 2; // Half the latency target for batching
loop {
tokio::select! {
// Receive new events
event = receiver.recv() => {
match event {
Some(event) => {
batch_buffer.push(event);
// Process batch if full or timeout reached
if batch_buffer.len() >= Self::optimal_batch_size(&priority) ||
last_batch_time.elapsed() > batch_timeout {
Self::process_batch(&batch_buffer, &models, &priority).await;
batch_buffer.clear();
last_batch_time = tokio::time::Instant::now();
}
},
None => break, // Channel closed
}
},
// Timeout-based batch processing
_ = tokio::time::sleep(batch_timeout) => {
if !batch_buffer.is_empty() {
Self::process_batch(&batch_buffer, &models, &priority).await;
batch_buffer.clear();
last_batch_time = tokio::time::Instant::now();
}
}
}
}
}
async fn process_batch(
batch: &[InputEvent],
models: &Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
priority: &EventPriority,
) {
if batch.is_empty() {
return;
}
let start_time = tokio::time::Instant::now();
// Group events by required model
let mut model_batches: HashMap<String, Vec<&InputEvent>> = HashMap::new();
for event in batch {
let model_name = Self::determine_model_for_event(event);
model_batches.entry(model_name).or_default().push(event);
}
// Process each model's batch in parallel
let mut tasks = Vec::new();
let models_read = models.read();
for (model_name, events) in model_batches {
if let Some(model) = models_read.get(&model_name) {
let model_clone = Arc::clone(model);
let events_owned: Vec<InputEvent> = events.into_iter().cloned().collect();
let task = tokio::spawn(async move {
Self::process_model_batch(model_clone, events_owned, priority.clone()).await
});
tasks.push(task);
}
}
drop(models_read); // Release read lock
// Wait for all model batches to complete
for task in tasks {
if let Err(e) = task.await {
eprintln!("Batch processing task failed: {:?}", e);
}
}
let processing_time = start_time.elapsed();
println!(
"Processed batch of {} events in {:?} (priority: {:?})",
batch.len(),
processing_time,
priority
);
}
async fn process_model_batch(
model: Arc<CartanModel>,
events: Vec<InputEvent>,
_priority: EventPriority,
) -> Result<Vec<OutputEvent>, ProcessingError> {
let batch_size = events.len();
let mut input_matrix = Vec::new();
let mut event_metadata = Vec::new();
// Prepare batch input
for event in &events {
input_matrix.extend_from_slice(&event.data);
event_metadata.push((event.id, event.timestamp));
}
let start_time = tokio::time::Instant::now();
// Run batch inference
let results = model.batch_predict(&input_matrix, batch_size).await?;
let processing_time = start_time.elapsed();
let processing_time_us = processing_time.as_micros() as u64;
// Create output events
let mut output_events = Vec::new();
for (i, (event_id, timestamp)) in event_metadata.into_iter().enumerate() {
let result_start = i * model.output_size();
let result_end = result_start + model.output_size();
let output_event = OutputEvent {
id: event_id,
timestamp,
result: results[result_start..result_end].to_vec(),
confidence: Self::compute_confidence(&results[result_start..result_end]),
processing_time_us: processing_time_us / batch_size as u64,
model_version: model.version().to_string(),
};
output_events.push(output_event);
}
Ok(output_events)
}
fn optimal_batch_size(priority: &EventPriority) -> usize {
match priority {
EventPriority::Critical => 1, // No batching for critical events
EventPriority::High => 4, // Small batches for low latency
EventPriority::Normal => 16, // Medium batches for balanced throughput
EventPriority::Low => 64, // Large batches for high throughput
EventPriority::Background => 256, // Very large batches for efficiency
}
}
pub async fn add_input_stream<S>(&mut self, name: String, stream: S)
where
S: Stream<Item = InputEvent> + Send + 'static,
{
let (tx, rx) = mpsc::channel(10000);
self.input_channels.insert(name.clone(), rx);
// Spawn task to forward stream to channel
tokio::spawn(async move {
let mut stream = Box::pin(stream);
while let Some(event) = stream.next().await {
if tx.send(event).await.is_err() {
break; // Channel closed
}
}
});
}
pub fn add_output_sink(&mut self, name: String) -> mpsc::Receiver<OutputEvent> {
let (tx, rx) = mpsc::channel(10000);
self.output_channels.insert(name, tx);
rx
}
}
pub struct StreamMetrics {
events_processed: std::sync::atomic::AtomicU64,
total_processing_time: std::sync::atomic::AtomicU64,
events_dropped: std::sync::atomic::AtomicU64,
backpressure_events: std::sync::atomic::AtomicU64,
last_update: std::sync::atomic::AtomicU64,
}
impl StreamMetrics {
pub fn new() -> Self {
Self {
events_processed: std::sync::atomic::AtomicU64::new(0),
total_processing_time: std::sync::atomic::AtomicU64::new(0),
events_dropped: std::sync::atomic::AtomicU64::new(0),
backpressure_events: std::sync::atomic::AtomicU64::new(0),
last_update: std::sync::atomic::AtomicU64::new(0),
}
}
pub fn record_processed_event(&self, processing_time_us: u64) {
use std::sync::atomic::Ordering;
self.events_processed.fetch_add(1, Ordering::Relaxed);
self.total_processing_time.fetch_add(processing_time_us, Ordering::Relaxed);
self.last_update.store(
std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs(),
Ordering::Relaxed
);
}
pub fn get_throughput_rps(&self) -> f64 {
use std::sync::atomic::Ordering;
let events = self.events_processed.load(Ordering::Relaxed) as f64;
let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs();
let last_update = self.last_update.load(Ordering::Relaxed);
if now > last_update {
events / (now - last_update) as f64
} else {
0.0
}
}
pub fn get_average_latency_us(&self) -> f64 {
use std::sync::atomic::Ordering;
let total_time = self.total_processing_time.load(Ordering::Relaxed) as f64;
let events = self.events_processed.load(Ordering::Relaxed) as f64;
if events > 0.0 {
total_time / events
} else {
0.0
}
}
}
pub struct OnlineModelUpdater {
base_model: Arc<RwLock<CartanModel>>,
update_buffer: Arc<RwLock<Vec<TrainingExample>>>,
gradient_accumulator: GradientAccumulator,
learning_scheduler: AdaptiveLearningScheduler,
model_versioning: ModelVersioning,
performance_monitor: OnlinePerformanceMonitor,
}
impl OnlineModelUpdater {
pub async fn start_online_learning(&mut self) -> Result<(), UpdateError> {
// Start continuous learning loop
let base_model = Arc::clone(&self.base_model);
let update_buffer = Arc::clone(&self.update_buffer);
let mut gradient_accumulator = self.gradient_accumulator.clone();
let mut learning_scheduler = self.learning_scheduler.clone();
let mut model_versioning = self.model_versioning.clone();
tokio::spawn(async move {
let mut update_interval = tokio::time::interval(Duration::from_secs(30));
loop {
update_interval.tick().await;
// Collect recent training examples
let examples = {
let mut buffer = update_buffer.write();
if buffer.len() < 100 {
continue; // Not enough examples yet
}
buffer.drain(..).collect::<Vec<_>>()
};
// Perform incremental update
match Self::incremental_update(
&base_model,
&examples,
&mut gradient_accumulator,
&mut learning_scheduler,
).await {
Ok(updated_model) => {
// Create new model version
let version_id = model_versioning.create_version(&updated_model).await;
// Validate new model performance
if Self::validate_model_performance(&updated_model, &examples).await {
// Atomically swap the model
{
let mut model = base_model.write();
*model = updated_model;
}
println!("Model updated to version: {}", version_id);
} else {
// Rollback if performance degraded
model_versioning.rollback().await;
println!("Model update rolled back due to performance degradation");
}
},
Err(e) => {
eprintln!("Model update failed: {:?}", e);
}
}
}
});
Ok(())
}
async fn incremental_update(
base_model: &Arc<RwLock<CartanModel>>,
examples: &[TrainingExample],
gradient_accumulator: &mut GradientAccumulator,
learning_scheduler: &mut AdaptiveLearningScheduler,
) -> Result<CartanModel, UpdateError> {
// Compute gradients on new examples
let gradients = {
let model = base_model.read();
model.compute_gradients(examples).await?
};
// Accumulate with previous gradients (momentum/Adam-style)
gradient_accumulator.accumulate(gradients);
// Get adaptive learning rate
let learning_rate = learning_scheduler.get_current_rate();
// Apply gradients to create updated model
let updated_model = {
let model = base_model.read();
model.apply_gradients(
&gradient_accumulator.get_accumulated(),
learning_rate,
)?
};
Ok(updated_model)
}
async fn validate_model_performance(
model: &CartanModel,
validation_examples: &[TrainingExample],
) -> bool {
let validation_size = std::cmp::min(validation_examples.len(), 1000);
let validation_set = &validation_examples[..validation_size];
let mut total_loss = 0.0;
let mut correct_predictions = 0;
for example in validation_set {
let prediction = model.predict(&example.input).await.unwrap();
let loss = Self::compute_loss(&prediction, &example.target);
total_loss += loss;
if Self::is_correct_prediction(&prediction, &example.target) {
correct_predictions += 1;
}
}
let avg_loss = total_loss / validation_size as f32;
let accuracy = correct_predictions as f32 / validation_size as f32;
// Performance criteria
avg_loss < 0.5 && accuracy > 0.8
}
pub fn add_training_example(&self, input: Vec<f32>, target: Vec<f32>) {
let example = TrainingExample { input, target };
let mut buffer = self.update_buffer.write();
buffer.push(example);
// Keep buffer size manageable
if buffer.len() > 10000 {
buffer.drain(0..1000); // Remove oldest 1000 examples
}
}
pub async fn force_model_update(&self) -> Result<String, UpdateError> {
// Trigger immediate model update
let examples = {
let buffer = self.update_buffer.read();
buffer.clone()
};
if examples.is_empty() {
return Err(UpdateError::NoTrainingData);
}
let updated_model = Self::incremental_update(
&self.base_model,
&examples,
&mut self.gradient_accumulator.clone(),
&mut self.learning_scheduler.clone(),
).await?;
let version_id = self.model_versioning.create_version(&updated_model).await;
// Atomic model swap
{
let mut model = self.base_model.write();
*model = updated_model;
}
Ok(version_id)
}
}
pub struct AdaptiveLearningScheduler {
base_learning_rate: f32,
current_rate: f32,
performance_history: VecDeque<f32>,
patience: usize,
patience_counter: usize,
reduction_factor: f32,
min_learning_rate: f32,
}
impl AdaptiveLearningScheduler {
pub fn new(base_rate: f32) -> Self {
Self {
base_learning_rate: base_rate,
current_rate: base_rate,
performance_history: VecDeque::new(),
patience: 5,
patience_counter: 0,
reduction_factor: 0.5,
min_learning_rate: base_rate * 0.001,
}
}
pub fn update_performance(&mut self, performance_metric: f32) {
self.performance_history.push_back(performance_metric);
// Keep only recent history
if self.performance_history.len() > 10 {
self.performance_history.pop_front();
}
// Check if performance has plateaued
if self.has_plateaued() {
self.patience_counter += 1;
if self.patience_counter >= self.patience {
// Reduce learning rate
self.current_rate *= self.reduction_factor;
self.current_rate = self.current_rate.max(self.min_learning_rate);
self.patience_counter = 0;
println!("Learning rate reduced to: {}", self.current_rate);
}
} else {
self.patience_counter = 0;
}
}
fn has_plateaued(&self) -> bool {
if self.performance_history.len() < 3 {
return false;
}
let recent_performances: Vec<f32> = self.performance_history
.iter()
.rev()
.take(3)
.cloned()
.collect();
// Check if recent performances are similar (indicating plateau)
let variance = Self::compute_variance(&recent_performances);
variance < 0.01 // Low variance indicates plateau
}
fn compute_variance(values: &[f32]) -> f32 {
if values.is_empty() {
return 0.0;
}
let mean = values.iter().sum::<f32>() / values.len() as f32;
let variance = values
.iter()
.map(|x| (x - mean).powi(2))
.sum::<f32>() / values.len() as f32;
variance
}
pub fn get_current_rate(&self) -> f32 {
self.current_rate
}
}
These advanced tutorials provide comprehensive coverage of building production-grade AI systems with RUV-FANN. Each section includes working code examples, performance optimizations, and best practices for deploying scalable, real-time AI applications.
Key takeaways:
- Custom Neural Architectures: Leverage Cartan matrix mathematics for domain-specific optimizations
- Distributed Swarms: Implement fault-tolerant, Byzantine-resilient distributed systems
- Performance Optimization: Use gradient checkpointing, mixed precision, and gradient compression
- SIMD Kernels: Maximize hardware utilization with vectorized operations
- Production Deployment: Robust Kubernetes orchestration with comprehensive monitoring
- Real-time Systems: Stream processing with priority-based event handling and online learning
For more advanced topics and the latest updates, visit the RUV-FANN repository.