Advanced Tutorials - ruvnet/ruv-FANN GitHub Wiki

Advanced Tutorials

This page contains comprehensive, in-depth tutorials for advanced RUV-FANN features and implementation techniques. These tutorials assume familiarity with the basic concepts and are designed for developers looking to build production-grade AI systems.

Table of Contents

  1. Building Custom Neural Architectures
  2. Implementing Distributed Swarms
  3. Performance Optimization Techniques
  4. Custom SIMD Kernels
  5. Production Deployment Strategies
  6. Real-time AI Systems

Building Custom Neural Architectures

Advanced Cartan Matrix Design

Learn to create sophisticated neural architectures using Cartan matrix mathematics for optimal information flow and gradient propagation.

Custom Layer Implementation

use micro_cartan_attn::{CartanAttention, CartanConfig};
use ndarray::{Array2, Array3};

// Define a custom Cartan-based layer
#[derive(Debug, Clone)]
pub struct AdvancedCartanLayer {
    cartan_matrix: Array2<f32>,
    attention: CartanAttention,
    feedforward: FeedForward,
    layer_norm: LayerNorm,
    dropout_rate: f32,
}

impl AdvancedCartanLayer {
    pub fn new(config: &CartanConfig) -> Self {
        // Initialize with custom Cartan matrix for your domain
        let cartan_matrix = Self::create_domain_specific_matrix(config);
        
        Self {
            cartan_matrix,
            attention: CartanAttention::new(config),
            feedforward: FeedForward::new(config.hidden_size, config.intermediate_size),
            layer_norm: LayerNorm::new(config.hidden_size),
            dropout_rate: config.dropout_rate,
        }
    }
    
    fn create_domain_specific_matrix(config: &CartanConfig) -> Array2<f32> {
        // Create specialized Cartan matrix based on your problem domain
        let size = config.cartan_rank;
        let mut matrix = Array2::zeros((size, size));
        
        // Example: A₃ Cartan matrix for 4D rotational symmetries
        for i in 0..size {
            for j in 0..size {
                if i == j {
                    matrix[[i, j]] = 2.0;
                } else if (i as i32 - j as i32).abs() == 1 {
                    matrix[[i, j]] = -1.0;
                }
            }
        }
        
        matrix
    }
    
    pub fn forward(&mut self, input: &Array3<f32>) -> Array3<f32> {
        // Multi-head attention with Cartan structure
        let attention_output = self.attention.forward_with_matrix(input, &self.cartan_matrix);
        
        // Residual connection and layer normalization
        let normalized = self.layer_norm.forward(&(input + &attention_output));
        
        // Feed-forward network
        let ff_output = self.feedforward.forward(&normalized);
        
        // Final residual connection
        normalized + ff_output
    }
}

Architecture Composition

// Build complex architectures by composing layers
pub struct CustomNeuralArchitecture {
    embedding: EmbeddingLayer,
    cartan_layers: Vec<AdvancedCartanLayer>,
    output_projection: Linear,
    architecture_type: ArchitectureType,
}

#[derive(Debug, Clone)]
pub enum ArchitectureType {
    Encoder,
    Decoder,
    EncoderDecoder,
    Custom(String),
}

impl CustomNeuralArchitecture {
    pub fn build_transformer_variant(config: &ArchitectureConfig) -> Self {
        let mut layers = Vec::new();
        
        for i in 0..config.num_layers {
            let layer_config = CartanConfig {
                cartan_rank: config.cartan_rank,
                hidden_size: config.hidden_size,
                num_attention_heads: config.num_heads,
                layer_index: i,
                ..Default::default()
            };
            
            layers.push(AdvancedCartanLayer::new(&layer_config));
        }
        
        Self {
            embedding: EmbeddingLayer::new(config.vocab_size, config.hidden_size),
            cartan_layers: layers,
            output_projection: Linear::new(config.hidden_size, config.output_size),
            architecture_type: ArchitectureType::Encoder,
        }
    }
    
    pub fn forward_with_gradient_checkpointing(&mut self, input: &Array2<i32>) -> Array2<f32> {
        let mut hidden = self.embedding.forward(input);
        
        // Process through Cartan layers with gradient checkpointing
        for (i, layer) in self.cartan_layers.iter_mut().enumerate() {
            if i % 2 == 0 {
                // Checkpoint every other layer to save memory
                hidden = checkpoint(|| layer.forward(&hidden));
            } else {
                hidden = layer.forward(&hidden);
            }
        }
        
        self.output_projection.forward(&hidden)
    }
}

Advanced Training Techniques

Dynamic Cartan Matrix Adaptation

pub struct AdaptiveCartanTrainer {
    base_matrices: HashMap<String, Array2<f32>>,
    adaptation_rate: f32,
    performance_history: VecDeque<f32>,
}

impl AdaptiveCartanTrainer {
    pub fn adapt_matrix_during_training(
        &mut self,
        layer_name: &str,
        gradient_info: &GradientInfo,
        loss: f32,
    ) -> Array2<f32> {
        let base_matrix = self.base_matrices.get(layer_name).unwrap();
        
        // Analyze gradient flow patterns
        let gradient_condition = gradient_info.compute_condition_number();
        
        // Adapt matrix based on training dynamics
        if gradient_condition > 100.0 {
            // Poor conditioning - increase off-diagonal suppression
            self.strengthen_diagonal(base_matrix)
        } else if loss > self.performance_history.back().unwrap_or(&f32::INFINITY) {
            // Performance degrading - explore different structure
            self.introduce_structural_variation(base_matrix)
        } else {
            base_matrix.clone()
        }
    }
    
    fn strengthen_diagonal(&self, matrix: &Array2<f32>) -> Array2<f32> {
        let mut adapted = matrix.clone();
        let diagonal_boost = 0.1;
        
        for i in 0..matrix.nrows() {
            adapted[[i, i]] += diagonal_boost;
        }
        
        adapted
    }
    
    fn introduce_structural_variation(&self, matrix: &Array2<f32>) -> Array2<f32> {
        // Introduce controlled structural changes
        let mut adapted = matrix.clone();
        let variation_strength = 0.05;
        
        // Add small random perturbations to explore nearby structures
        for i in 0..matrix.nrows() {
            for j in 0..matrix.ncols() {
                if i != j {
                    let perturbation = (rand::random::<f32>() - 0.5) * variation_strength;
                    adapted[[i, j]] += perturbation;
                }
            }
        }
        
        adapted
    }
}

Implementing Distributed Swarms

Advanced Swarm Topologies

Hierarchical Swarm with Dynamic Load Balancing

use micro_swarm::{SwarmCoordinator, NodeId, TaskPriority};
use std::collections::HashMap;
use tokio::sync::mpsc;

pub struct HierarchicalSwarm {
    coordinator: SwarmCoordinator,
    regional_leaders: HashMap<String, NodeId>,
    load_balancer: DynamicLoadBalancer,
    fault_detector: ByzantineFaultDetector,
}

impl HierarchicalSwarm {
    pub async fn new(regions: Vec<String>, nodes_per_region: usize) -> Self {
        let mut coordinator = SwarmCoordinator::new();
        let mut regional_leaders = HashMap::new();
        
        // Create hierarchical structure
        for region in &regions {
            let leader_id = coordinator.spawn_leader_node(region).await;
            regional_leaders.insert(region.clone(), leader_id);
            
            // Spawn worker nodes under each leader
            for i in 0..nodes_per_region {
                let worker_id = coordinator.spawn_worker_node(&leader_id).await;
                coordinator.register_hierarchy(leader_id, worker_id).await;
            }
        }
        
        Self {
            coordinator,
            regional_leaders,
            load_balancer: DynamicLoadBalancer::new(),
            fault_detector: ByzantineFaultDetector::new(),
        }
    }
    
    pub async fn distribute_computation(
        &mut self,
        computation: ComputationGraph,
    ) -> Result<ComputationResult, SwarmError> {
        // Analyze computation requirements
        let requirements = self.analyze_computation_requirements(&computation);
        
        // Create execution plan with fault tolerance
        let execution_plan = self.create_fault_tolerant_plan(requirements).await?;
        
        // Execute with real-time monitoring
        self.execute_with_monitoring(execution_plan).await
    }
    
    async fn create_fault_tolerant_plan(
        &self,
        requirements: ComputationRequirements,
    ) -> Result<ExecutionPlan, SwarmError> {
        let mut plan = ExecutionPlan::new();
        
        // Assign tasks with replication for fault tolerance
        for task in requirements.tasks {
            let primary_region = self.load_balancer.select_optimal_region(&task);
            let backup_regions = self.select_backup_regions(&primary_region, 2);
            
            plan.add_replicated_task(task, primary_region, backup_regions);
        }
        
        // Add Byzantine fault detection checkpoints
        plan.add_consensus_checkpoints(self.fault_detector.checkpoint_interval());
        
        Ok(plan)
    }
}

Mesh Network with Gossip Protocol

pub struct MeshSwarmNetwork {
    nodes: HashMap<NodeId, MeshNode>,
    gossip_protocol: GossipProtocol,
    routing_table: DistributedRoutingTable,
    message_queue: PriorityQueue<SwarmMessage>,
}

impl MeshSwarmNetwork {
    pub async fn bootstrap_network(initial_nodes: Vec<NodeConfig>) -> Self {
        let mut network = Self::new();
        
        // Bootstrap initial connectivity
        for node_config in initial_nodes {
            let node = MeshNode::new(node_config).await;
            network.add_node(node).await;
        }
        
        // Establish initial connections using gossip
        network.gossip_protocol.bootstrap_connections().await;
        
        network
    }
    
    pub async fn execute_distributed_learning(
        &mut self,
        model: &DistributedModel,
        training_data: &[TrainingBatch],
    ) -> Result<ModelWeights, SwarmError> {
        // Partition data across nodes
        let data_partitions = self.partition_training_data(training_data);
        
        // Initialize federated learning round
        let mut global_weights = model.get_weights();
        let num_rounds = 10;
        
        for round in 0..num_rounds {
            // Broadcast current global weights
            self.broadcast_weights(&global_weights).await?;
            
            // Each node trains locally
            let local_updates = self.collect_local_updates(&data_partitions).await?;
            
            // Aggregate updates using Byzantine-resilient averaging
            global_weights = self.byzantine_resilient_averaging(local_updates)?;
            
            // Update routing table based on node performance
            self.update_routing_based_on_performance().await;
        }
        
        Ok(global_weights)
    }
    
    async fn byzantine_resilient_averaging(
        &self,
        updates: Vec<LocalUpdate>,
    ) -> Result<ModelWeights, SwarmError> {
        // Use Krum algorithm for Byzantine-resilient aggregation
        let krum_parameter = (updates.len() as f32 * 0.66) as usize;
        
        let mut distances = Vec::new();
        for (i, update_i) in updates.iter().enumerate() {
            let mut node_distances = Vec::new();
            
            for (j, update_j) in updates.iter().enumerate() {
                if i != j {
                    let distance = self.compute_weight_distance(&update_i.weights, &update_j.weights);
                    node_distances.push((j, distance));
                }
            }
            
            // Sort by distance and sum k closest
            node_distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
            let sum_distance: f32 = node_distances.iter()
                .take(krum_parameter)
                .map(|(_, dist)| dist)
                .sum();
            
            distances.push((i, sum_distance));
        }
        
        // Select update with minimum sum of distances
        distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
        let selected_update = &updates[distances[0].0];
        
        Ok(selected_update.weights.clone())
    }
}

Advanced Consensus Mechanisms

Practical Byzantine Fault Tolerance (pBFT)

pub struct PBFTConsensus {
    node_id: NodeId,
    view_number: u64,
    sequence_number: u64,
    primary_id: NodeId,
    message_log: MessageLog,
    state_machine: StateMachine,
    timer: ConsensusTimer,
}

impl PBFTConsensus {
    pub async fn propose_value(&mut self, value: ConsensusValue) -> Result<(), ConsensusError> {
        if self.node_id != self.primary_id {
            return Err(ConsensusError::NotPrimary);
        }
        
        // Phase 1: Pre-prepare
        let pre_prepare = PrePrepareMessage {
            view: self.view_number,
            sequence: self.sequence_number,
            value: value.clone(),
            primary_signature: self.sign_message(&value),
        };
        
        self.broadcast_to_all(ConsensusMessage::PrePrepare(pre_prepare)).await?;
        self.sequence_number += 1;
        
        Ok(())
    }
    
    pub async fn handle_pre_prepare(
        &mut self,
        msg: PrePrepareMessage,
    ) -> Result<(), ConsensusError> {
        // Validate message
        if !self.validate_pre_prepare(&msg) {
            return Err(ConsensusError::InvalidMessage);
        }
        
        // Phase 2: Prepare
        let prepare = PrepareMessage {
            view: msg.view,
            sequence: msg.sequence,
            value_hash: self.hash_value(&msg.value),
            node_signature: self.sign_prepare(&msg),
        };
        
        self.broadcast_to_all(ConsensusMessage::Prepare(prepare)).await?;
        self.message_log.add_prepare(msg.sequence, prepare);
        
        // Check if we have enough prepare messages
        if self.message_log.count_prepares(msg.sequence) >= self.required_prepares() {
            self.send_commit(msg.sequence, msg.value).await?;
        }
        
        Ok(())
    }
    
    async fn send_commit(&mut self, sequence: u64, value: ConsensusValue) -> Result<(), ConsensusError> {
        let commit = CommitMessage {
            view: self.view_number,
            sequence,
            value_hash: self.hash_value(&value),
            node_signature: self.sign_commit(&value),
        };
        
        self.broadcast_to_all(ConsensusMessage::Commit(commit)).await?;
        self.message_log.add_commit(sequence, commit);
        
        // Check if we can execute
        if self.message_log.count_commits(sequence) >= self.required_commits() {
            self.execute_value(value).await?;
        }
        
        Ok(())
    }
    
    fn required_prepares(&self) -> usize {
        // Need 2f+1 prepare messages where f is max Byzantine nodes
        (self.total_nodes() * 2 + 2) / 3
    }
    
    fn required_commits(&self) -> usize {
        // Need 2f+1 commit messages
        (self.total_nodes() * 2 + 2) / 3
    }
}

Performance Optimization Techniques

Memory-Efficient Training

Gradient Checkpointing with Smart Recomputation

use std::collections::HashMap;
use micro_core::memory::MemoryPool;

pub struct SmartCheckpointer {
    checkpoint_strategy: CheckpointStrategy,
    memory_budget: usize,
    computation_cost_model: ComputationCostModel,
    recomputation_cache: HashMap<LayerId, CachedComputation>,
}

#[derive(Debug, Clone)]
pub enum CheckpointStrategy {
    Every(usize),           // Checkpoint every N layers
    Adaptive(f32),          // Adaptive based on memory pressure
    CostOptimal,            // Minimize time-memory tradeoff
    Custom(Box<dyn Fn(usize, usize) -> bool>), // Custom strategy
}

impl SmartCheckpointer {
    pub fn new(memory_budget_mb: usize) -> Self {
        Self {
            checkpoint_strategy: CheckpointStrategy::CostOptimal,
            memory_budget: memory_budget_mb * 1024 * 1024, // Convert to bytes
            computation_cost_model: ComputationCostModel::new(),
            recomputation_cache: HashMap::new(),
        }
    }
    
    pub fn should_checkpoint(
        &self,
        layer_id: LayerId,
        current_memory_usage: usize,
        forward_cost: f32,
    ) -> bool {
        match &self.checkpoint_strategy {
            CheckpointStrategy::Every(n) => layer_id.index() % n == 0,
            CheckpointStrategy::Adaptive(threshold) => {
                let memory_pressure = current_memory_usage as f32 / self.memory_budget as f32;
                memory_pressure > *threshold
            },
            CheckpointStrategy::CostOptimal => {
                self.compute_optimal_checkpoint_decision(layer_id, current_memory_usage, forward_cost)
            },
            CheckpointStrategy::Custom(func) => {
                func(layer_id.index(), current_memory_usage)
            },
        }
    }
    
    fn compute_optimal_checkpoint_decision(
        &self,
        layer_id: LayerId,
        current_memory: usize,
        forward_cost: f32,
    ) -> bool {
        // Chen et al. optimal checkpointing strategy
        // Minimize: memory_cost + recomputation_cost
        
        let remaining_layers = self.estimate_remaining_layers(layer_id);
        let memory_if_checkpoint = self.estimate_memory_after_checkpoint(current_memory);
        let memory_if_no_checkpoint = current_memory + self.estimate_activation_size(layer_id);
        
        let recomputation_cost = forward_cost * self.estimate_recomputation_probability(layer_id);
        let memory_savings = memory_if_no_checkpoint - memory_if_checkpoint;
        
        // Checkpoint if memory savings justify recomputation cost
        let memory_value = memory_savings as f32 / self.memory_budget as f32;
        memory_value > recomputation_cost * 0.1 // Tunable parameter
    }
    
    pub fn forward_with_checkpointing<F, T>(
        &mut self,
        layers: &[F],
        input: T,
        memory_pool: &mut MemoryPool,
    ) -> T 
    where
        F: Fn(T) -> T + Clone,
        T: Clone,
    {
        let mut activations = Vec::new();
        let mut current = input;
        
        // Forward pass with selective checkpointing
        for (i, layer) in layers.iter().enumerate() {
            let layer_id = LayerId::new(i);
            let memory_usage = memory_pool.current_usage();
            let forward_cost = self.computation_cost_model.estimate_cost(layer_id);
            
            if self.should_checkpoint(layer_id, memory_usage, forward_cost) {
                // Store activation for this layer
                activations.push((i, current.clone()));
                current = layer(current);
            } else {
                // Don't store, will recompute if needed
                current = layer(current);
            }
        }
        
        current
    }
    
    pub fn backward_with_recomputation<F, T>(
        &mut self,
        layers: &[F],
        stored_activations: &[(usize, T)],
        gradient: T,
    ) -> Vec<T>
    where
        F: Fn(T) -> T + Clone,
        T: Clone,
    {
        let mut gradients = Vec::new();
        let mut current_grad = gradient;
        
        // Backward pass with smart recomputation
        for i in (0..layers.len()).rev() {
            let layer_id = LayerId::new(i);
            
            // Check if we have stored activation
            if let Some((_, activation)) = stored_activations.iter().find(|(idx, _)| *idx == i) {
                // Use stored activation
                let layer_grad = self.compute_layer_gradient(&layers[i], activation, &current_grad);
                gradients.push(layer_grad.clone());
                current_grad = layer_grad;
            } else {
                // Recompute activation
                let activation = self.recompute_activation(layers, i);
                let layer_grad = self.compute_layer_gradient(&layers[i], &activation, &current_grad);
                gradients.push(layer_grad.clone());
                current_grad = layer_grad;
            }
        }
        
        gradients.reverse();
        gradients
    }
}

Mixed Precision Training with Dynamic Loss Scaling

pub struct MixedPrecisionTrainer {
    loss_scaler: DynamicLossScaler,
    fp16_layers: HashSet<LayerId>,
    gradient_clipper: GradientClipper,
    overflow_detector: OverflowDetector,
}

impl MixedPrecisionTrainer {
    pub fn new() -> Self {
        Self {
            loss_scaler: DynamicLossScaler::new(2.0_f32.powi(15)), // Initial scale
            fp16_layers: HashSet::new(),
            gradient_clipper: GradientClipper::new(1.0),
            overflow_detector: OverflowDetector::new(),
        }
    }
    
    pub fn train_step(
        &mut self,
        model: &mut Model,
        batch: &TrainingBatch,
    ) -> Result<TrainingMetrics, TrainingError> {
        // Forward pass in mixed precision
        let loss = self.forward_mixed_precision(model, batch)?;
        
        // Scale loss to prevent underflow
        let scaled_loss = self.loss_scaler.scale_loss(loss);
        
        // Backward pass
        let scaled_gradients = self.backward_pass(model, scaled_loss)?;
        
        // Unscale gradients and check for overflow
        let gradients = self.loss_scaler.unscale_gradients(scaled_gradients)?;
        
        if self.overflow_detector.has_overflow(&gradients) {
            // Skip update and reduce loss scale
            self.loss_scaler.reduce_scale();
            return Ok(TrainingMetrics::overflow_step());
        }
        
        // Clip gradients
        let clipped_gradients = self.gradient_clipper.clip(gradients);
        
        // Apply gradients
        model.apply_gradients(clipped_gradients)?;
        
        // Increase loss scale if stable
        self.loss_scaler.maybe_increase_scale();
        
        Ok(TrainingMetrics::successful_step(loss))
    }
    
    fn forward_mixed_precision(
        &self,
        model: &Model,
        batch: &TrainingBatch,
    ) -> Result<f32, TrainingError> {
        let mut current = batch.inputs.clone();
        
        for (i, layer) in model.layers.iter().enumerate() {
            let layer_id = LayerId::new(i);
            
            if self.fp16_layers.contains(&layer_id) {
                // Convert to FP16 for computation
                current = current.to_half_precision();
                current = layer.forward(current);
                // Convert back to FP32 for numerical stability
                current = current.to_single_precision();
            } else {
                // Keep in FP32
                current = layer.forward(current);
            }
        }
        
        let loss = model.compute_loss(&current, &batch.targets);
        Ok(loss)
    }
    
    pub fn auto_select_fp16_layers(&mut self, model: &Model) {
        // Automatically select which layers to use FP16 based on sensitivity analysis
        for (i, layer) in model.layers.iter().enumerate() {
            let layer_id = LayerId::new(i);
            
            // Check if layer is suitable for FP16
            if self.is_fp16_suitable(layer) {
                self.fp16_layers.insert(layer_id);
            }
        }
    }
    
    fn is_fp16_suitable(&self, layer: &Layer) -> bool {
        match layer.layer_type() {
            LayerType::Linear | LayerType::Convolution => true,
            LayerType::LayerNorm | LayerType::BatchNorm => false, // Keep in FP32 for stability
            LayerType::Attention => true, // Can use FP16 for most attention operations
            LayerType::Embedding => false, // Keep embeddings in FP32
            _ => false,
        }
    }
}

pub struct DynamicLossScaler {
    scale: f32,
    growth_factor: f32,
    backoff_factor: f32,
    growth_interval: usize,
    steps_since_overflow: usize,
}

impl DynamicLossScaler {
    pub fn new(initial_scale: f32) -> Self {
        Self {
            scale: initial_scale,
            growth_factor: 2.0,
            backoff_factor: 0.5,
            growth_interval: 2000,
            steps_since_overflow: 0,
        }
    }
    
    pub fn scale_loss(&self, loss: f32) -> f32 {
        loss * self.scale
    }
    
    pub fn unscale_gradients(&self, gradients: Vec<Tensor>) -> Result<Vec<Tensor>, TrainingError> {
        let mut unscaled = Vec::new();
        
        for grad in gradients {
            let unscaled_grad = grad / self.scale;
            unscaled.push(unscaled_grad);
        }
        
        Ok(unscaled)
    }
    
    pub fn reduce_scale(&mut self) {
        self.scale *= self.backoff_factor;
        self.steps_since_overflow = 0;
        
        // Ensure scale doesn't become too small
        if self.scale < 1.0 {
            self.scale = 1.0;
        }
    }
    
    pub fn maybe_increase_scale(&mut self) {
        self.steps_since_overflow += 1;
        
        if self.steps_since_overflow >= self.growth_interval {
            self.scale *= self.growth_factor;
            self.steps_since_overflow = 0;
            
            // Cap maximum scale
            if self.scale > 2.0_f32.powi(24) {
                self.scale = 2.0_f32.powi(24);
            }
        }
    }
}

Distributed Training Optimization

Advanced Data Parallelism with Gradient Compression

use std::sync::Arc;
use tokio::sync::RwLock;

pub struct CompressedDataParallel {
    world_size: usize,
    rank: usize,
    compression_method: CompressionMethod,
    communication_backend: CommunicationBackend,
    gradient_buffer: Arc<RwLock<GradientBuffer>>,
    error_feedback: ErrorFeedback,
}

#[derive(Debug, Clone)]
pub enum CompressionMethod {
    TopK(usize),                    // Keep top K gradients
    RandomK(usize),                 // Random sparsification
    Quantization { bits: u8 },      // Quantize to N bits
    SignSGD,                        // Sign-based compression
    PowerSGD { rank: usize },       // Low-rank approximation
    Hybrid(Vec<CompressionMethod>), // Adaptive combination
}

impl CompressedDataParallel {
    pub async fn new(
        world_size: usize,
        rank: usize,
        compression_method: CompressionMethod,
    ) -> Self {
        Self {
            world_size,
            rank,
            compression_method,
            communication_backend: CommunicationBackend::new(world_size, rank).await,
            gradient_buffer: Arc::new(RwLock::new(GradientBuffer::new())),
            error_feedback: ErrorFeedback::new(),
        }
    }
    
    pub async fn all_reduce_compressed(
        &mut self,
        gradients: Vec<Tensor>,
    ) -> Result<Vec<Tensor>, DistributedError> {
        // Compress gradients
        let compressed = self.compress_gradients(gradients).await?;
        
        // All-reduce compressed gradients
        let reduced_compressed = self.communication_backend
            .all_reduce_compressed(compressed).await?;
        
        // Decompress and apply error feedback
        let decompressed = self.decompress_gradients(reduced_compressed).await?;
        let corrected = self.error_feedback.apply_correction(decompressed);
        
        Ok(corrected)
    }
    
    async fn compress_gradients(
        &self,
        gradients: Vec<Tensor>,
    ) -> Result<CompressedGradients, CompressionError> {
        match &self.compression_method {
            CompressionMethod::TopK(k) => {
                self.compress_topk(gradients, *k).await
            },
            CompressionMethod::RandomK(k) => {
                self.compress_randomk(gradients, *k).await
            },
            CompressionMethod::Quantization { bits } => {
                self.compress_quantize(gradients, *bits).await
            },
            CompressionMethod::SignSGD => {
                self.compress_sign(gradients).await
            },
            CompressionMethod::PowerSGD { rank } => {
                self.compress_powersgd(gradients, *rank).await
            },
            CompressionMethod::Hybrid(methods) => {
                self.compress_adaptive(gradients, methods).await
            },
        }
    }
    
    async fn compress_topk(
        &self,
        gradients: Vec<Tensor>,
        k: usize,
    ) -> Result<CompressedGradients, CompressionError> {
        let mut compressed = CompressedGradients::new();
        
        for (i, grad) in gradients.into_iter().enumerate() {
            // Flatten gradient
            let flat_grad = grad.flatten();
            let grad_size = flat_grad.len();
            
            // Find top-K elements by magnitude
            let mut indexed_values: Vec<(usize, f32)> = flat_grad
                .into_iter()
                .enumerate()
                .map(|(idx, val)| (idx, val))
                .collect();
            
            // Sort by absolute value, descending
            indexed_values.sort_by(|a, b| b.1.abs().partial_cmp(&a.1.abs()).unwrap());
            
            // Keep only top-K
            indexed_values.truncate(k);
            
            // Store as sparse representation
            let indices: Vec<u32> = indexed_values.iter().map(|(idx, _)| *idx as u32).collect();
            let values: Vec<f32> = indexed_values.iter().map(|(_, val)| *val).collect();
            
            compressed.add_sparse_tensor(i, SparseGradient {
                indices,
                values,
                shape: grad.shape().to_vec(),
                compression_ratio: k as f32 / grad_size as f32,
            });
        }
        
        Ok(compressed)
    }
    
    async fn compress_powersgd(
        &self,
        gradients: Vec<Tensor>,
        rank: usize,
    ) -> Result<CompressedGradients, CompressionError> {
        let mut compressed = CompressedGradients::new();
        
        for (i, grad) in gradients.into_iter().enumerate() {
            // Reshape gradient to matrix
            let matrix = grad.as_matrix();
            let (m, n) = matrix.dim();
            
            if rank >= std::cmp::min(m, n) {
                // Rank too large, use original gradient
                compressed.add_dense_tensor(i, grad);
                continue;
            }
            
            // Compute SVD approximation
            let (u, s, vt) = matrix.svd()?;
            
            // Keep only top 'rank' components
            let u_compressed = u.slice(s![.., ..rank]);
            let s_compressed = s.slice(s![..rank]);
            let vt_compressed = vt.slice(s![..rank, ..]);
            
            // Store low-rank factors
            compressed.add_lowrank_tensor(i, LowRankGradient {
                u: u_compressed.to_owned(),
                s: s_compressed.to_owned(),
                vt: vt_compressed.to_owned(),
                original_shape: grad.shape().to_vec(),
                compression_ratio: (2 * rank * (m + n)) as f32 / (m * n) as f32,
            });
        }
        
        Ok(compressed)
    }
    
    async fn compress_adaptive(
        &self,
        gradients: Vec<Tensor>,
        methods: &[CompressionMethod],
    ) -> Result<CompressedGradients, CompressionError> {
        // Choose compression method adaptively based on gradient properties
        let mut compressed = CompressedGradients::new();
        
        for (i, grad) in gradients.into_iter().enumerate() {
            let grad_stats = self.compute_gradient_statistics(&grad);
            let best_method = self.select_best_compression_method(&grad_stats, methods);
            
            // Apply selected compression method
            let single_grad_compressed = match best_method {
                CompressionMethod::TopK(k) => {
                    self.compress_topk(vec![grad], k).await?.get_tensor(0).unwrap()
                },
                CompressionMethod::Quantization { bits } => {
                    self.compress_quantize(vec![grad], bits).await?.get_tensor(0).unwrap()
                },
                // ... other methods
                _ => return Err(CompressionError::UnsupportedMethod),
            };
            
            compressed.add_tensor(i, single_grad_compressed);
        }
        
        Ok(compressed)
    }
    
    fn compute_gradient_statistics(&self, grad: &Tensor) -> GradientStatistics {
        let flat = grad.flatten();
        let mean = flat.iter().sum::<f32>() / flat.len() as f32;
        let variance = flat.iter()
            .map(|x| (x - mean).powi(2))
            .sum::<f32>() / flat.len() as f32;
        
        let sparsity = flat.iter().filter(|&&x| x.abs() < 1e-6).count() as f32 / flat.len() as f32;
        
        GradientStatistics {
            mean,
            variance,
            sparsity,
            l2_norm: flat.iter().map(|x| x.powi(2)).sum::<f32>().sqrt(),
            size: flat.len(),
        }
    }
    
    fn select_best_compression_method(
        &self,
        stats: &GradientStatistics,
        available_methods: &[CompressionMethod],
    ) -> CompressionMethod {
        // Simple heuristic-based selection
        if stats.sparsity > 0.9 {
            // Very sparse - use TopK
            CompressionMethod::TopK((stats.size as f32 * 0.01) as usize)
        } else if stats.variance < 0.1 {
            // Low variance - quantization works well
            CompressionMethod::Quantization { bits: 8 }
        } else {
            // Default to PowerSGD for dense gradients
            CompressionMethod::PowerSGD { rank: 4 }
        }
    }
}

Custom SIMD Kernels

High-Performance Matrix Operations

Vectorized Cartan Matrix Multiplication

use std::arch::x86_64::*;

pub struct SIMDCartanKernel {
    simd_width: usize,
    use_avx512: bool,
    use_fma: bool,
}

impl SIMDCartanKernel {
    pub fn new() -> Self {
        Self {
            simd_width: Self::detect_simd_width(),
            use_avx512: Self::has_avx512(),
            use_fma: Self::has_fma(),
        }
    }
    
    fn detect_simd_width() -> usize {
        if Self::has_avx512() {
            16 // 512 bits / 32 bits per f32
        } else if Self::has_avx2() {
            8  // 256 bits / 32 bits per f32
        } else {
            4  // 128 bits / 32 bits per f32 (SSE)
        }
    }
    
    pub unsafe fn cartan_matrix_vector_multiply(
        &self,
        cartan_matrix: &[f32],
        vector: &[f32],
        result: &mut [f32],
        n: usize,
    ) {
        if self.use_avx512 {
            self.cartan_matvec_avx512(cartan_matrix, vector, result, n);
        } else if Self::has_avx2() {
            self.cartan_matvec_avx2(cartan_matrix, vector, result, n);
        } else {
            self.cartan_matvec_sse(cartan_matrix, vector, result, n);
        }
    }
    
    #[target_feature(enable = "avx512f")]
    unsafe fn cartan_matvec_avx512(
        &self,
        matrix: &[f32],
        vector: &[f32],
        result: &mut [f32],
        n: usize,
    ) {
        let simd_width = 16;
        let remainder = n % simd_width;
        let vectorized_size = n - remainder;
        
        for i in 0..n {
            let mut sum = _mm512_setzero_ps();
            
            // Process 16 elements at a time
            for j in (0..vectorized_size).step_by(simd_width) {
                let matrix_row = &matrix[i * n + j..];
                let vec_chunk = &vector[j..];
                
                let m_vec = _mm512_loadu_ps(matrix_row.as_ptr());
                let v_vec = _mm512_loadu_ps(vec_chunk.as_ptr());
                
                if self.use_fma {
                    sum = _mm512_fmadd_ps(m_vec, v_vec, sum);
                } else {
                    let prod = _mm512_mul_ps(m_vec, v_vec);
                    sum = _mm512_add_ps(sum, prod);
                }
            }
            
            // Horizontal sum of the vector
            let mut sum_scalar = self.horizontal_sum_avx512(sum);
            
            // Handle remainder elements
            for j in vectorized_size..n {
                sum_scalar += matrix[i * n + j] * vector[j];
            }
            
            result[i] = sum_scalar;
        }
    }
    
    #[target_feature(enable = "avx2")]
    unsafe fn cartan_matvec_avx2(
        &self,
        matrix: &[f32],
        vector: &[f32],
        result: &mut [f32],
        n: usize,
    ) {
        let simd_width = 8;
        let remainder = n % simd_width;
        let vectorized_size = n - remainder;
        
        for i in 0..n {
            let mut sum = _mm256_setzero_ps();
            
            // Process 8 elements at a time
            for j in (0..vectorized_size).step_by(simd_width) {
                let matrix_row = &matrix[i * n + j..];
                let vec_chunk = &vector[j..];
                
                let m_vec = _mm256_loadu_ps(matrix_row.as_ptr());
                let v_vec = _mm256_loadu_ps(vec_chunk.as_ptr());
                
                if self.use_fma {
                    sum = _mm256_fmadd_ps(m_vec, v_vec, sum);
                } else {
                    let prod = _mm256_mul_ps(m_vec, v_vec);
                    sum = _mm256_add_ps(sum, prod);
                }
            }
            
            // Horizontal sum
            let mut sum_scalar = self.horizontal_sum_avx2(sum);
            
            // Handle remainder
            for j in vectorized_size..n {
                sum_scalar += matrix[i * n + j] * vector[j];
            }
            
            result[i] = sum_scalar;
        }
    }
    
    unsafe fn horizontal_sum_avx512(&self, vec: __m512) -> f32 {
        let sum256_low = _mm512_castps512_ps256(vec);
        let sum256_high = _mm512_extractf32x8_ps(vec, 1);
        let sum256 = _mm256_add_ps(sum256_low, sum256_high);
        self.horizontal_sum_avx2(sum256)
    }
    
    unsafe fn horizontal_sum_avx2(&self, vec: __m256) -> f32 {
        let sum128_low = _mm256_castps256_ps128(vec);
        let sum128_high = _mm256_extractf128_ps(vec, 1);
        let sum128 = _mm_add_ps(sum128_low, sum128_high);
        
        let sum64 = _mm_hadd_ps(sum128, sum128);
        let sum32 = _mm_hadd_ps(sum64, sum64);
        
        _mm_cvtss_f32(sum32)
    }
    
    fn has_avx512() -> bool {
        is_x86_feature_detected!("avx512f")
    }
    
    fn has_avx2() -> bool {
        is_x86_feature_detected!("avx2")
    }
    
    fn has_fma() -> bool {
        is_x86_feature_detected!("fma")
    }
}

Optimized Attention Kernels

pub struct SIMDAttentionKernel {
    kernel: SIMDCartanKernel,
    softmax_kernel: SIMDSoftmaxKernel,
    cache: AttentionCache,
}

impl SIMDAttentionKernel {
    pub unsafe fn multi_head_attention_forward(
        &mut self,
        query: &[f32],      // [batch_size, seq_len, d_model]
        key: &[f32],        // [batch_size, seq_len, d_model]
        value: &[f32],      // [batch_size, seq_len, d_model]
        output: &mut [f32], // [batch_size, seq_len, d_model]
        params: &AttentionParams,
    ) {
        let batch_size = params.batch_size;
        let seq_len = params.seq_len;
        let d_model = params.d_model;
        let num_heads = params.num_heads;
        let d_k = d_model / num_heads;
        
        // Allocate temporary buffers
        let mut q_proj = vec![0.0f32; batch_size * seq_len * d_model];
        let mut k_proj = vec![0.0f32; batch_size * seq_len * d_model];
        let mut v_proj = vec![0.0f32; batch_size * seq_len * d_model];
        let mut attention_scores = vec![0.0f32; batch_size * num_heads * seq_len * seq_len];
        let mut attention_probs = vec![0.0f32; batch_size * num_heads * seq_len * seq_len];
        let mut context = vec![0.0f32; batch_size * seq_len * d_model];
        
        // Project Q, K, V
        self.kernel.cartan_matrix_vector_multiply(
            &params.w_q,
            query,
            &mut q_proj,
            d_model,
        );
        
        self.kernel.cartan_matrix_vector_multiply(
            &params.w_k,
            key,
            &mut k_proj,
            d_model,
        );
        
        self.kernel.cartan_matrix_vector_multiply(
            &params.w_v,
            value,
            &mut v_proj,
            d_model,
        );
        
        // Compute attention for each head
        for batch in 0..batch_size {
            for head in 0..num_heads {
                let q_head_offset = batch * seq_len * d_model + head * d_k;
                let k_head_offset = batch * seq_len * d_model + head * d_k;
                let v_head_offset = batch * seq_len * d_model + head * d_k;
                let score_offset = batch * num_heads * seq_len * seq_len + 
                                 head * seq_len * seq_len;
                
                // Q * K^T
                self.compute_attention_scores(
                    &q_proj[q_head_offset..],
                    &k_proj[k_head_offset..],
                    &mut attention_scores[score_offset..],
                    seq_len,
                    d_k,
                );
                
                // Apply scaling
                let scale = 1.0 / (d_k as f32).sqrt();
                self.scale_attention_scores(
                    &mut attention_scores[score_offset..],
                    seq_len * seq_len,
                    scale,
                );
                
                // Softmax
                self.softmax_kernel.softmax_2d(
                    &attention_scores[score_offset..],
                    &mut attention_probs[score_offset..],
                    seq_len,
                    seq_len,
                );
                
                // Attention * V
                self.apply_attention_to_values(
                    &attention_probs[score_offset..],
                    &v_proj[v_head_offset..],
                    &mut context[batch * seq_len * d_model + head * d_k..],
                    seq_len,
                    d_k,
                );
            }
        }
        
        // Final projection
        self.kernel.cartan_matrix_vector_multiply(
            &params.w_o,
            &context,
            output,
            d_model,
        );
    }
    
    #[target_feature(enable = "avx2")]
    unsafe fn compute_attention_scores(
        &self,
        query: &[f32],      // [seq_len, d_k]
        key: &[f32],        // [seq_len, d_k]
        scores: &mut [f32], // [seq_len, seq_len]
        seq_len: usize,
        d_k: usize,
    ) {
        for i in 0..seq_len {
            for j in 0..seq_len {
                let mut score = _mm256_setzero_ps();
                let simd_width = 8;
                let remainder = d_k % simd_width;
                let vectorized_size = d_k - remainder;
                
                // Vectorized dot product
                for k in (0..vectorized_size).step_by(simd_width) {
                    let q_vec = _mm256_loadu_ps(&query[i * d_k + k]);
                    let k_vec = _mm256_loadu_ps(&key[j * d_k + k]);
                    
                    score = _mm256_fmadd_ps(q_vec, k_vec, score);
                }
                
                // Horizontal sum
                let mut score_scalar = self.kernel.horizontal_sum_avx2(score);
                
                // Handle remainder
                for k in vectorized_size..d_k {
                    score_scalar += query[i * d_k + k] * key[j * d_k + k];
                }
                
                scores[i * seq_len + j] = score_scalar;
            }
        }
    }
    
    #[target_feature(enable = "avx2")]
    unsafe fn scale_attention_scores(
        &self,
        scores: &mut [f32],
        len: usize,
        scale: f32,
    ) {
        let scale_vec = _mm256_set1_ps(scale);
        let simd_width = 8;
        let remainder = len % simd_width;
        let vectorized_size = len - remainder;
        
        // Vectorized scaling
        for i in (0..vectorized_size).step_by(simd_width) {
            let score_vec = _mm256_loadu_ps(&scores[i]);
            let scaled = _mm256_mul_ps(score_vec, scale_vec);
            _mm256_storeu_ps(&mut scores[i], scaled);
        }
        
        // Handle remainder
        for i in vectorized_size..len {
            scores[i] *= scale;
        }
    }
}

WebAssembly SIMD Integration

WASM SIMD Cartan Operations

use wasm_bindgen::prelude::*;

#[cfg(target_arch = "wasm32")]
use std::arch::wasm32::*;

#[wasm_bindgen]
pub struct WasmCartanKernel {
    use_simd: bool,
}

#[wasm_bindgen]
impl WasmCartanKernel {
    #[wasm_bindgen(constructor)]
    pub fn new() -> Self {
        Self {
            use_simd: Self::has_simd_support(),
        }
    }
    
    fn has_simd_support() -> bool {
        #[cfg(target_arch = "wasm32")]
        {
            // Check if SIMD is available in WASM
            std::arch::is_wasm_feature_detected!("simd128")
        }
        #[cfg(not(target_arch = "wasm32"))]
        {
            false
        }
    }
    
    #[wasm_bindgen]
    pub fn cartan_attention_forward(
        &self,
        query: &[f32],
        key: &[f32],
        value: &[f32],
        cartan_matrix: &[f32],
        output: &mut [f32],
        seq_len: usize,
        d_model: usize,
    ) -> Result<(), JsValue> {
        #[cfg(target_arch = "wasm32")]
        {
            if self.use_simd {
                unsafe {
                    self.cartan_attention_simd(
                        query, key, value, cartan_matrix, output, seq_len, d_model
                    )?;
                }
            } else {
                self.cartan_attention_scalar(
                    query, key, value, cartan_matrix, output, seq_len, d_model
                )?;
            }
        }
        #[cfg(not(target_arch = "wasm32"))]
        {
            return Err(JsValue::from_str("WASM-only function"));
        }
        
        Ok(())
    }
    
    #[cfg(target_arch = "wasm32")]
    unsafe fn cartan_attention_simd(
        &self,
        query: &[f32],
        key: &[f32],
        value: &[f32],
        cartan_matrix: &[f32],
        output: &mut [f32],
        seq_len: usize,
        d_model: usize,
    ) -> Result<(), JsValue> {
        let simd_width = 4; // WASM SIMD is 128-bit
        
        // Apply Cartan structure to attention computation
        for i in 0..seq_len {
            for j in 0..seq_len {
                let mut attention_weight = v128_const(0.0, 0.0, 0.0, 0.0);
                
                // Vectorized attention computation with Cartan matrix
                for k in (0..d_model).step_by(simd_width) {
                    let q_vec = v128_load(&query[i * d_model + k] as *const f32);
                    let k_vec = v128_load(&key[j * d_model + k] as *const f32);
                    let cartan_vec = v128_load(&cartan_matrix[k] as *const f32);
                    
                    // Apply Cartan transformation: C * (Q · K)
                    let qk_product = f32x4_mul(q_vec, k_vec);
                    let cartan_weighted = f32x4_mul(qk_product, cartan_vec);
                    
                    attention_weight = f32x4_add(attention_weight, cartan_weighted);
                }
                
                // Horizontal sum for final attention weight
                let weight_scalar = self.horizontal_sum_wasm_simd(attention_weight);
                
                // Apply attention weight to values
                for k in (0..d_model).step_by(simd_width) {
                    let v_vec = v128_load(&value[j * d_model + k] as *const f32);
                    let weight_vec = f32x4_splat(weight_scalar);
                    let weighted_value = f32x4_mul(v_vec, weight_vec);
                    
                    // Accumulate in output
                    let current_output = v128_load(&output[i * d_model + k] as *const f32);
                    let new_output = f32x4_add(current_output, weighted_value);
                    v128_store(&mut output[i * d_model + k] as *mut f32, new_output);
                }
            }
        }
        
        Ok(())
    }
    
    #[cfg(target_arch = "wasm32")]
    fn horizontal_sum_wasm_simd(&self, vec: v128) -> f32 {
        // Extract individual lanes and sum them
        let lane0 = f32x4_extract_lane::<0>(vec);
        let lane1 = f32x4_extract_lane::<1>(vec);
        let lane2 = f32x4_extract_lane::<2>(vec);
        let lane3 = f32x4_extract_lane::<3>(vec);
        
        lane0 + lane1 + lane2 + lane3
    }
    
    fn cartan_attention_scalar(
        &self,
        query: &[f32],
        key: &[f32],
        value: &[f32],
        cartan_matrix: &[f32],
        output: &mut [f32],
        seq_len: usize,
        d_model: usize,
    ) -> Result<(), JsValue> {
        // Fallback scalar implementation
        for i in 0..seq_len {
            for j in 0..seq_len {
                let mut attention_weight = 0.0;
                
                for k in 0..d_model {
                    let qk_product = query[i * d_model + k] * key[j * d_model + k];
                    attention_weight += cartan_matrix[k] * qk_product;
                }
                
                for k in 0..d_model {
                    output[i * d_model + k] += attention_weight * value[j * d_model + k];
                }
            }
        }
        
        Ok(())
    }
}

// JavaScript interface for web deployment
#[wasm_bindgen]
extern "C" {
    #[wasm_bindgen(js_namespace = console)]
    fn log(s: &str);
    
    #[wasm_bindgen(js_namespace = performance)]
    fn now() -> f64;
}

#[wasm_bindgen]
pub struct WasmPerformanceProfiler {
    start_time: f64,
    checkpoints: Vec<(String, f64)>,
}

#[wasm_bindgen]
impl WasmPerformanceProfiler {
    #[wasm_bindgen(constructor)]
    pub fn new() -> Self {
        Self {
            start_time: now(),
            checkpoints: Vec::new(),
        }
    }
    
    #[wasm_bindgen]
    pub fn checkpoint(&mut self, name: &str) {
        let current_time = now();
        self.checkpoints.push((name.to_string(), current_time - self.start_time));
    }
    
    #[wasm_bindgen]
    pub fn get_report(&self) -> String {
        let mut report = String::from("Performance Report:\n");
        
        for (name, time) in &self.checkpoints {
            report.push_str(&format!("{}: {:.2}ms\n", name, time));
        }
        
        report
    }
}

Production Deployment Strategies

Kubernetes Orchestration

Advanced Deployment Configuration

# production-deployment.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: ruv-fann-prod
  labels:
    name: ruv-fann-prod
    environment: production

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: cartan-inference-service
  namespace: ruv-fann-prod
  labels:
    app: cartan-inference
    tier: inference
spec:
  replicas: 5
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 2
      maxUnavailable: 1
  selector:
    matchLabels:
      app: cartan-inference
  template:
    metadata:
      labels:
        app: cartan-inference
        version: v2.0.0
      annotations:
        prometheus.io/scrape: "true"
        prometheus.io/port: "8080"
        prometheus.io/path: "/metrics"
    spec:
      serviceAccountName: ruv-fann-service-account
      securityContext:
        runAsNonRoot: true
        runAsUser: 1000
        fsGroup: 2000
      containers:
      - name: cartan-inference
        image: ruv-fann/cartan-inference:v2.0.0
        ports:
        - containerPort: 8080
          name: http
          protocol: TCP
        - containerPort: 9090
          name: grpc
          protocol: TCP
        env:
        - name: RUST_LOG
          value: "info"
        - name: MODEL_PATH
          value: "/models/cartan-large"
        - name: BATCH_SIZE
          value: "32"
        - name: NUM_WORKERS
          value: "4"
        - name: ENABLE_SIMD
          value: "true"
        - name: CARTAN_RANK
          value: "8"
        resources:
          requests:
            memory: "2Gi"
            cpu: "1000m"
            nvidia.com/gpu: "1"
          limits:
            memory: "4Gi"
            cpu: "2000m"
            nvidia.com/gpu: "1"
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10
          timeoutSeconds: 5
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          initialDelaySeconds: 5
          periodSeconds: 5
          timeoutSeconds: 3
        volumeMounts:
        - name: model-storage
          mountPath: /models
          readOnly: true
        - name: config
          mountPath: /config
          readOnly: true
        - name: tmp
          mountPath: /tmp
      volumes:
      - name: model-storage
        persistentVolumeClaim:
          claimName: model-storage-pvc
      - name: config
        configMap:
          name: cartan-config
      - name: tmp
        emptyDir:
          sizeLimit: 1Gi
      nodeSelector:
        node-type: gpu-optimized
      tolerations:
      - key: nvidia.com/gpu
        operator: Exists
        effect: NoSchedule
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 100
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                - key: app
                  operator: In
                  values: ["cartan-inference"]
              topologyKey: "kubernetes.io/hostname"

---
apiVersion: v1
kind: Service
metadata:
  name: cartan-inference-service
  namespace: ruv-fann-prod
  labels:
    app: cartan-inference
spec:
  type: ClusterIP
  ports:
  - port: 80
    targetPort: 8080
    protocol: TCP
    name: http
  - port: 9090
    targetPort: 9090
    protocol: TCP
    name: grpc
  selector:
    app: cartan-inference

---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: cartan-inference-ingress
  namespace: ruv-fann-prod
  annotations:
    kubernetes.io/ingress.class: nginx
    nginx.ingress.kubernetes.io/rewrite-target: /
    nginx.ingress.kubernetes.io/ssl-redirect: "true"
    nginx.ingress.kubernetes.io/rate-limit: "100"
    nginx.ingress.kubernetes.io/rate-limit-window: "1m"
    cert-manager.io/cluster-issuer: letsencrypt-prod
spec:
  tls:
  - hosts:
    - api.ruv-fann.com
    secretName: ruv-fann-tls
  rules:
  - host: api.ruv-fann.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: cartan-inference-service
            port:
              number: 80

---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: cartan-inference-hpa
  namespace: ruv-fann-prod
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: cartan-inference-service
  minReplicas: 3
  maxReplicas: 20
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: inference_requests_per_second
      target:
        type: AverageValue
        averageValue: "50"
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 15
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

Advanced Monitoring and Observability

use prometheus::{Counter, Histogram, Gauge, Registry};
use tracing::{info, warn, error, debug};
use opentelemetry::trace::{TraceProvider, Tracer};
use serde_json::json;

pub struct ProductionMetrics {
    requests_total: Counter,
    request_duration: Histogram,
    active_connections: Gauge,
    model_memory_usage: Gauge,
    gpu_utilization: Gauge,
    inference_latency: Histogram,
    error_rate: Counter,
    throughput: Gauge,
}

impl ProductionMetrics {
    pub fn new(registry: &Registry) -> Self {
        let requests_total = Counter::new(
            "cartan_requests_total",
            "Total number of inference requests"
        ).unwrap();
        
        let request_duration = Histogram::with_opts(
            prometheus::HistogramOpts::new(
                "cartan_request_duration_seconds",
                "Request duration in seconds"
            ).buckets(vec![0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0])
        ).unwrap();
        
        let active_connections = Gauge::new(
            "cartan_active_connections",
            "Number of active connections"
        ).unwrap();
        
        let model_memory_usage = Gauge::new(
            "cartan_model_memory_bytes",
            "Model memory usage in bytes"
        ).unwrap();
        
        let gpu_utilization = Gauge::new(
            "cartan_gpu_utilization_percent",
            "GPU utilization percentage"
        ).unwrap();
        
        let inference_latency = Histogram::with_opts(
            prometheus::HistogramOpts::new(
                "cartan_inference_latency_seconds",
                "Inference latency in seconds"
            ).buckets(vec![0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1])
        ).unwrap();
        
        let error_rate = Counter::new(
            "cartan_errors_total",
            "Total number of errors"
        ).unwrap();
        
        let throughput = Gauge::new(
            "cartan_throughput_rps",
            "Requests per second throughput"
        ).unwrap();
        
        // Register all metrics
        registry.register(Box::new(requests_total.clone())).unwrap();
        registry.register(Box::new(request_duration.clone())).unwrap();
        registry.register(Box::new(active_connections.clone())).unwrap();
        registry.register(Box::new(model_memory_usage.clone())).unwrap();
        registry.register(Box::new(gpu_utilization.clone())).unwrap();
        registry.register(Box::new(inference_latency.clone())).unwrap();
        registry.register(Box::new(error_rate.clone())).unwrap();
        registry.register(Box::new(throughput.clone())).unwrap();
        
        Self {
            requests_total,
            request_duration,
            active_connections,
            model_memory_usage,
            gpu_utilization,
            inference_latency,
            error_rate,
            throughput,
        }
    }
    
    pub fn record_request(&self, duration: f64, success: bool) {
        self.requests_total.inc();
        self.request_duration.observe(duration);
        
        if !success {
            self.error_rate.inc();
        }
    }
    
    pub fn update_system_metrics(&self, system_info: &SystemInfo) {
        self.model_memory_usage.set(system_info.model_memory_bytes as f64);
        self.gpu_utilization.set(system_info.gpu_utilization_percent);
        self.active_connections.set(system_info.active_connections as f64);
        self.throughput.set(system_info.requests_per_second);
    }
}

pub struct ProductionInferenceService {
    models: HashMap<String, Arc<CartanModel>>,
    metrics: ProductionMetrics,
    tracer: Box<dyn Tracer + Send + Sync>,
    circuit_breaker: CircuitBreaker,
    rate_limiter: RateLimiter,
    health_checker: HealthChecker,
}

impl ProductionInferenceService {
    pub async fn serve_inference(
        &self,
        request: InferenceRequest,
    ) -> Result<InferenceResponse, ServiceError> {
        let start_time = std::time::Instant::now();
        let span = self.tracer.start("inference_request");
        
        // Rate limiting
        if !self.rate_limiter.try_acquire().await {
            self.metrics.error_rate.inc();
            return Err(ServiceError::RateLimited);
        }
        
        // Circuit breaker check
        if !self.circuit_breaker.is_available() {
            self.metrics.error_rate.inc();
            warn!("Circuit breaker open, rejecting request");
            return Err(ServiceError::CircuitBreakerOpen);
        }
        
        // Input validation
        if let Err(e) = self.validate_request(&request) {
            self.metrics.error_rate.inc();
            error!("Invalid request: {:?}", e);
            return Err(ServiceError::InvalidRequest(e));
        }
        
        let result = async {
            // Get model
            let model = self.models.get(&request.model_name)
                .ok_or(ServiceError::ModelNotFound)?;
            
            // Run inference with timeout
            let inference_future = model.predict(&request.input);
            let response = tokio::time::timeout(
                Duration::from_secs(30),
                inference_future
            ).await??;
            
            Ok(response)
        }.await;
        
        let duration = start_time.elapsed().as_secs_f64();
        let success = result.is_ok();
        
        // Record metrics
        self.metrics.record_request(duration, success);
        
        // Update circuit breaker
        if success {
            self.circuit_breaker.record_success();
        } else {
            self.circuit_breaker.record_failure();
        }
        
        // Structured logging
        info!(
            request_id = %request.id,
            model_name = %request.model_name,
            duration_ms = duration * 1000.0,
            success = success,
            "Inference request completed"
        );
        
        result
    }
    
    fn validate_request(&self, request: &InferenceRequest) -> Result<(), ValidationError> {
        // Input size validation
        if request.input.len() > 10000 {
            return Err(ValidationError::InputTooLarge);
        }
        
        // Model name validation
        if !self.models.contains_key(&request.model_name) {
            return Err(ValidationError::InvalidModelName);
        }
        
        // Format validation
        if !self.is_valid_input_format(&request.input) {
            return Err(ValidationError::InvalidFormat);
        }
        
        Ok(())
    }
    
    pub async fn health_check(&self) -> HealthStatus {
        let mut status = HealthStatus::new();
        
        // Check model availability
        let model_health = self.check_model_health().await;
        status.add_check("models", model_health);
        
        // Check GPU availability
        let gpu_health = self.check_gpu_health().await;
        status.add_check("gpu", gpu_health);
        
        // Check memory usage
        let memory_health = self.check_memory_health().await;
        status.add_check("memory", memory_health);
        
        // Check external dependencies
        let deps_health = self.check_dependencies_health().await;
        status.add_check("dependencies", deps_health);
        
        status
    }
    
    async fn check_model_health(&self) -> CheckResult {
        for (name, model) in &self.models {
            match model.health_check().await {
                Ok(_) => continue,
                Err(e) => {
                    return CheckResult::Unhealthy(format!("Model {} unhealthy: {}", name, e));
                }
            }
        }
        CheckResult::Healthy
    }
    
    async fn check_gpu_health(&self) -> CheckResult {
        match self.get_gpu_utilization().await {
            Ok(utilization) if utilization < 95.0 => CheckResult::Healthy,
            Ok(utilization) => CheckResult::Warning(format!("High GPU utilization: {}%", utilization)),
            Err(e) => CheckResult::Unhealthy(format!("GPU check failed: {}", e)),
        }
    }
}

Edge Deployment with WebAssembly

Optimized WASM Module

// wasm-edge-deployment/src/lib.rs
use wasm_bindgen::prelude::*;
use js_sys::{Promise, Uint8Array};
use web_sys::{console, performance};
use serde::{Deserialize, Serialize};

#[wasm_bindgen]
pub struct EdgeCartanInference {
    model: CompactCartanModel,
    quantization: QuantizationConfig,
    cache: InferenceCache,
    performance_monitor: PerformanceMonitor,
}

#[derive(Serialize, Deserialize)]
pub struct CompactCartanModel {
    weights: Vec<i8>,           // Quantized weights
    scales: Vec<f32>,           // Quantization scales
    cartan_structure: Vec<u16>, // Compressed Cartan matrix indices
    layer_configs: Vec<LayerConfig>,
}

#[wasm_bindgen]
impl EdgeCartanInference {
    #[wasm_bindgen(constructor)]
    pub fn new(model_data: &[u8]) -> Result<EdgeCartanInference, JsValue> {
        console::log_1(&"Initializing Edge Cartan Inference...".into());
        
        let model = Self::deserialize_compact_model(model_data)?;
        
        Ok(EdgeCartanInference {
            model,
            quantization: QuantizationConfig::int8_default(),
            cache: InferenceCache::new(100), // Cache last 100 results
            performance_monitor: PerformanceMonitor::new(),
        })
    }
    
    #[wasm_bindgen]
    pub fn predict(&mut self, input_data: &[f32]) -> Promise {
        let input = input_data.to_vec();
        let mut model = self.model.clone();
        let mut cache = self.cache.clone();
        let mut perf_monitor = self.performance_monitor.clone();
        
        wasm_bindgen_futures::future_to_promise(async move {
            let start_time = performance::now();
            
            // Check cache first
            let cache_key = Self::compute_cache_key(&input);
            if let Some(cached_result) = cache.get(&cache_key) {
                perf_monitor.record_cache_hit();
                return Ok(JsValue::from_serde(&cached_result)?);
            }
            
            // Run inference
            let result = Self::run_quantized_inference(&model, &input).await?;
            
            // Cache result
            cache.insert(cache_key, result.clone());
            
            let duration = performance::now() - start_time;
            perf_monitor.record_inference(duration);
            
            console::log_1(&format!("Inference completed in {:.2}ms", duration).into());
            
            Ok(JsValue::from_serde(&result)?)
        })
    }
    
    async fn run_quantized_inference(
        model: &CompactCartanModel,
        input: &[f32],
    ) -> Result<InferenceResult, JsValue> {
        let mut current_activation = input.to_vec();
        
        for (layer_idx, layer_config) in model.layer_configs.iter().enumerate() {
            match layer_config.layer_type {
                LayerType::LinearQuantized => {
                    current_activation = Self::quantized_linear_forward(
                        &current_activation,
                        &model.weights,
                        &model.scales,
                        layer_config,
                    )?;
                },
                LayerType::CartanAttentionQuantized => {
                    current_activation = Self::quantized_cartan_attention_forward(
                        &current_activation,
                        &model.cartan_structure,
                        &model.weights,
                        &model.scales,
                        layer_config,
                    )?;
                },
                LayerType::LayerNorm => {
                    current_activation = Self::layer_norm_forward(
                        &current_activation,
                        layer_config,
                    )?;
                },
            }
            
            // Apply activation function
            if let Some(activation) = &layer_config.activation {
                current_activation = Self::apply_activation(&current_activation, activation)?;
            }
        }
        
        Ok(InferenceResult {
            output: current_activation,
            confidence: Self::compute_confidence(&current_activation),
            latency_ms: 0.0, // Will be filled by caller
        })
    }
    
    fn quantized_linear_forward(
        input: &[f32],
        quantized_weights: &[i8],
        scales: &[f32],
        config: &LayerConfig,
    ) -> Result<Vec<f32>, JsValue> {
        let input_size = config.input_size;
        let output_size = config.output_size;
        let mut output = vec![0.0f32; output_size];
        
        for i in 0..output_size {
            let mut sum = 0.0;
            let weight_offset = i * input_size;
            let scale = scales[i];
            
            // Quantized matrix multiplication
            for j in 0..input_size {
                let quantized_weight = quantized_weights[weight_offset + j] as f32;
                let dequantized_weight = quantized_weight * scale;
                sum += input[j] * dequantized_weight;
            }
            
            output[i] = sum;
        }
        
        Ok(output)
    }
    
    fn quantized_cartan_attention_forward(
        input: &[f32],
        cartan_structure: &[u16],
        quantized_weights: &[i8],
        scales: &[f32],
        config: &LayerConfig,
    ) -> Result<Vec<f32>, JsValue> {
        let seq_len = config.seq_len;
        let d_model = config.d_model;
        let num_heads = config.num_heads;
        let d_k = d_model / num_heads;
        
        let mut output = vec![0.0f32; seq_len * d_model];
        
        // Simplified quantized multi-head attention with Cartan structure
        for head in 0..num_heads {
            let head_offset = head * d_k;
            
            for i in 0..seq_len {
                for j in 0..seq_len {
                    let mut attention_weight = 0.0;
                    
                    // Apply Cartan structure to attention computation
                    for k in 0..d_k {
                        let cartan_idx = cartan_structure[k] as usize;
                        let q_val = input[i * d_model + head_offset + k];
                        let k_val = input[j * d_model + head_offset + k];
                        
                        // Use Cartan matrix element (simplified)
                        let cartan_weight = if cartan_idx < scales.len() {
                            scales[cartan_idx]
                        } else {
                            1.0
                        };
                        
                        attention_weight += cartan_weight * q_val * k_val;
                    }
                    
                    // Apply softmax normalization (simplified)
                    attention_weight = attention_weight.exp();
                    
                    // Apply to values
                    for k in 0..d_k {
                        let v_val = input[j * d_model + head_offset + k];
                        output[i * d_model + head_offset + k] += attention_weight * v_val;
                    }
                }
            }
        }
        
        Ok(output)
    }
    
    #[wasm_bindgen]
    pub fn get_performance_stats(&self) -> JsValue {
        JsValue::from_serde(&self.performance_monitor.get_stats()).unwrap()
    }
    
    #[wasm_bindgen]
    pub fn optimize_for_device(&mut self, device_info: &JsValue) -> Result<(), JsValue> {
        let device: DeviceInfo = device_info.into_serde()?;
        
        // Adjust model based on device capabilities
        if device.memory_mb < 512 {
            // Very limited memory - use aggressive quantization
            self.quantization = QuantizationConfig::int4_aggressive();
        } else if device.memory_mb < 1024 {
            // Limited memory - use moderate quantization
            self.quantization = QuantizationConfig::int8_moderate();
        } else {
            // Sufficient memory - use light quantization
            self.quantization = QuantizationConfig::int8_default();
        }
        
        // Adjust cache size based on available memory
        let cache_size = std::cmp::min(1000, device.memory_mb / 4);
        self.cache = InferenceCache::new(cache_size);
        
        console::log_1(&format!(
            "Optimized for device: {}MB memory, cache size: {}",
            device.memory_mb, cache_size
        ).into());
        
        Ok(())
    }
}

// JavaScript integration helpers
#[wasm_bindgen]
extern "C" {
    #[wasm_bindgen(js_namespace = ["window", "navigator"])]
    fn hardwareConcurrency() -> u32;
    
    #[wasm_bindgen(js_namespace = ["window", "performance", "memory"])]
    fn usedJSHeapSize() -> u32;
    
    #[wasm_bindgen(js_namespace = ["window", "performance", "memory"])]
    fn totalJSHeapSize() -> u32;
}

#[derive(Clone)]
pub struct PerformanceMonitor {
    inference_times: Vec<f64>,
    cache_hits: u32,
    cache_misses: u32,
    total_inferences: u32,
}

impl PerformanceMonitor {
    pub fn new() -> Self {
        Self {
            inference_times: Vec::new(),
            cache_hits: 0,
            cache_misses: 0,
            total_inferences: 0,
        }
    }
    
    pub fn record_inference(&mut self, duration_ms: f64) {
        self.inference_times.push(duration_ms);
        self.total_inferences += 1;
        
        // Keep only last 100 measurements
        if self.inference_times.len() > 100 {
            self.inference_times.remove(0);
        }
    }
    
    pub fn record_cache_hit(&mut self) {
        self.cache_hits += 1;
    }
    
    pub fn record_cache_miss(&mut self) {
        self.cache_misses += 1;
    }
    
    pub fn get_stats(&self) -> PerformanceStats {
        let avg_inference_time = if !self.inference_times.is_empty() {
            self.inference_times.iter().sum::<f64>() / self.inference_times.len() as f64
        } else {
            0.0
        };
        
        let cache_hit_rate = if self.cache_hits + self.cache_misses > 0 {
            self.cache_hits as f64 / (self.cache_hits + self.cache_misses) as f64
        } else {
            0.0
        };
        
        PerformanceStats {
            avg_inference_time_ms: avg_inference_time,
            cache_hit_rate,
            total_inferences: self.total_inferences,
            memory_usage_mb: unsafe { usedJSHeapSize() } as f64 / 1024.0 / 1024.0,
        }
    }
}

#[derive(Serialize, Deserialize)]
pub struct PerformanceStats {
    pub avg_inference_time_ms: f64,
    pub cache_hit_rate: f64,
    pub total_inferences: u32,
    pub memory_usage_mb: f64,
}

Real-time AI Systems

Stream Processing Architecture

High-Throughput Event Processing

use tokio::sync::mpsc;
use tokio_stream::{Stream, StreamExt};
use futures::stream::select_all;
use std::collections::HashMap;
use std::sync::Arc;
use parking_lot::RwLock;

pub struct RealTimeCartanProcessor {
    input_channels: HashMap<String, mpsc::Receiver<InputEvent>>,
    output_channels: HashMap<String, mpsc::Sender<OutputEvent>>,
    models: Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
    event_buffer: CircularBuffer<ProcessedEvent>,
    stream_metrics: StreamMetrics,
    backpressure_handler: BackpressureHandler,
}

#[derive(Debug, Clone)]
pub struct InputEvent {
    pub id: u64,
    pub timestamp: u64,
    pub source: String,
    pub data: Vec<f32>,
    pub priority: EventPriority,
    pub deadline: Option<u64>,
}

#[derive(Debug, Clone)]
pub struct OutputEvent {
    pub id: u64,
    pub timestamp: u64,
    pub result: Vec<f32>,
    pub confidence: f32,
    pub processing_time_us: u64,
    pub model_version: String,
}

#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum EventPriority {
    Critical = 4,
    High = 3,
    Normal = 2,
    Low = 1,
    Background = 0,
}

impl RealTimeCartanProcessor {
    pub fn new(config: ProcessorConfig) -> Self {
        Self {
            input_channels: HashMap::new(),
            output_channels: HashMap::new(),
            models: Arc::new(RwLock::new(HashMap::new())),
            event_buffer: CircularBuffer::new(config.buffer_size),
            stream_metrics: StreamMetrics::new(),
            backpressure_handler: BackpressureHandler::new(config.backpressure_config),
        }
    }
    
    pub async fn start_processing(&mut self) -> Result<(), ProcessingError> {
        // Create multiple processing lanes based on priority
        let (critical_tx, critical_rx) = mpsc::channel(1000);
        let (high_tx, high_rx) = mpsc::channel(5000);
        let (normal_tx, normal_rx) = mpsc::channel(10000);
        let (low_tx, low_rx) = mpsc::channel(20000);
        
        // Start priority-based processing tasks
        let models_clone = Arc::clone(&self.models);
        tokio::spawn(async move {
            Self::process_priority_stream(
                critical_rx,
                models_clone,
                EventPriority::Critical,
                Duration::from_millis(1), // 1ms latency target
            ).await;
        });
        
        let models_clone = Arc::clone(&self.models);
        tokio::spawn(async move {
            Self::process_priority_stream(
                high_rx,
                models_clone,
                EventPriority::High,
                Duration::from_millis(5), // 5ms latency target
            ).await;
        });
        
        let models_clone = Arc::clone(&self.models);
        tokio::spawn(async move {
            Self::process_priority_stream(
                normal_rx,
                models_clone,
                EventPriority::Normal,
                Duration::from_millis(20), // 20ms latency target
            ).await;
        });
        
        // Start event router
        self.start_event_router(critical_tx, high_tx, normal_tx, low_tx).await?;
        
        Ok(())
    }
    
    async fn process_priority_stream(
        mut receiver: mpsc::Receiver<InputEvent>,
        models: Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
        priority: EventPriority,
        latency_target: Duration,
    ) {
        let mut batch_buffer = Vec::new();
        let mut last_batch_time = tokio::time::Instant::now();
        let batch_timeout = latency_target / 2; // Half the latency target for batching
        
        loop {
            tokio::select! {
                // Receive new events
                event = receiver.recv() => {
                    match event {
                        Some(event) => {
                            batch_buffer.push(event);
                            
                            // Process batch if full or timeout reached
                            if batch_buffer.len() >= Self::optimal_batch_size(&priority) ||
                               last_batch_time.elapsed() > batch_timeout {
                                Self::process_batch(&batch_buffer, &models, &priority).await;
                                batch_buffer.clear();
                                last_batch_time = tokio::time::Instant::now();
                            }
                        },
                        None => break, // Channel closed
                    }
                },
                // Timeout-based batch processing
                _ = tokio::time::sleep(batch_timeout) => {
                    if !batch_buffer.is_empty() {
                        Self::process_batch(&batch_buffer, &models, &priority).await;
                        batch_buffer.clear();
                        last_batch_time = tokio::time::Instant::now();
                    }
                }
            }
        }
    }
    
    async fn process_batch(
        batch: &[InputEvent],
        models: &Arc<RwLock<HashMap<String, Arc<CartanModel>>>>,
        priority: &EventPriority,
    ) {
        if batch.is_empty() {
            return;
        }
        
        let start_time = tokio::time::Instant::now();
        
        // Group events by required model
        let mut model_batches: HashMap<String, Vec<&InputEvent>> = HashMap::new();
        for event in batch {
            let model_name = Self::determine_model_for_event(event);
            model_batches.entry(model_name).or_default().push(event);
        }
        
        // Process each model's batch in parallel
        let mut tasks = Vec::new();
        let models_read = models.read();
        
        for (model_name, events) in model_batches {
            if let Some(model) = models_read.get(&model_name) {
                let model_clone = Arc::clone(model);
                let events_owned: Vec<InputEvent> = events.into_iter().cloned().collect();
                
                let task = tokio::spawn(async move {
                    Self::process_model_batch(model_clone, events_owned, priority.clone()).await
                });
                
                tasks.push(task);
            }
        }
        
        drop(models_read); // Release read lock
        
        // Wait for all model batches to complete
        for task in tasks {
            if let Err(e) = task.await {
                eprintln!("Batch processing task failed: {:?}", e);
            }
        }
        
        let processing_time = start_time.elapsed();
        println!(
            "Processed batch of {} events in {:?} (priority: {:?})",
            batch.len(),
            processing_time,
            priority
        );
    }
    
    async fn process_model_batch(
        model: Arc<CartanModel>,
        events: Vec<InputEvent>,
        _priority: EventPriority,
    ) -> Result<Vec<OutputEvent>, ProcessingError> {
        let batch_size = events.len();
        let mut input_matrix = Vec::new();
        let mut event_metadata = Vec::new();
        
        // Prepare batch input
        for event in &events {
            input_matrix.extend_from_slice(&event.data);
            event_metadata.push((event.id, event.timestamp));
        }
        
        let start_time = tokio::time::Instant::now();
        
        // Run batch inference
        let results = model.batch_predict(&input_matrix, batch_size).await?;
        
        let processing_time = start_time.elapsed();
        let processing_time_us = processing_time.as_micros() as u64;
        
        // Create output events
        let mut output_events = Vec::new();
        for (i, (event_id, timestamp)) in event_metadata.into_iter().enumerate() {
            let result_start = i * model.output_size();
            let result_end = result_start + model.output_size();
            
            let output_event = OutputEvent {
                id: event_id,
                timestamp,
                result: results[result_start..result_end].to_vec(),
                confidence: Self::compute_confidence(&results[result_start..result_end]),
                processing_time_us: processing_time_us / batch_size as u64,
                model_version: model.version().to_string(),
            };
            
            output_events.push(output_event);
        }
        
        Ok(output_events)
    }
    
    fn optimal_batch_size(priority: &EventPriority) -> usize {
        match priority {
            EventPriority::Critical => 1,     // No batching for critical events
            EventPriority::High => 4,         // Small batches for low latency
            EventPriority::Normal => 16,      // Medium batches for balanced throughput
            EventPriority::Low => 64,         // Large batches for high throughput
            EventPriority::Background => 256, // Very large batches for efficiency
        }
    }
    
    pub async fn add_input_stream<S>(&mut self, name: String, stream: S) 
    where
        S: Stream<Item = InputEvent> + Send + 'static,
    {
        let (tx, rx) = mpsc::channel(10000);
        self.input_channels.insert(name.clone(), rx);
        
        // Spawn task to forward stream to channel
        tokio::spawn(async move {
            let mut stream = Box::pin(stream);
            while let Some(event) = stream.next().await {
                if tx.send(event).await.is_err() {
                    break; // Channel closed
                }
            }
        });
    }
    
    pub fn add_output_sink(&mut self, name: String) -> mpsc::Receiver<OutputEvent> {
        let (tx, rx) = mpsc::channel(10000);
        self.output_channels.insert(name, tx);
        rx
    }
}

pub struct StreamMetrics {
    events_processed: std::sync::atomic::AtomicU64,
    total_processing_time: std::sync::atomic::AtomicU64,
    events_dropped: std::sync::atomic::AtomicU64,
    backpressure_events: std::sync::atomic::AtomicU64,
    last_update: std::sync::atomic::AtomicU64,
}

impl StreamMetrics {
    pub fn new() -> Self {
        Self {
            events_processed: std::sync::atomic::AtomicU64::new(0),
            total_processing_time: std::sync::atomic::AtomicU64::new(0),
            events_dropped: std::sync::atomic::AtomicU64::new(0),
            backpressure_events: std::sync::atomic::AtomicU64::new(0),
            last_update: std::sync::atomic::AtomicU64::new(0),
        }
    }
    
    pub fn record_processed_event(&self, processing_time_us: u64) {
        use std::sync::atomic::Ordering;
        
        self.events_processed.fetch_add(1, Ordering::Relaxed);
        self.total_processing_time.fetch_add(processing_time_us, Ordering::Relaxed);
        self.last_update.store(
            std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap()
                .as_secs(),
            Ordering::Relaxed
        );
    }
    
    pub fn get_throughput_rps(&self) -> f64 {
        use std::sync::atomic::Ordering;
        
        let events = self.events_processed.load(Ordering::Relaxed) as f64;
        let now = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap()
            .as_secs();
        let last_update = self.last_update.load(Ordering::Relaxed);
        
        if now > last_update {
            events / (now - last_update) as f64
        } else {
            0.0
        }
    }
    
    pub fn get_average_latency_us(&self) -> f64 {
        use std::sync::atomic::Ordering;
        
        let total_time = self.total_processing_time.load(Ordering::Relaxed) as f64;
        let events = self.events_processed.load(Ordering::Relaxed) as f64;
        
        if events > 0.0 {
            total_time / events
        } else {
            0.0
        }
    }
}

Real-time Model Updates

pub struct OnlineModelUpdater {
    base_model: Arc<RwLock<CartanModel>>,
    update_buffer: Arc<RwLock<Vec<TrainingExample>>>,
    gradient_accumulator: GradientAccumulator,
    learning_scheduler: AdaptiveLearningScheduler,
    model_versioning: ModelVersioning,
    performance_monitor: OnlinePerformanceMonitor,
}

impl OnlineModelUpdater {
    pub async fn start_online_learning(&mut self) -> Result<(), UpdateError> {
        // Start continuous learning loop
        let base_model = Arc::clone(&self.base_model);
        let update_buffer = Arc::clone(&self.update_buffer);
        let mut gradient_accumulator = self.gradient_accumulator.clone();
        let mut learning_scheduler = self.learning_scheduler.clone();
        let mut model_versioning = self.model_versioning.clone();
        
        tokio::spawn(async move {
            let mut update_interval = tokio::time::interval(Duration::from_secs(30));
            
            loop {
                update_interval.tick().await;
                
                // Collect recent training examples
                let examples = {
                    let mut buffer = update_buffer.write();
                    if buffer.len() < 100 {
                        continue; // Not enough examples yet
                    }
                    buffer.drain(..).collect::<Vec<_>>()
                };
                
                // Perform incremental update
                match Self::incremental_update(
                    &base_model,
                    &examples,
                    &mut gradient_accumulator,
                    &mut learning_scheduler,
                ).await {
                    Ok(updated_model) => {
                        // Create new model version
                        let version_id = model_versioning.create_version(&updated_model).await;
                        
                        // Validate new model performance
                        if Self::validate_model_performance(&updated_model, &examples).await {
                            // Atomically swap the model
                            {
                                let mut model = base_model.write(); 
                                *model = updated_model;
                            }
                            
                            println!("Model updated to version: {}", version_id);
                        } else {
                            // Rollback if performance degraded
                            model_versioning.rollback().await;
                            println!("Model update rolled back due to performance degradation");
                        }
                    },
                    Err(e) => {
                        eprintln!("Model update failed: {:?}", e);
                    }
                }
            }
        });
        
        Ok(())
    }
    
    async fn incremental_update(
        base_model: &Arc<RwLock<CartanModel>>,
        examples: &[TrainingExample],
        gradient_accumulator: &mut GradientAccumulator,
        learning_scheduler: &mut AdaptiveLearningScheduler,
    ) -> Result<CartanModel, UpdateError> {
        // Compute gradients on new examples
        let gradients = {
            let model = base_model.read();
            model.compute_gradients(examples).await?
        };
        
        // Accumulate with previous gradients (momentum/Adam-style)
        gradient_accumulator.accumulate(gradients);
        
        // Get adaptive learning rate
        let learning_rate = learning_scheduler.get_current_rate();
        
        // Apply gradients to create updated model
        let updated_model = {
            let model = base_model.read();
            model.apply_gradients(
                &gradient_accumulator.get_accumulated(),
                learning_rate,
            )?
        };
        
        Ok(updated_model)
    }
    
    async fn validate_model_performance(
        model: &CartanModel,
        validation_examples: &[TrainingExample],
    ) -> bool {
        let validation_size = std::cmp::min(validation_examples.len(), 1000);
        let validation_set = &validation_examples[..validation_size];
        
        let mut total_loss = 0.0;
        let mut correct_predictions = 0;
        
        for example in validation_set {
            let prediction = model.predict(&example.input).await.unwrap();
            let loss = Self::compute_loss(&prediction, &example.target);
            total_loss += loss;
            
            if Self::is_correct_prediction(&prediction, &example.target) {
                correct_predictions += 1;
            }
        }
        
        let avg_loss = total_loss / validation_size as f32;
        let accuracy = correct_predictions as f32 / validation_size as f32;
        
        // Performance criteria
        avg_loss < 0.5 && accuracy > 0.8
    }
    
    pub fn add_training_example(&self, input: Vec<f32>, target: Vec<f32>) {
        let example = TrainingExample { input, target };
        
        let mut buffer = self.update_buffer.write();
        buffer.push(example);
        
        // Keep buffer size manageable
        if buffer.len() > 10000 {
            buffer.drain(0..1000); // Remove oldest 1000 examples
        }
    }
    
    pub async fn force_model_update(&self) -> Result<String, UpdateError> {
        // Trigger immediate model update
        let examples = {
            let buffer = self.update_buffer.read();
            buffer.clone()
        };
        
        if examples.is_empty() {
            return Err(UpdateError::NoTrainingData);
        }
        
        let updated_model = Self::incremental_update(
            &self.base_model,
            &examples,
            &mut self.gradient_accumulator.clone(),
            &mut self.learning_scheduler.clone(),
        ).await?;
        
        let version_id = self.model_versioning.create_version(&updated_model).await;
        
        // Atomic model swap
        {
            let mut model = self.base_model.write();
            *model = updated_model;
        }
        
        Ok(version_id)
    }
}

pub struct AdaptiveLearningScheduler {
    base_learning_rate: f32,
    current_rate: f32,
    performance_history: VecDeque<f32>,
    patience: usize,
    patience_counter: usize,
    reduction_factor: f32,
    min_learning_rate: f32,
}

impl AdaptiveLearningScheduler {
    pub fn new(base_rate: f32) -> Self {
        Self {
            base_learning_rate: base_rate,
            current_rate: base_rate,
            performance_history: VecDeque::new(),
            patience: 5,
            patience_counter: 0,
            reduction_factor: 0.5,
            min_learning_rate: base_rate * 0.001,
        }
    }
    
    pub fn update_performance(&mut self, performance_metric: f32) {
        self.performance_history.push_back(performance_metric);
        
        // Keep only recent history
        if self.performance_history.len() > 10 {
            self.performance_history.pop_front();
        }
        
        // Check if performance has plateaued
        if self.has_plateaued() {
            self.patience_counter += 1;
            
            if self.patience_counter >= self.patience {
                // Reduce learning rate
                self.current_rate *= self.reduction_factor;
                self.current_rate = self.current_rate.max(self.min_learning_rate);
                self.patience_counter = 0;
                
                println!("Learning rate reduced to: {}", self.current_rate);
            }
        } else {
            self.patience_counter = 0;
        }
    }
    
    fn has_plateaued(&self) -> bool {
        if self.performance_history.len() < 3 {
            return false;
        }
        
        let recent_performances: Vec<f32> = self.performance_history
            .iter()
            .rev()
            .take(3)
            .cloned()
            .collect();
        
        // Check if recent performances are similar (indicating plateau)
        let variance = Self::compute_variance(&recent_performances);
        variance < 0.01 // Low variance indicates plateau
    }
    
    fn compute_variance(values: &[f32]) -> f32 {
        if values.is_empty() {
            return 0.0;
        }
        
        let mean = values.iter().sum::<f32>() / values.len() as f32;
        let variance = values
            .iter()
            .map(|x| (x - mean).powi(2))
            .sum::<f32>() / values.len() as f32;
        
        variance
    }
    
    pub fn get_current_rate(&self) -> f32 {
        self.current_rate
    }
}

Conclusion

These advanced tutorials provide comprehensive coverage of building production-grade AI systems with RUV-FANN. Each section includes working code examples, performance optimizations, and best practices for deploying scalable, real-time AI applications.

Key takeaways:

  1. Custom Neural Architectures: Leverage Cartan matrix mathematics for domain-specific optimizations
  2. Distributed Swarms: Implement fault-tolerant, Byzantine-resilient distributed systems
  3. Performance Optimization: Use gradient checkpointing, mixed precision, and gradient compression
  4. SIMD Kernels: Maximize hardware utilization with vectorized operations
  5. Production Deployment: Robust Kubernetes orchestration with comprehensive monitoring
  6. Real-time Systems: Stream processing with priority-based event handling and online learning

For more advanced topics and the latest updates, visit the RUV-FANN repository.

⚠️ **GitHub.com Fallback** ⚠️